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Abstract. In the previous part of this paper, we constructed a large family of Hecke algebras on
some classical groups G defined over p-adic fields in order to understand their admissible
representations. Each Hecke algebra is associated to a pair (Jy, ps) of an open compact subgroup
Js anditsirreducible representation py which is constructed from given data X = (T', P, ¢). Here,
I' is a semisimple element in the Lie algebra of G, P is a parahoric subgroup in the centralizer of I
in G, and ¢ is a cuspidal representation on the finite reductive quotient of P,. In this paper, we
explicitly describe those Hecke algebras when P is a minimal parahoric subgroup, ¢ is trivial
and ps is a character.
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Introduction

Let £ be a p-adic field with odd residue characteristic p, and let G be a connected
reductive group over k. In their work on GL, [HM1, 2], Howe and Moy sketch
a scheme for understanding the harmonic analysis on G via the harmonic analysis
on Hecke algebras associated to open compact data for G. More recently, Bushnell
and Kutzko have generalized this scheme to reductive groups via the theory of types
[BK2]. Especially, those Hecke algebras should be in a form such that their harmonic
analysis is tractable; in fact, they are expected to be generalized affine Hecke
algebras. In the stream of this philosophy, in [K1], we constructed a large family
of Hecke algebras on some classical groups. Here, we will prove that some of those
Hecke algebras are in fact generalized affine Hecke algebras.

We recall the basic situation from [K1]; Let k be a p-adic field with an involution ¢
and let ko be its o-fixed subfield of k. Let V' be a finite dimensional k-linear space
equipped with ¢-Hermitian form (,) (¢=+1or —1). Let G be the connected
component of a group of isometries on (V, (,)). In [K1], we constructed a large
family of Hecke algebras on G when the residue characteristic of k is big enough
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(see [K1, 3.2.3]). Let £ = (T, P, o) be given as in Section 1.5.B in [K1], that is, ' is a
semisimple element in the Lie algebra g of G as in [K1, 1.3.2], P; is a parahoric
subgroup in the centralizer Cg(I') of I' in G and ¢ is a cuspidal representation
of the finite reductive quotient of P;. Associated to such a X, we constructed a pair
(Jz, ps) consisting of an open compact subgroup Jx and its irreducible representation
ps. Let H =H(G//Jx, ps) be the Hecke algebra associated to (Jz, p5). This is the
convolution algebra on the space of all compactly supported functions
f:G — End(py), which transform via py under left and right translations by Js.
That is, f(jgi') = ps(J)f (g)p=(j') for g € G and j,j € Jx. H also carries a natural
involution % and an inner product (, ) (see (5.1.2)).

Assume that P, is a minimal parahoric subgroup I (see Section 1.5.A) and g isa
trivial character of ;. Let W' be the affine Weyl group of G’ = Cg(T). Then from
Proposition 4.2.6 in [K1], we have Supp(H) = JsG'Js = Js W'Js and M is linearly
spanned by functions f,, whose support is a single double coset JywJs with
w € W’ In this paper, for the case when ps 1s a character, we will describe the Hecke
algebra H = H(G//Jx, ps) by directly finding generators and relations. Moreover,
we relate those Hecke algebras to Hecke algebras on G’ = Cg(I") by establishing
an L’-isomorphism between Hecke algebras:

MAIN THEOREM. Let k satisfy the assumption in[K1, 3.2.3] and let G be a classical
group considered in[K1]. Let I be a semisimple element in the Lie algebra g as in [K1,
1.3.2) and let I} be a minimal parahoric subgroup of G' = Cg(T'), the centralizer of T in
G. Let X = (I', I}, 1), where 1 is the trivial character of 1. Let (Jx, ps) be a pair con-
sisting of an open compact subgroup Js and its irreducible representation ps, associ-
ated to T as in Theorem 4.2.9 in [K1]. Suppose ps is a character. Then for some
tamely ramified character y of 1), there is a x-preserving, support-preserving
L*-isomorphism n: H' = H(G'/ /I, ) — H(G//Js, ps) = H of C-algebras.

In case of GL,,, in [HM1, 2], Howe and Moy find Hecke algebra isomorphisms by
going through certain inductive procedures. On the other hand, in [BK1], Bushnell
and Kutzko find them by comparing two Hecke algebras directly. In both cases,
the Hecke algebras described are isomorphic to a product of Iwahori Hecke algebras.
In our case, we first find generators and relations of H(G//Js, ps) directly and then
compare it with a Hecke algebra on a related group G’ as in the Main Theorem.
Hence the choice of y in the Main Theorem is made so as to match Hecke algebras.
In our case, direct computation is possible because our open compact subgroup
behaves well with respect to the root space decomposition (see [K1] for details).
Unlike the case of GL,, where we had only Hecke algebras of Iwahori types, we
now see a twisting by tamely ramified characters. This phenomenon can be already
found in the work of A. Moy on GSp, ([My 2, Cor. 5.8]). Moreover, we find that
scaling I" (e.g. replacing I" with y - I in £ where y is an element of an extension field
E over k; see [K1, 1.3.2]) may yield different shapes of Hecke algebras. We have
not found any good explanation for this and hope to return to this point.
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When G is split and I splits over ko, A. Roche has an analogous constructions and
has proved the above theorem for the cases that he considered (see [R]). However,
instead of looking at Hecke algebras on Cg(I'), he finds an appropriate (possibly
nonconnected) reductive group H coming from Langlands parameters and relates
‘H to the Iwahori Hecke algebra of H.

Describing each Section, we will start by summarizing the idea of the construction
of (Jx, py) in [K1] for the case X = (T, I, 1) as in the Main Theorem. However, since
details in [K 1] are indispensable throughout this paper, rather than repeating things,
we will just sketch the idea of the construction. We will also recall parts from [K1]
whenever necessary. In Section 5, we introduce some generalities, most of which
can be found in [BK?2]. Using results from [BK 2], we also prove that the computation
of our Hecke algebras can be simplified. Roughly speaking, the problem can be
reduced either to the case where G’ = Cg(I') is a general linear group GL defined
over a finite extension F of kg, or to the case where G’ is a product of unitary groups
(without GL-factors). In Section 6 we compute H when G’ is of the form GL, and in
Section 7 we treat the other cases.

Throughout this paper, since we will keep referring to [K1], we keep all the
notation and continue with the numbering from it without further reference. In par-
ticular, this paper begins with Section 5.

In [K2], we will compute Hecke algebras when py is not necessarily a character for
>={,1,1).

Summary from Part I

We briefly summarize the construction of (Jx, py) in [K1]. The following notation
and conventions are from [K1]. They are valid throughout this paper.

NOTATION AND CONVENTIONS

Let k be a p-adic field of characteristic 0 with involution ¢y and let ky be the g-fixed
subfield. We will denote ao(x) by x?°. Let O, be the ring of integers of ko with its
maximal ideal p;, and let m;, be a generator for p;, . Let Iy = Oy, /vy, be its residue
field. For a finite extension E of ko, let e, = e(E/ko) be its ramification index over
ko and f, = f(E/ko) be the residue degree. We also define O, n,, p, and Iy,
similarly. We denote the algebraic closure of k by k.

Let V' be a finite-dimensional vector space over k. If V is equipped with a
nondegenerate ¢-Hermitian form (,) such that (v, w) = &{w, v)? (¢ = +1 or —1),
we let G denote G(V, (,)), the connected component of the group of isometries
of (,) on V. Let g be the Lie algebra of G. Note that we let G and g act on V from
the right. We note that there is an anti-involution ¢ on End(V), defined by the
equation

(vx, w) = (v, w(x?)) for v,we V and x € Endi(V).
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The group G is characterized as the connected component of
{g e GL(V) | (vg,wg) = (v,w) for all v, w € V} = {g eGL(V) g =g! }
and its Lie algebra g is characterized as

{y € End(V) | (vp,w) + (v,wy) =0 forall v,we V'}
={y €End(V) )" = -y}

For x € Q and a € 7Z, define |x|, = lax]|/a where |x] is the greatest integer not
greater than x, that is, |x] = max{y € Z | y < x}. Let [x] be the least integer not
less than x, that is,[x] = min{y € Z | y > x}. Define also [x], as [ax]/a.

Remarks. In [K1], we note that a k-linear space V' equipped with (, ), can also be
regarded as an E-linear space with sesquilinear form (,), where E/k is a finite
extension. In these cases, we let G(V/E), g(V/E) denote a group and its Lie algebra
over E associated to (V, (,),).

HYPOTHESIS. Since the result in [K1] is valid under the assumption

.1 >20rdk(p) p n 1 ’
dimy (V) p—1 p—-1 p—-1

(3.2.3)

from now on, we assume that k& and V satisfy the above inequality.
SI. X=(T,1.1)

S1.1. SEMISIMPLE ELEMENT I' AND TAMELY RAMIFIED TORI

Let T € g be a semisimple element and let t be a maximal torus in g which is
maximally ko-split among tori in g containing I'. Let T be the torus in G with
Lie algebra t. Let A[t] and A[T] be the subalgebra of Endi(}’) generated by t
and T respectively. Then A[t] = A[T] and since & satisfies (3.2.3), it can be written
as a direct sum of tamely ramified extensions over k. On the other hand, as
t-, T-module, V' >~ A[t] = A[T]. Now V can be decomposed as follows:

V=3 Vim Al = AT, 1)
i=1

where V,=F; @ ---® F; for some tamely ramified extension F; over k with
involution ¢; and where each V; is equipped with a sesquilinear form f, such that
(,)=>"Treu of,. We can write V; with respect to Witt basis (with respect to
a fixed ordering) as follows;

Vi=sVievievier,
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where
VieV =F'e..oF oF'®...oF " )

with ;% a maximal isotropic subspace in ¥ and V; its dual with respect to Jf,, and
where

Vi=0,F or F'e@F> and V' =0 F or F'e&F".

We refer to Section 1.4 for details and notation. Then under the above identifications
(I)and (2),T" e tcanbe writtenas ' = (-- -, p;, ..., v =97, ..., =5, - - ) withy, € F;
(see (1.3.5) and (1.4.1)). Moreover, G' = Cg(T') can be written as [, G} where G’ is
either isomorphic to GL(V;"/F;) or to the group of isometries on (Vi fy,)- That is,

G =[]G, where G;=GL(V;}'/F) or G(Vif,). 3)

i=1

From now on, we assume (I, t) satisfies (P) (recall it is defined in (1.3.2)).

The construction of (Jz, ps) is based on the data X which consists of three
ingredients (I', Py, ¢) (see Section 1.5); I' is a semisimple element in g with (I, {)
satisfying (P), P is a parahoric subgroup in Cg(I') and ¢ is a cuspidal representation
of the reductive quotient of P;. Here, we restrict our attention to the special cases
considered in this paper. From now on, we let ¥ = (I', I}, 1) be as follows:

I' = a semisimple element in g with (I, t) satisfying (P),
(Hx) Iy = a minimal parahoric subgroup of Cg(I') as in Section 1.5,
1 = the trivial character of I.

Note that we label such £ = (T, I}, 1) as (Hy).

S2. Construction of (Js, ps)

Recall that we have a useful list of notation and definitions in (2.1.1). We will use
them throughout this paper.

Decomposing g as a sum of irreducible t-modules (see (2.2.9) for details and
notation),

a= P M.
0, D)~(V5,%0)

On each t-root space 1\7If, we have a lattice structure induced from fractional ideals in
F§”. However, to produce a lattice in g, we need to work with ‘shifted’ (by %a\,)
lattices as in (2.3.3) due to nonself-duality of lattices associated to the parahoric
subgroups P;,. That is, for any s € Q, the lattice 1\7[5(3) = I\N/I’f(s + %av) corresponds
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top™ wheren, = [e(F/ko) - (s + L a,)] with a, defined in (2.1.1). Then the following
lattices defined in (2.3.9) are normalized by 1

Ar(s) = P Mi(s) = P M7 (s +1a,),

vel veY
teGal] w€Gal]

Arsh) = P MisH) = P M (s +1a)
veY veY
weGalf 1eGalf

Let Yr and Y- be defined as in (3.3.3). For our cases when X is as in (Hy) and py isa
character, we note that Yr = Y. More explicitly, we have

Vr=Yr=Ki+ Y Mi((=1-ord( 7).

Mizg

where K} = ¢’ N Ar(0™). Then in (3.3.3), the open compact subgroup Js is defined as
Je=1,-Yr =1 Yr, where Yr =exp(Yr) and Y} = exp(Qp).

On YT, I defines a character as y,.(y) = O(Tr(I"log(y))) for y € Y where 0 is the
additive character with the conductor Oy, fixed in (2.4.1). Now we extend this
to the whole Jx as a character. For a given I', we fix a character x of the maximal
compact subgroup 7; of T, which coincides with y_ on ToN Y and which is
extended to a character of [ factoring through /;/I{. Here I] is the maximal pro-p
subgroup of 7;. We still denote this extended character by .. Define the extended
character 7 of x. to Js as follows;

F.(t-b) = 7y, (b) for t-bely-Yi. (1)

In our case when py is a character with X = (I, Ij, 1), we have py =7,

PROPOSITION 4.2.6. Let ¥ = (I', I}, 1) be as in (Hg). Let W' be the affine Weyl
group of G'. Then we have Supp(H) = JxG'Js = J, I/NV/JZ and H(G//.LZ, p,) is spanned
by functions f,, whose support is a single double coset J,wJ, withw € W’. Moreover, f,,
is unique up to multiplication by a constant.

5. Preliminaries

Let Cg(I') = G' =[] G be as in (1.4.3) (or S1). In this section, we will show that
for any X as in (Hx), H(G//Js, ps) 1s isomorphic to a smaller Hecke algebra
HMsz//(Js N My), ps|Mx) for an appropriate Levi subgroup My of G. In Section
5.1, we recall results from [BK2]. We remark that the results summarized in
(5.1.3) [BK2, R] are valid for any connected reductive group defined over a
p-adic field.
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5.1. SOME RESULTS OF BUSHNELL AND KUTZKO

5.1.1. Notation and Definitions

Let M be a proper Levi subgroup of G and let P be a parabolic subgroup with its Levi
decomposition P = MN. Let N be the opposite unipotent radical of N relative to M
and let P = MN. For any subgroup J of G and its representation p, we denote

IN=JNON, JN=JNN, Ju=JNM. py=pliu.

(1) If we have J = JnJmJN, we say that J is decomposed with respect to (M, P).
(2) We also say (J, p) is decomposed with respect to (M, P) if J is decomposed with
respect to (M, P) and the groups Jn, Jn are both contained in the kernel of p.

5.1.2. Let J be an open compact subgroup of G and let p be its irreducible
representation. Let H = H(G//J, p) be the Hecke algebra associated to (J, p). This
is the convolution algebra on the space of all compactly supported functions
f: G —> End(p), which transform via p under left and right translations by J. That
is, f(jg/') = p(j)f (©)p(j) for g € G and j,j € J. The convolution « is defined by

Jix/2(2) Z/Gfl(X)fz(x_lg)dx for fi.f2e™M. ()

It also carries a natural involution * and an inner product (, ). They are defined as
follows: for f, f1, /> € H,

4@ =g (11./2) = Tr(fi » f5°(1)) 2
where (f(g~"))* is the adjoint of f(g™!) in the sense of Hilbert space operators.

Convention. For any Hecke algebra H(G//J, p) of the above form, we assume the
convolution * is defined with respect to a normalized Haar measure with vol(J) = 1.

The following results can be found in [BK2; Theorem 7.2 (ii)] and [R; Proposition
5.1%:

THEOREM 5.1.3 [BK2, R]. Let (J, p) be a pair of an open compact subgroup J of G
and its irreducible representation p. Suppose that there is a proper Levi subgroup
M such that (J, p) is decomposed with respect to (M, P) and suppose also that
Supp(H(G//J, p)) C JMJ. Let the Haar measures on G (resp. M) be normalized
such that the volume of J (resp. Ju) is 1.

(1) Let t be the map from HM//JIm, pm) to H(G//J, p) defined by t(f)(jmj') =
p(Nf(m)p(j) for f € HM//JIm, py)- Then t is an algebra isomorphism and t
preserves supports of functions in the sense that Supp(t(f)) = J - Supp(f) - J.
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(2) Let dp be the modulus function defined by ép(m) = |det(Ad(m)|Lie(N))| form € M.
Then T: H(M/ /Jm, py) — H(G//J, p) defined by

W) =10 -f) for feHM//Iv. pu)

is a *-preserving, support-preserving L*-isomorphism of C-algebras.

5.2. REDUCING TO SIMPLER COMPUTATIONS

In this section, we will find appropriate Levi subgroups and parabolic subgroups of
G satisfying the conditions in (5.1.3) to simplify our computation. Basically, we will
show that H is isomorphic to a tensor product of smaller Hecke algebras. Then
it will be enough to describe each smaller Hecke algebra.

5.2.1. Let G' =[] G; as in (1.4.3). By rearranging factors in (1.4.3), we can write
V=V,eVydV_

such that G’ acts as a product of GL-factors on ¥, and V_ and as a product of
nontrivial (i.e. they are not GL) unitary groups on Vj. For example, we can
put Va=>'VE Vo=>"V; where Y is over i’s with G} isomorphic to
GL,(F;) and " is over i’s with G} not of GL type. Then we note that (, ) is trivial
on V, and V_, and it is nondegenerate on V', @ V_ and V). Let P, be the parabolic
subgroup associated to the flag F: F, . =V D> Fo=Vo® V_ D F_=V_ and let
M, and N, be its Levi subgroup and its unipotent radical respectively. Then
we have

M,={geG|V,-gCV, fore=—0+}
P, =M,N,={geG|F,-gCF, fore=—0+}

Note that P, is a proper subgroup only when V/, and V_ are nontrivial.

PROPOSITION 5.2.2. (Js, ps) is decomposed with respect to (M, P,).

Proof. Let p,, my, n, and n, be the Lie algebras of P,, M,, N, and N,
respectively.  Note that ¢ =Lie(G)cm, and mn,n,C g*.  Since
log((Jx)n,) Cna C g*t, from the construction of ps (see S2 or (3.4.2)), we see
(Js)n, C ker(py). Similarly, (Jg)y C ker(py). Now we show that Js is
decomposable with respect to (Ma,ql')a). Let Js =1j- Yr as in (3.3.3). Then from
(3.3.2), we can write

Js=1;-Y, Y, where Y;=exp(})).

Since I; ¢ G’ € M, we can write I = (Ij)y (Ig)m, (Ip)n, With (), = )N, = 1 and
hence [; is decomposed with respect to (M, P,). We claim each Y, is also
decomposed with respect to (Mg, P,):
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LEMMA 5.2.3. Y, = (Y,)n (Y, (Y, -

Proof. For ye Y, write log(y) = X, + X, + X, with Xy €n,NY, Xy, €
m,NY, and X,, en,NY,. Then y=z1y, =Z1)1 with z; =2, = exp(Xn ) and
y1 =y1 =exp(—X, )y. Again, writing log(y;) = X1 + X1 + X& , we note that X1
is closer to 0 than Xy, Let 1 =5, with 2, = exp(Xl) and j, = exp(— X1 )y1
and write y = zp)» W1th zyp = Z1zp and y, = y1)s. Repeatmg above process, we see
z; (resp. y;) converges to an element of ( Y,)N“ (resp. Y, N P,). It can be easily checked

that Y, NP, = (Y,)\,(Y,)n,- Hence we have Y, = (Y")E ’(Yr)Mu(Yr)Na. O

Going back to the proof of (5.2.2), since Y;’s are normalized by [}, we can write Jx as
Upn T, Yo - - - Yi(Ip)n, - Inductively, since Y; is normalized by Y, for i < ¢, we can
write Js as

U, [T, - G, T T, - U, T X,

Now we have (Jx), = (1)), [[(Y:), for o € {N,, M,, N} and Jy is decomposed with
respect to (M, P,). [l

5.2.4. From (4.2.1), we have Supp(H(G//Js, ps)) C JsG'Js. Since G’ € M, and thus
Supp(H(G//Js, ps)) C JsM,Js, we can apply (5.1.3) and define 7: HM./ /() s
(ps)m,) — H(G//Js, ps) as in (5.1.3)<(2). Moreover, 7 is a s-preserving, sup-
port-preserving L’-isomorphism of C-algebras. Hence we can reduce the compu-
tation of H(G//Js, ps) to that of H(M.//(Jz)m,. (Ps)m,). Note that M, is a
direct product

M, = M, x My = GL*(V, /k) x G(Vo), (1)
where

M, = GL*(V, /k) = M, N (GL( Vi /k) x {1, ) x GL(V- /k))
and

Mo = {1,,} x G(Fo) x {1, }

(recall G(V;) is defined in (1.4.3)). Note that M, is embedded in GL(V, /k)x
G(Vy) x GL(V_/k), however, the third component is determined by the first
component in GL(V, /k). From construction, we observe

(Jom, = Uom, X (Jx),,, »
where (Jx)y, = (Js)y, N Mo and (Jx)y, = (Js)v, N M. We can also write
(P)Mm, = (px)s ® (px)o

for some irreducible representations (py);, (px)g Of (J)y,» (Js)y, respectively. Con-
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sider the map
U HM;//(UsIm,» (P5)s) @ H(MO//(JZ)MO’ (ps)o) — H(Ma//(JZ)M,,’ (Pz)M,,)

fi®f —  f 2

with f* defined by f(mymg) = fi(m,)fo(my) = fo(my)fs(m,) = f(memy). Then it can be
easily checked that ' is a x-preserving, support-preserving L’-isomorphism of
C-algebras. Hence it is enough to describe each factor H(M,//(Jx)y,. (ps),) and
H(MO//(J):)Mo’ (px)o)-

5.2.5. Here, we will decompose H(M;//(Jx)u,. (px),) even further. Recall that we can
write V. as

m'
V, = Z v, where Z runs over i with G} of GL-type
i=1

and V_ can be written in a similar way. Moreover, V; = d;F; for some tamely
ramified extension F; over k and G, = GLj (F). Let P be the parabolic subgroup
in M; associated to the flag F:Voi=F 1 DF2D - D Fp1 =0 with F; =
EB?ij V. Let M, and N, be its Levi subgroup and unipotent radical of Py, respectively.

Then
Py={geM,|F;-gCF;, forj=1,....,m},
My={geM |V -gcV fori=1,...,m}, (1)
Ny ={g € Py | (F;/Fn1)-g=1dg 5 . forj=1, ... .m}

Note that G| is contained in M,. From the construction of (Jg, py), we see that
Js NN, and JsNNp, are contained in the kernel of py. Proceeding as in
(5.2.2)~(5.2.4), we can prove ((Jx)y,, p,) is decomposed with respect to (My, Pp).
To prove (5.2.3) in this situation, we can apply the proof of (5.2.3) inductively. Hence
s, = [T7Us)y, where My = GL* (V7 /K), (Jshy, = sy, N M; and ps|M, =
(p2)1 ® -+ ® (px),,y for some character (py); of (Jx)y,. Hence we have

HM,/ /(s (px)y) = @ HM,/ /(To)w,» (x))- 2
i=1

5.2.6. Summarizing (5.2.4)—(5.2.5), there is a *-preserving, support-preserving
L?-isomorphisms of C-algebras:

EH(Ms/ /sy (0x)ms) —H(G/ /s, ps),

7:QH(Mi//(Te)u,» (p5);) —HMs/ /(s (0x)w)-

i=0

Here 7 is defined as in (5.1.3)(2). More precisely, since Supp(H(G//Js, ps)) C
JsG'Js from (4.2.1) and G’ C My, we can apply (5.1.3). Hence we can define 7
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asin (5.1.3)-(2) with (M, P) = (Mg, Pyx), where Py is the parabolic subgroup with its
Levi subgroup My = ]2, M; and unipotent radical Ny = N,,N,. Let 7 be 7o7.Then

/

ii: Q) H(Mi/ /(T (p5)) —H(G/ [Tz, p)
i=0

1
is given by i(fo ® fi ® - - - fy)(m) = 0p (m) [, fi(m;) for m = mom; ---m,y, m; € M;
and Supp(f) = JxmJs. Hence, it is enough to describe each Hecke algebra
HM,//(Is)m;s (P2)s)-

To prove the main theorem, we claim that it is enough to prove that there is a
x-preserving, support-preserving L*-isomorphism 7; between H(M;/ [Us)m;» (Px);)
and H(G;//I{)", &) for some tamely ramified character £; of I(’)i (see (7.3.1) for
definition).

Suppose there exist such #; and &;. Then defining a character y of I =[], Iéi by
®;&;, it is obvious that the map ii': H(G'//I}, 1) — & H(G,//1}', &) defined by
fi— ®; (f|16i) is a s-preserving, support-preserving L?-isomorphism. Composing
i', ®i1; and 7, we will see that n defined by 7 o (®;) o7’ is a *-preserving, sup-
port-preserving L*-isomorphism of C-algbras from H(G'//I}, x) to H(G//Js, ps).

Note that My = G(Vp) and fori = 1, ..., m’, M; is isomorphic to GL(V; /k) and is
a proper Levi subgroup of G(V;) (see (1.4.3) for notation). Hence to describe each
HM,;//(Js)m;» (p5);), we may assume that we have one of the following cases:
Let £ = (T, I}, 1) as in (Hg) and Mgy is the Levi subgroup associated to X as above.

Case 1: My >~ GL(V™*/k). Equivalently, G is isomorphic to GL(V*/F).
Case 2: Mz ~ G(V). Equivalently, G’ is isomorphic to a product of unitary
groups, [, (Fi/k:).

Remark. 5.2.7. Note that My is the smallest Levi subgroup in G containing G'.
From (5.2.6), we see My is a proper subgroup of G unless V' = V), that is, it is proper
when there is G} isomorphic to GL4(F). In this case, G'/Zg does not have compact
center. Hence via the L%-isomorphism # of C-algebras in (5.2.6), we see that there
is no discrete series containing (Jx, ps).

6. Computation: G' = GL4(F)

Let X=(I,1;,1) be as in (Hg). In this chapter, we consider the case
G' = GL*(V*/F) ~ GL(V*/F) = GL4(F). To simplify notation, we will identify
G’ with GL(V'*/F). We also drop 1’s from (1, 1, a, b) € Y. For computation, we need
to describe root spaces more explicitly. In the following section, we describe root
spaces and the action of the affine Weyl group of G’ on those root spaces.

6.1. AFFINE WEYL GROUPS AND ROOT SPACES IN gl(V'*/k)

6.1.1. From now on, we fix the order of the basis over F as follows:
Vt=F'e...@F withF=F'=...=F%
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Note that this ordering is reverse to what we have in Section 1.5.A (or S1.1). Recall
from Section 1.5, we have chosen an Iwahori subgroup in G’ as a stabilizer of
the following slice of lattices on V'*; for r=0,...,d — 1,

d
LO:@0F3-~3L,.
i=1

d—1

r d
=@DFEB @OFD'--DLd—1=@PF®OF~
i=1

i=r+1 i=1

From (2.2.8), we have the following decomposition of gl(B*/%):
AVt =te Yy M,
ab=l,....d

eGaly
(a.b.t)#(a.a.1)

More explicitly, we have
M:, = F .1, - F ~ (Fr)F = F®

where t,5: F¢ — F" is defined as in (2.2.3) and F acts on F via multiplications. Then

al(VF/k) =) Homi(F“,F')=)" " F-14-F.
a,b

a,b teGal,

Recall each M}, = F - 14 - F is a t-root space defined over k where t acts via the
adjoint action as
ad)(x)=(t,-x—x-tp) fort=(t1,....t,) €t, xeM

ab*

Let @', @', and A’ be the sets of roots, positive roots and simple roots respectively. We
will use same notations @', @, and A’ for those sets of corresponding root spaces in
g. Let ® be the set of k-rational root spaces in GL(V*/k). Then we can find
®, &', @, A’ as follows:

o = {M;b la,b=1,...,d, ‘ceGalv},

P ={M}, e}

Y, ={M), e a<b}

N={Mped|b=a+1, a=1,...,d-1}
We recall affine root systems for GLy4(F) [BT,IM]. Let @, and A} be the sets of

affine roots and affine simple roots respectively. We again use the same notation
for the sets in ¢'. Let 1/e.7Z be the value group of F/k. Then we have

1
O = {Mib(ﬁ) IM), e®, Pe eZ},

F
1
;ff = {Mtll,a-‘rl(o)’ M}n (;) }
-

For each M;b(ﬁ) C ¢, we have the corresponding subgroup NLb(ﬁ) = exp(M;h(ﬁ)) in
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G'. Then the Iwahori subgroup I (see (1.5.1)) can be written as

Iy="T- l—[Ntllb(O) : nNéh <€1)

a<b a>b

where Tj is the maximal compact subgroup of T.

6.1.2. Let W' = Ng (T)/ Ty be the affine Weyl group of GL4(F). Fora=1,...,d — 1,
let s, be the simple reflection with its corresponding affine space M;,u +1(0) and let 54
be the extended Weyl element corresponding to an affine space M}“(l /e,). That
is, s, is the elementary transposition in G’ which switches rows a and ¢+ 1 and
sq can be written as a matrix in GL(V1/F) as follows:

0 0 n;l
Sq4 = 0 Idd_z 0
s 0 0

r
Let ﬁfé be the group generated by the imagesof S ={s; |i=1,...,d}in W', Let Q be
the subgroup of W’ normalizing /;. Thatis, Q = {w e W' Adw(l)) = Ié} where w is

a representative in Ng(T) of w. It is generated by

0 1
0 1
1= 0 .
0 0 1
n, 0 0

Then Ad(s,) = s,—1, Ad#(s;) = s4, and we have a semi-direct product decomposition
W = ﬁ/(; x Q.

Notation. From now on, if there is no confusion, we will use the same notation w
for both an element w of W’ and its representative w in Ng/(T).

6.1.3. On each k-rational root space M}, for a # b and on each M7, (f) with a # b or
a=> and f > 0, the exponential map is well defined. Denote

NGy = exp(Mg,).  Ngy(B) = exp(Mg,(5)). ()

Ifa # b, N}, and N[, () become subgroups. If t = 1, N;b (resp. N}lb([f)) is a usual root
subgroup (resp. an affine root subgroup) in G’ with respect to T.

Let TY , = x - 74 - y be an element of Mg, () for x, y € F with ord(x) + ord(y) = f
(see (2.2.3)). Let s be an element in S, then we have Ads(x - tu - ) € M{(.s) @S
follows:

| x @y v, s €S\ {sa},
Ads(x 14+ y) = { (RO X) - Ty iy - (PEOBOD),if 5 = sy, 2
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where d,5 is the Kronecker’s delta function and where s € S actson {1,...,d} as a
permutation.

6.2. IWAHORI HECKE ALGEBRA OF GL,

Since we will establish an isomorphism between H = H(Mz//Js, (pg)y,) and the

Iwahori Hecke algebra ‘H = H(G'//I},1) of G’ = GLy4(F), we briefly describe

the Iwahori Hecke algebra H’ of GL,(F). Let W = I/~V0’ xQ be the affine Weyl group

of GLy(F) in (6.1.2). Let / be the length function defined on ﬁ/’; for we W', I(w) is

defined such that [Iowi:Ig] = ¢"™. Note that M is linearly spanned by

(e | w € W’) where e, is the unique function in 1’ with support [jwl; and e,,(w) = 1.
The following result describes H’ in terms of generators and relations.

THEOREM 6.2.1 [IM]. The algebra H' is generated by
e, s€S=1{s,...,84, 1}
The elements e,, w € W' satisfy the relations

(L) €y X €y = Eyyy lf Z(WW/) = I(W) + I(WI),
(Q) esxes=gq,e1 +(q, — ey, s€S.

Here, q, denotes the cardinality of the residue field of F.

We note that the following two relations are resulted from (L):

(B) (i) e, xey, =e;xes, if |i—jl>1 (mod d),

(i) e5, x €5, xe;, = e, *eg *eg, ., i(mod d);

(T) (1) e xey; = e,
(ii) e; x e, = €5, , x€;, i(mod d).

In the following theorem, let u (resp. 1) denote a normalized Haar measure on My
(resp. G') with u((Jx)y,) =1 (resp. /(1)) = 1).

THEOREM 6.2.2. Let ¥ = (T, I}, 1) be as in (Hs), suppose G’ = Cg(I') >~ GL4(F) for
some tamely ramified extension F over k. Let W' be the affine Weyl group of G’ with
G =IW'I. Forwe W', let

o MU )
" wW(Iiwlp)

and let e, € H' with e,,(w) = 1 and Supp(e,) = [ywl}. Let f,, € H with f,,(w) =1 and
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Supp(fy) = (J)m, W), Define a map n: ' —H as follows:

1
2 w
niey) = (CL”) 8]( )fw-

Here ¢ = 7.(—1) where ¥ is a character of O such that ps|Iy =77 o det (recall that
ps factors through determinant on I). Then n is a x-preserving, support-preserving
L?-isomorphism of C-algebras.

Notation. To find an isomorphism between H(Msz//(Js)y,, (Px)y,) and
H(G'//I}, 1) where My ~ GL(V*/k), we identify My with GL(V*/k) and regard
(J£)wm, as a subgroup of GL(V*/k). From now on, in case there is no worry about
confusion, we will drop the subscript y,;. For example,we will just write (Jx, ps)

for (o) (P2Imy)-

Proof of Theorem 6.2.2. Note that from (4.2.6), n in Theorem 6.2.2 is a linear
isomorphism. Since we have

* *
e, = €,-1, fw :fw*1 and Cw = Cw—l,

we see 1 is x-preserving. Since

(’7(6’»«), n(ew’))
_ 81(w)+l(w’)( Cwle/ )7 /(; fo@fw(@)dg

= 5w,w’/vt/(I(SWI(/)) = (ew’ ew’),

n is an L2-isomorphism. From the following Lemma, we see that # is support-
preserving, that is, Supp(n(ey)) = (Jx)um, Supp(ew)(Jx )y, -

LEMMA 6.2.3. For we W', (JswJs) NG’ = I},

Proof. Assume that Ijwlj is strictly contained in (JxwJy) NG'. Then since
G =1 W/Ié and Ij C Jx, there should be w' e W' with w #w such that
Iyw'ly C JswJs. Then we can write

w = jiwjp, for some ji, j» € Js. (D)
For any t € Ty, we have Adw/(¢) = Ad(jiwj»)(f) and thus

1

Ove~ ™Dy oD = (o w @

Since (wr=tw= )i (witw'~1)jy € Jx for any 1 € Ty, we also have w((r~'jp0)j; yw™! € Jx
forall t € T). Now, observing the Ad action of the torus 7 and W on Js, we see that
wirw™! € Js. Combining with (1), ww™! = ji(wjrw™") € (Js NG’ N Ng(Ty)) = To.
Hence, w = w' and it contradicts the assumption. O
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Now, it is left to prove that # is an algebra isomorphism. In Section 6.3, we will
show it by verifying the relations (L), (Q), (B) and (T) for H corresponding to those
for H' in (6.2.1).

6.3. H=HMzs//(Js)u, Px)

Recall that since our py is a character, we have Yr = Y, Jy = J, (see (3.3.3) and
(3.4.2)). Let e = e(F /ky) be the ramification index of F over ky. For 7 € Gal,, let

g = 3(=1—ord(y® =), if 71,
e if t=1.

Here, y* denotes the Galois conjugate of y under 7. Since py is a character and
Y, =Y/, for any 1 € Gal,, we have M{(8,) = M{(5]).

PROPOSITION 6.3.1.
(L) If [(ww) = I(w) + I(W) for w,w' € W',

1 1
. ,Lt(.]): WJE)#(JZ W,JZ) 2 _ Cw Cw’ 2
ﬂ" *ﬁ"" B < :u('] z ww'J. Z) fWW/ N wa’ ﬂvw, '

(Q) Let ] be a character of O as in (6.2.2) (note that 7(=1) =1 o0r —1).
Saxfs = a1 +71(=D(q, — Dfs;,  si€ S\ {sal,
foxfos = Coehh +7(=1) - Gy - (@, = Ve
(B) () fy *fy =fy*fs, if li—jl>1(mod d)
(i) fi, % fos *fs, = Jsoos % fs % Jsrr i (mod d).
(T) ) fuxfor = s
(ii) fr x fs, = fs,, * f1» 1 (mod d)

where

1
3

M) (1),

CV - / /
1 w(Iywly)

for any w € W

We first note that (B) and (T) follow from (L). In (6.3.2)-(6.3.4), we will prove the
relation (L) in the Proposition 6.3.1.

LEMMA 6.3.2. Let w,w e W' If [(ww) =Iw)+IW), then (JgwJgw'Js)N
(JzG/Jz) = JzWW’Jz.

Proof. We will find an open compact subgroup J containing Jy, which behaves
similarly as Ij does under the action of Weyl group. Let J » be the Oy-lattice defined
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as follows:

Tp=Ti+ Y ML)+ > M. — 1. (1)

a>=brt a<b,t

We note that 7, is closed under Lie bracket. From the assumption on k, we can
define J, =exp(J,). Then J=1I,-J,. Note that Js CJ. Since IjCJ and
GnJ= 1, JG'J =U %jwj. Moreover, we can also check that for any

we

we W', (Iwl)NG' = [[wl} as in (6.2.3).
For 7 € Gal,, let

Je= Y My(B)+ Yy My — 1.

az=b a<b

Then we note that J; = 7} and from (6.1.3)—(6.1.2), J. behaves in a similar way as
T does with respect to the Weyl group action. If I(ww') = I(w) + I(w') as in Lemma,
we have Iywljw'ly = Ijww'l; and equivalently, for any M!,, we have
AdwM}, n 7)) € Ji or Adw ™ H(ML, N 7)) € Ji. Similarly,

AdwM,NT) € J. € J, or AW M, NT) C T C Jp
and, hence, JwJw'J C Jww'J. Now we have

JswIsw'Js C JwIw'J = Jww'J
and

(JswJsw'Js) N (JsG'Js) € JwIw'J N (JsG'Js)

= (Jww'J)N (JG'Js) = Jsww'Js.

Hence

(JzWJzW/Jz) n (JzG/J}:) = JzWW/Jz. O

The following is an immediate consequence of (6.3.2).

COROLLARY 6.3.3. If I(ww') = I(w) + [(W) for w,w' € W fw* fw is a constant
multiple of fiw.

6.3.4. Going back to the proof of (6.3.1)-(L), from (6.3.3), we see that
fw*fi = ¢ frw for some constant ¢. We can write JswJy and Jyw'Jy as a disjoint
sum of Js-cosets

Jswly = UjZWJ27 Jsw'Js = UJZW/j/z,

Jz Js

where each js and j5 varies over coset representatives

J=Js [Us Owdsw™), = (s N w’*lsz/)\Jz, (1)
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respectively. Then
w(JJswis) = t(4w), H(JIsW'Js) = 8(Aw).

Note that we may assume that jz and j5 are unipotent. Now we can find ¢ as follows:

¢ = fr * frr (W)
= / Jw(Ofw (X_lww/)dx
GL(V+/k)

= 3 [ At ot e
Js

Jz€hw
. . s -1 -1 ,
= war(w Listww') = sz(w Vg twwie T w T = #(Aw)
JE €l Jopon?

where
.y —1.—1 ry —1 /-1
Dop = H(]z,jz) € Jw X Ay | W s wwis W € Jz}.

Here, py(w Uz ww/"'w™h =1 since det(w iz ww/z~'w™") = 1. Computing
8(2nw), if wljgtwiw'je"'w ™! =j e Js, from (6.3.2), we should have j = xy where

x,y € Js with wxw™!, w~lyw’ € Js. Then we have

vxflj');(vv)cvtfl)Ww'(w’_lyw’)j/z_1 wl=1

and, hence, from (1), we may assume that x = y = 1. Then we see that

ﬁ(/lw)ﬁ(/ﬂbw’) _ /J(JZWW/JZ)-

()

Since fi(4,) = u(JswJs) and #(A,) = w(Jsw'Js), we have

_ (uUzwIp)u(Jzw' Jx) :
ﬁ(ﬂvw,w’) - ( M(JZWW/JZ) )

and the relation (6.3.1)—(L) is proved. O
In rest of this section, we will basically prove (6.3.1)—(Q).

6.3.5. We first consider the case s;. We can write Jxs,Jy as a disjoint sum of Jy-cosets
Jesalz = Jjesals.  Jesads = | Jesajt.

Jz Js

where jz and j5 vary over
sy = J5/(Jx N saJssa) = (Jx N sadzsa) \Jx

= (2), [ (U2), N 5aI),50) = (U2), N 5aU8),50 \ W),

~ (J3), [ (Ts), N (T )y50),
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where (Jx), =log(l]) + Yr with I the maximal pro-p subgroup of ;. More
explicitly, we have

~ Na(®)
MNL Q2e)
exp(ZMH(ﬁHZZM (ﬁ)+ZZM (B- )) @l
#1 i=2 1#1 j=2 r;ﬁl
exp<ZM B+ S M)+ 55 My, +l))
t#1 i=2 1#l j=2 1#1

For convenience of notation, we used long division instead of \ or / . Since each
denominator is normalized by its numerator, our notation is harmless. We can
choose jz, j§ € 4y, such that they are of the following form:

rmen-en(S 3 +zza<~),

i=2 t#l 1 t#1
\ (a2)
Js =exp(Z') - exp (Z me + Z Z bm),
i=2 t#l j=1 t#l

where a, by € M. Z, Z' € p, " Hom(F!, F') and where a, b; € MZ,(f,) mod

M, ()N Sd(Jz)de In a matrix form, jz (mod Jy N szJzs,) can be written as

1 0 . . 0
Y dy) 1
Js = : o : @3)
ZaZ)_l,l 1 0
zZ+Y am
+4 > am DY ai;),d—l 1

where 4 = Z (Z#l a(tz “ Dl @ jd> We can write j§ in a similar way.
Now finding the support of f;, » f;,, we first note that Supp(fs, x fs,) C JzsaJs54Jx.

LEMMA 6.3.6. (JES,]JES,]Jz) N (Jz;G,Jz) = Jz @] JzSsz.
Proof. If (JgsaJss4Jy) 2 (Jx UJssyJs), we have w € W\ {1, s,} such that

SajsSaj = 1w a4

for some ji, j» € Jy and js in the above form (q3). For simplicity, denote s;jss4 by Js.
Moreover, since we know Ijsqlysqly = Iy U I)sql), we may assume Z =0 in js.
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Now for any ¢ € Ty, we have Ad(jy2)(¢) = Ad(jiw)(¢) and

Js - eyl - (- Adjs(c ot D) = i - Adw(D) i (D
Observing that j; normalizes (Jz), from direct computation, we see that

(- Adjs(t jotjy ")) € Js,  forall ¢e Ty.
Since we also have ji - Adw() - j;' € Jx, from (1), we have j; - Ad#(j;"") € J5 for all

t € Ty, which implies j; € Jy. From w :jl’ljsjz eJsNW, w=1 which is a con-
tradiction. Hence the Lemma follows. O

Now since Supp(fy, * fs,) C (JesaJzsaJs) N (JxG'Jx), (6.3.6) implies that f;, x f;, is
a linear combination of f; and f;,, that is,

f&( *fsd = clfl + CZJ‘&./ (q5)

for some constants ¢; and ¢;.
Since p'(Iysqal)) = q,, we can find ¢; and ¢, as follows;

1= foy % fos(1) = / Fu o) dx
GL(V+/k)

= ﬁ,l(x)f&,(x*)dx:/ ldx

JIssals Jssas
= u(Jssals) = Cs, - 4
e = fiy % ful5) = / £ (o (s (@6)
GL(V* k)

= > | fulUssax)fs,(x sqjg sa)dx

ey, O x
—1 .
= > fulsaiz's)) = Y fi(sajzsa)
Jz€lsy Jz€lsy

Since fsd(dezsd) #* 0 (lf and) only if Sqj=Sqa € JsSaJs,

.y
= ) pssajssaissa)- Q7
(s dy)ehsg xisy
SaizSdlsSa€ls

To find the condition on js, j5 such that syjssqissqs € JzsqaJs, we compute sg/s8qj58q
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explicitly. For simplicity of notation, let Z = Zyn,, Z' = Zjn,. We will write down
only terms of nontrivial contribution:

. . mod
SdJESd]sSd =
. > 2l n (14 ZoZy)+
+ T (ay;+ .
_ ’ @ v T e Y m  (Zobg+
b 1 Z a ) T F dl
F T “d1 Z()bdi)‘l? © >y ]
ag Zy)m,
* *
(a8)
@ _
(1) 1 + (Z ail TEF 1) Zr(b(lrl)—i—
Zr il * * (1)
( (”) a,Z)n~!
Zbdi 10/
* *
o Zot
Ty Zr di (Zr bii)ln;l)
From (q8), sqjssqjssa € Jx if and only if
1+ 202, =0, Zoby, +ayZ, =0,
. 1 2
ay € M;u<ﬁf + —> (mod M;u<ﬁr + —>)
e e
ay+Zoby =0, b +ayZy=0, fori=2,....d—1. (99)
Hence j§ is determined by js, that is,
1 () 1 (v) 1 () 1 () 2
Zy=——, by =—=a;,—€M - d M -1).
0 Z0 a1 = o4z € Mai fe+ o) \mod Mg B+ .
(1) 1 T (1) T .
bdiz—zad,, bilzailz, fori=2,...,d—-1.
(q10)
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Then (q8) becomes

Zy
. . mod
SajeSdisSa = 1d
1
T Z
1+
! (@)
ZLOZT agn
* *
o 1
o 1+ ( a,m )
ai * © *
(z0h)
* *
—Zym —Zy- Y b 1_(
o O i ZO<Zfb;1”FI)

Recall that 0 is defined in (2.4.1). Then

.y ~ 1« 1 o1
pZ(sdJESdJZSd) :Xr(—l) . {)(Trk/ko o Tr(2y . (ZZO—T[‘ZZJ)I + Z?{)bdl n—>>)
T F T F

d—1
e (552 ()
i=2 T F T
d

-1
~ o 1 !
S0 [o(rmsene(z- (S ta')))
=2 T F

where we write

Z
Px Id =7.(=1).
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Second equality follows from (2.4.3). Note that 2 comes from components of I" and
M; in GL(V~). Then (q7) becomes

d—1
~ o 1
=71 ] |9(Trk/ko OTF<2“/' (E a;'l)n__b(di )>>)
=2 T

F

% (=1 ﬁ(HN (5\«]+ )/N:fl(ﬁzﬁ%)) (ql1)
i (22140

=7(=1- Cif (¢, =1

Where the first ) runs over (jz, j&) satisfying (q9) and (q10), and second } _ runs over
(1)

ay, all and Z satisfying (q9). From (q6) and (q11), we get the quadratic relation (Q)
for s4.

6.3.7. Proofof (6.3.1)—( Q) continued. Now assume i # d. The computation is simi-
lar to the case i = d, but it is simpler. Note that C;, = 1 for s; € S\ {s;}. We also note
that Adsi(Yr)= Yr. Then since Ijs;lys;ly = 15U Iys;l; and Iy C Js, we have
JssiJssiJs = JzS,‘ISS,‘J): =JxUJssiJy and  (JesiJzsiJs) N (J):G,Jz) =Jy UJssiJs.
Hence we have

(JesiJzsiJz) N (JzG,Jz) = Jy UJssJs.
Then, again we can write

for some constants ¢y, ¢;. In this case,

lgy = JZ/(JZ NsiJssi) = (Jz N siJssi) \J2 = zz+1(0)/ 11+1< >

and we can similarly (but simpler) compute
fY,' *fSi = Qrﬁ +7§(_1)((’]r - l)f?z D

6.3.8. Finally, comparing (6.2.1) and (6.3.1), we see that n defined in Theorem 6.2.2 is
an algebra isomorphism. Combining this with the previous remarks in the beginning
of the proof of (6.2.2), now Theorem 6.2.2 is proved. O

7. Computation: G’ = [ ]2, U, (F;/k;)

In this Section, we assume that G =[], U, (F;/k;) without GL-factors where k; is
a fixed subfield of F; under its involution o;. Then [Fi:k;] =1 or 2. In the first
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two sections, we describe affine root systems and affine Weyl groups more explicitly.
Those are necessary in order to see our computation in Section 7.4 explicitly. In
Section 7.3, we give a brief description on tamely ramified Hecke algebras. In Section
7.4, we show that our Hecke algebra H(G//Js, ps) 18 isomorphic to some tamely
ramified Hecke algebra on G'.

7.1. AFFINE ROOT SYSTEMS

7.1.1. Let G(V;) be a subgroup of G which consists of isometries on (V7, (, )|, ) and let
g(V;) be its Lie algebra. Let t; = g(V;) Nt and T; = G(V;) N T with V; = m;F;. Then
we can write t and I' as follows:

t=t1®HLB---Dt,,
r:r(1)+r(2)+,,,+r(M)

where ') = (Vi -5 7;) € ti. From (1.5.0), we can write
m m ,
v=@ri=Ppuierter o).
i=1 i=1

Let d; be dimp, (V") = dimp, (V). Then we decompose V; further as in (1.5.0), that is,

where F! denotes i'-th component in V; regarded as a vector space over F; and where
V9 and V¢ are as in (1.4.6)—(1.4.7). Moreover, F/ and F; are dual to each other
with respect to the e-Hermitian form f, defined on V.

7.1.2. Let

a=) ey Mi=te ) M; (1)

be the decomposition as in (2.2.8) where ) runs over nontrivial t-spaces Mf Recall
from (2.1.1)—(5),

e =1 m, N
Y_{v_(l,],z,]) 7e Ix,, j’EIXj}/V Vg (2)

We will find k¢-rational roots in each factor g; = 1, of ¢’ and g(V;). Restricting to
each g(V)), (1) becomes

(V) =t®d > M (3)

where > runs over v=(i,i,7,j) € Y, v € Gal] with (v, 1) # ((i,,7,7), 1).
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7.1.3. Let v be (i, /, 7, ') as before. To each ky-rational root space 1\7[5 with i #j or
i #j', we define N as follows;

N} = exp <I\7If) .

Recall that a, is defined in (2.1.1). Note that exp is well defined. To each 1\7[5(/3) with
i#jori #j, we associate Nj(f) as follows;

Ni(B) = exp(M(h)) = exp (M (B +5))-

When i =j and 7/ =, for f# > 0, this is again well defined due to the assumption
(3.2.3) on residue characteristic of k. As before, if =1, i = and 7 # ', then
Ni and Ni(ﬂ) are usual root subgroups.

7.1.4. Write G, = G(Vi,f,). Then f, belongs to one of the following cases. Recall
notation from Section 1.4:

(A) f,, is e-Hermitian with F;/k; unramified,
(A1) (Vi) = 0.
(A2) dip =1 and (V;)y =V} #0.
(A3) dy =1 and (V) = V) #0.
(A4) (7)o # 0 with dip = 2.

(B) fv,- is e-Hermitian with F;/k; ramified,
(BI) (V) = 0.
(B2) (V1)y # 0 with dyp = 1.
(B3) (Vi)y # 0 with dip = 2.

(©) f,, 1s +1-symmetric with g9 = 1.
(C1) (Vi) =0.
(C2) ¥? #0 and V¥ =0.
(C3) ¥? =0and VY #0.
(C4) V? #£0 and V¥ #0.

(D) f,, 1s —l-symmetric, i.e., symplectic with go = 1.
In (7.1.5) and (7.1.6), we will explicitly describe affine roots in g} with respect to T;

in terms of M;. For general discussions, we refer to [BT] and [T].

7.1.5. Let T} C T; be the maximal k;-split torus of G/. Let @} and A; be the set of roots
and simple roots of G; respectively. We use the same notation for the sets of cor-
responding root spaces in g;. We also define ®;, such that the Iwahori subgroup
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I(’)i (see Section 1.5.A) in G} can be written as

i ) 1
L= ZeT - ] Ni(g) JREC

'
Ml ea/\a/ Mlew!
L A S v+

where (Zg/(T})), s the maximal compact subgroup of the centralizer Zg/(T;) of T} in
G;. We can explicitly find (Zg/(T})), as T - G'(Vi)g) where Ty is the maximal
compact subgroup of T; and G'((V;),) is the group of isometries on
(Vo f,,1(Vi)p). We can find @, @, , A; as follows:

it
7.1.6. Let %Z be the value group of F; where e, = e(F;/ko). In all cases, we have
F; i
v = {M; v=C(ii,i.j)e Y with i #/, 1= 1},

Then the Lie algebra g, of G} can be written as

ol
M!ed;

For simplicity of notation, we will abbreviate v = (i, i, i, j') by (7, j') or i}’ if there is
no confusion and we will identify v with its representative in Y.

(A) f,, 1s e-Hermitian with F;/k; unramified,
(A1) (V) = 0.

c1>;+:{1\7[}, c® | i=1,....d —i’gj’<i’}
- 1\ ~ v=(@, 7 1), 7> 1,
A; = {M(ld,-,d,-) (Z) Ml(O)

orv=(l,-1)
(A2) dp =1 and (Vi), =V} #0.

<1>2+={1\~43~6<D2|i’6{1,--~,df},j’eViU{—i/,...,i/—l}}

’ N 1 v
A = {M%—d,-,d,.) (Z) M&(O)

(A3) dy =1 and (V)), = V7 #0.

v=>G,7=1),i>1, orv:(l,é)}

S

i/e{17"'sdi}7j/eviu{_i,,...,i,—l} }
Orj/:é/, i/:_di?--~,d[

Al = [ML(O)\V — (7 —1),7>1, or (1, 1), (—di,é/)}
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(A4) (V) # 0 with dj = 2.

Pe{l,...d), ] eViU{=i,....i =1}
O, ={M' e®]| orj=6,i=1,....d

orj =8, i =—d,.... dyo
Al = {1\713,(0)’\):(1", i —1),7>1, or (1,0), (—di,é’)}

(B) f,, is e-Hermitian with F;/k; ramified,
(B1) (Vi) = 0.

q>;.+:{1\713,e<1>;| i=1,....d, —i’<j’<i’}
v=>,I"-1),7>1,

- 1
1
M(_.a) (6}) ;
7 or @2, = 1)

- 1\ ~ 1
Mo l—] M, o — if d = 1.

(B2)~(B3) (V;)y # 0 with diy = 1 or dyy = 2.

ifd =2

i

@), = {1\1}, €,

i’GV,’U{l,...,di} }
Jeviu{=i,....,i — 1}
~ 1 ~ v=(>,7"—-1),i>1,
A, = {M(l_di,di) (?) M!(0)
Fi

or (1,7) with /' e V;

(O) f,, 1s +1-symmetric with o9 = 1. Note that we have ¢, =1 for this case.

(C1) (Vi) =0, d; = 2.

o, = [1\7[}, e,

P =1, d —i <j < i’}

— (i —1), 0> 1,
r(2,-1)
{I\N/l(lll)(O), MY, ) (0), 85, (D), 1\71(1_1,2)(1)] if dy =2

- N ’ |
, {Mgdi+1,di)(1)v M},(O)‘ } if d; > 2
A = o

(C2) V2 #0, VY =0 and d; > 2.

c1>;+:{1\7[5eq>;|i/e{1,...,d[},j’ev,»u{—i’,...,i’—l}}

v={(>,1-1), i/>l,}

A= 1M 1), M'(0
i { (—di+l,d,')( ) +(0) or (1,7) with i/ € V;
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(C3) V=0, VY #£0 and d; > 2.

ref{l,....d}, je{-i,....,i =1}
orj eV, i evViU{—d,... d withi/;éj’}}
v=(@i—1),i>1,
A, = IML0)| or (2,-1)
or (—d;,j) withj € V;

D), = {1\7{1 €,

1

(C4) V2 #0 and V¥ £0.

iefl,....d), je{—i,....i —=1,01,0)
orj =9),0,, i € V;U{—d, ..., d;} with / ;éj’}
v=>0,7"-1),7>1,
A= IML0)| or (2, 1)
or (—dj, j') with j = &, &

A L

In all (C1)~(C4), if d; = 1, we have @], = {1\7131,,.) lie v,»} = Al

(D) fV[ is —l-symmetric, i.e., symplectic with ¢y = 1. Note that we have e, = 1.

’ ol ’
o), = (M e

i=1,....d, —i’<j’<i’}

=@, i =1),i>1, }

~ ~ v
A= {M/ 1), M (0 ‘
i { (_dixdr')( ) v(0) or (1,—1)

We also find the set of affine roots (®}),; as follows:

Fi

(D)asr = {Mi(ﬁ) IM! ed, pe eiz}

In the following lemma, we note that when py is a character, some of the cases in
(7.1.4) do not occur as G} under certain situations.
LEMMA 7.1.7.

(1) Suppose G itself is not a group of type (A3) or A4). If one of G’ is of type (A3) or (A4)
with d; = 1, then ps is a Heisenberg representation.

(2) Let G be of type () with V¥ # 0 or of type (C) with V' # 0. Suppose one of G/ is
again of the same type with d; > 1, Vf/ # 0 and F; = k (that is, G| corresponds
to v; = 0). If ps is a character, then ey, is even forall j #1i.

Proof. (1) Assume py is a character. Then we have
N/I(T(ﬁz +ia,) = 1’\7117([)’? +1ay )+ where  f} =$(—1—ord(y} —))). (%)

Recall that a, = d, + a] is defined in (2.1.1)—(2.1.4). In our case, since P} is Iwahori,
we have a =0. Let v=(i,i,d;, d;) and v # 1. Then note that a, =0. From (x),
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we should have

T 1 l
BT + 5 :E(_l —ord(y; — 7)) €5

Z\—

Fi F,

Now, for v = (i, i, ¢, d;), we have a, = l/e and ﬁ + ay = 2( 1 —ord(y; —y))+
1/2e, € 1/e, 7. Hence we have M”(/)’v, +3 av) * M’T(ﬁw +4ay)*, contradicting (x).

(2) We will prove the case of type (A). The other case can be proved similarly. Since
ps is a character, we will have (x) above. Let v = (i, /, d;,j') and v = (i, /, 8;, /') with
J #iand d; € V;. From (x), we should have

AR
€y

1 1 1
T —ad, = — —1— V. —da, —_
B, +2a‘ 2( ord(/]))—i-za €5,

7

If e, is odd, then B} +1la,=p]+1a,+1 € (1/er)7 and M”(ﬁf—}— ay) #
M”(ﬁT +Lay)", contradwtlng (*). Hence e, should be even. O

7.2. AFFINE WEYL GROUPS

7.2.1. Let I/NV,-’ = Ng/(T}))/(Zg(T})y be the affine Weyl group in each G). Let
Q; = {w € I/NVI’
Ng(T}). Then

Adv'v(l(’)i)zl(’)i}. Here w denotes a representative of we I/Af/[ in

I}Cf :Qi X WIO

1

where ﬁ/{(’ is the Coxeter group generated by simple reflections s;; for
i"=0,1,...,d,;, corresponding to affine simple roots. For the rest of this section,
we again drop the index i from (i, 7,7, ') € Y for simplicity. We also use the same
notation w for both w e ﬁ/i’ and its representative w € Ng/(T}) in case there is no

confusion.
Describing W, more explicitly, we first consider the case d; >2. For
i'=1,...,d;—1, let s; be the simple reflection corresponding to a root space

1\7I(Ii/7i,_1). Then s; is the permutation which interchanges rows i’ and i — 1 (and hence
it also interchanges —i’, —i' +1). Recall that we index rows and columns by
Ix; ={d;,...,—d;} U V,.

Let 59 be the one correspondlng to M(2 _pyincases (Bl), (Cl) and (C3). Otherwise,
we let 59 correspond to M(1 _yy- Then in the former case, s interchanges rows 2 and
—1 (hence also —2 and 1) and in the latter case, sy is the one interchanging rows
1 and —1. In a matrix form, s; can be written as a monomial matrix with entries
0, £1.
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Let 54 be the extended Weyl element in G}, then it can be written in a matrix form

as
=1

O 0 0 ='ld 0 0 —r!
0 0 0 Id 0 0 Id 0

T mld, 0 0 m 0 0

IdV”" " 1d

in cases (A), (B), o b

©3), (Ch (C1) with d; > 2, (C2) (D)

where ~ denotes the Galois conjugation over the quadratic extension F;/k;. In case
(C1) with d; = 2, we have two extended Weyl elements

! !

/
Sy = 1 S2 =

In all above cases, I/~Vlf° is generated by S; = {si, i1, S2, 8;} in case (Cl) and by

Si = {898, ..., } otherwise.
7.2.2. Describing the action of VNI/,"O on Mj,, let x - 77 - y be an element of M;; for
x,y € F; (see (2.2.3)). Let s be an element in S;, then we have Ads(x -1y -y) €

M{ () as follows;

X - Ty(iry,s(jr) Y if s € S\ {54},
Ads(x -1y -y) = S s s s, .
(x - Ty - y) { nidi, 0y =0 a=0a . Ty -V if S =54

where J;; is the Kronecker’s delta function and where s(i'), s(j') denotes the
permutation induced by s on {d;, ..., —d;}.

7.2.3.1If d; = 1, S; can be found in the same way except for cases (B1), (C1)-(C3). In
case (B1) with d; = 1, we have

7 =1
Fi T,
Si = {80 = . ,  Sil = ( Fi )
F; nFi

In case (Cl) with d; =1, W,f = Q;. For (C2)—(C3), I/NV,./ is generated by sy switching
rows 1 and —1.

7.2.4. Let [ be the length function defined on W= I I/NV{: if w;, € I/NV{, I(w;) is defined
such that [Ij'wily": I)'] = Ugwily: 1] = ¢/, and if w; € W/, w; € W] with i #j,
I(w;wj) = I(w;) + [(w;). We observe that w can be written as w = w;ws - - - w;, with
wi € W and I(w) = Y, [(w)).
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7.3. TAMELY RAMIFIED HECKE ALGEBRAS

Since we will build an isomorphism between H = H(G//Js, ps) and the Hecke
algebra H' = H(G'//1{, y) of G’ for some tamely ramified character y of I, in this
section, we introduce such Hecke algebras and account the ones that we need.

DEFINITION 7.3.1 [G]. Let F be a p-adic field, let G be the group of Fy-points of a
reductive group defined over Fj and let /y be a Iwahori subgroup of G. Then a char-
acter y of Iy is called a tamely ramified character if it is trivial on the maximal pro-p
subgroup I; of I,. We also call the Hecke algebra H(G//Iy, y) associated to
(Iy, ) a tamely ramified Hecke algebra,

We describe these Hecke algebras for cases (A)—(D). This can be summarized on
the indexed affine Dynkin diagram. For more details, we refer to [G, L, Mo]
and for some examples of explicit computation, we refer to [Myl, 2].

7.3.1. TAMELY RAMIFIED HECKE ALGEBRAS AND INDEXED AFFINE DYNKIN DIAGRAMS

7.3.2. Let F be a p-adic field with an involution ¢ and F’ = Fy. Let (V, f) be one of
types (A)—(D) with dim,(V)=n=2d+dy. Let G=G(V,f) be the group of
isometries on (V, f). Let T® be a maximal Fy-split torus and let 7y be an Iwahori
subgroup. Let y be a tamely ramified character of Iy, and let H = H(G//1ly, y) be
the Hecke algebra associated to (fy, ). Assume first that Supp(H) = G. Then since
we have an Iwahori decomposition, we can rewrite Supp(H) = G = I, W1, where
I/~V=NG(T‘Y)/(ZG(T‘Y))0 is the affine Weyl group of G with the generating set
S = {s0,51,...,84} (see (7.2.1)). For we W, let &, be H(G//Iy y) with
Supp(e,) = Ipwly and e, (w) = 1. As a linear space, H is spanned by elements ¢,
w e W. We can normalize each e, properly, say, e, = ¢,e, for some constant
¢y’s so that H(G//Iy, y) can be described as follows (see (7.3.4) for some explicit
values of ¢,); as an algebra, it is generated by {e, | s € S} subject to the following
three relations:

L) ey xey = ey if wn') = I(w) + (W),
(Q) For s € S and for some wt(s) € Z* U {0},

ey x e = qf:t(s)el + (qf:t(s) — Dey.

Here ¢, denotes the cardinality of the residue field of Fj.
(B) e xe xe,x---=e;xe, xegx---

where we have m;; = ord(s;s;) factors on each side.

Note that (B) follows from (L). We can represent this Hecke algebra H(G/ /Iy, y) on
the affine Dynkin diagram by attaching wt(s) to each vertex corresponding to s.
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We will call such an affine Dynkin diagram an indexed affine Dynkin diagram. For
simplicity, we abbreviate it as IADD. The function wt: S — 7% U {0} above will be
called a weight.

EXAMPLE 7.3.3. Iwahori Hecke algebra [IM].

This is a Hecke algebra associated to the trivial representation of y, which consists of
Iy bi-invariant functions. Then it is linearly spanned by functions e,, supported on
Iywly with e,,(w) = 1 for w € . The elements e, satisfy (L), (Q), (B) in (7.3.2) with

wiCs;) = log, (u(losilo))-

7.3.4. We continue to assume that Supp(H) = G as in (7.3.2) and follow the notation
in (7.3.2). For each case (V, f) and G from (7.1.4), we will list possible IADD for H:

Explanation.

(1) For each diagram, except for the case (Cl) with d; = 2, the cardinality of dots is
d + 1 and one of the left most dots will correspond to the extended affine root.
In case (Cl) with d; = 2, we have two extended affine roots.

(2) The first row of indices right above dots represent the weight function wty cor-
responding to the trivial character of Iy, hence it is associated to an Iwahori Hecke
algebra for each case. The other rows correspond to nontrivial tamely ramified
characters which have different ITADD. We have put down only numbers which
are different from the first row.

Notation. For later use, we denote the character corresponding to i-th row by y;_;.
For example, y, is the trivial character corresponding to the first row.

(3) (See an example in (A2) below) Let wty be the weight function corresponding to
the Iwahori Hecke algebra H(G//Iy, 1). For each (I, ), let e, € H(G//I, )
be as in (7.3.2) and let wt be its weight function. Then for s € S, we can find
normalization such that

_1
e, = :IZ(tho(x)th(s)) Zés-

o

(A) f, is e-Hermitian with F/F; unramified,

(Al) V=0,
11 1 2 2 2 2 1
OmmmO a—0—0 ----0—0 0

A thick line means that sy and s; have no relations, that is, sos; has an infinite order.
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(A2) dy=1and Vo= V° +£0.

1 3 1 2 2 2 2 3
OO a—o0—0----0—0 0
1 1 1 1

Giving some examples of Hecke algebras with the weight function in the second row,
let x; be a character defined as follows:

@) = x1ta - tat)xa(ts)

fort=(t4,....t1, 15,11, ...,1_4) € Iy/1; where y,; is a character of F* and y;, is a
character of ker(Nr,/r,). To have Supp(H) = G, it is necessary that y;;(z) = Xll(jl)
(hence y,;(z2) = 1). Now assume y;,(2)y15(Z) # 1. For w € W, let &, be as in (7.3.2).

Then H(G//Iy, ;) is generated byf{e, |Zi =0,...,d} subject to the following
relations:
(L) &, xey = ey, if [(ww) =1(w)+ (W),
are1 + VO, —Des  if s=sa
(Q) &y%é, = qioél + ;{11(—1)(qi0 —1)é, if s=s1,...,84_1
q, &1+ 11 (V04 (4, — D if s = 0.

Here ¢, is the cardinality of the residue field of Fy and  is nonsquare in F, .
"0

(B) e xeyxe, % =ey xeg ke xe--

where we have m;; = ord(s;s;) factors on each side.

From the assumption that ,,(zZ) = 1, we see that y;,(+/0) = +1 or —1. If we put
1/0 e, if s=1s9
4,

ey = ~ .
) Xll(_l)ex lfszsl,...,sd_l

m(V0e, if s=s4,

= €y ks Kookl for w=sys;---5;, € W with [(w) =1,

above relations can be normalized as in (7.3.2) with the weight function in the second
row of the above IADD.

(A3) dy=1and Vo=V #£0.

3 1 3 2 2 2 2 1
OmmmO o—o0—0 ----0—0_0
11 1 1
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(A4) Vo # 0 with dy = 2.

3 3 3 2 2 2 2 3
Ommm0 ao—0----0—0 0
13 1 3
3 1 3 1

(B) f, is e-Hermitian with F/Fy ramified,

(B1) Vy = 0.
1 1 1
CmmmmO 1
0 0
0
1
1
1 1 1 1
ac—o—0 - - - -
0 1
1 1 1 1 1 1 1 1
OmmmO a—Do—0 - - - - 0—a—0
0 1 0 1
(B3) Vo # 0 with dy = 2.
1 2 1 1 1 1 1 2
CmmmO c—0—0 - - - -0—0—D
0 2 0 2
0 0 0 0

(C) f, is +1-symmetric. Then F = Fy. Let a =dim(V°) and b = dim(¥V?). In
(C1)—(C3), we assume d; = 2.
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(C1) y=0,d; = 2.

1
100 1
1 1 10D 1
di=2

1
11 1 i:l
::: 1

(C2) ¥ #£0 and V¥ =0.

1 a 1 ' 1 1 1 1 a
O—Q DO - - - -0—C 0
0) L (©)

If a = 2, we can have the second row in parentheses associated to H(G// 1y, y) for
some .

(C3) ¥° =0 and V7 #£0.

1 1
b 1 1 1
b a—Oo—O0 - - - -
(0) .Y /\le

If b =2, we can have the second row in parentheses.

(C4) V° £0 and V¥ #£0.

b a b 1 1 1 1 a
OO co—0----0—0_0
1) b 0 b 0
2 0 a 0 a
@ 0 0 0 0

If a =2, we can have row (1), if b = 2, we can have row (2) and ifa = b = 2, we can
have all (1)-(3).
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(D) f, is —l-symmetric, i.e., symplectic with F = Fp,

11 1 1 1 101 1
Ommm0 o0—0 ----0—0 0
0 0 0 0

7.3.5. Tamely ramified Hecke algebras: General Cases.

Let y be a tamely ramified character of I and let H = H(G //1y, y) be its associated
Hecke algebra. Then Supp(H) = Iy W'ly where W’ < W is an affine Weyl group
of []G; with G; 1som0rphlc to elther GL,,(F) or a group of type (A)—(D) in (7.1.4).
Write W' = I1 W; where W; = W xQ; is the affine Weyl group of G; with its gen-
erating set S; = {s;;}. Then it is isomorphic to a tensor product of tamely ramified
Hecke algebras of G;’s, that is, there are tamely ramified characters y; of I such
that H ~ ®H,; where H; = H(G;//Ii, x;). Hence we can represent H as a sum of
IADD’s corresponding to H,;.

74. H =H(G//Jz, ps)

We fix a Haar measure u on G (resp. ¢’ on G') such that u(Jx) = 1 (resp. /(1)) = 1).
THEOREM 7.4.1. For a given X = (I, I}, 1) as in (Hs), suppose G' = Cg(T') =
[T, U (Fi/ki) for some tamely ramified extensions F;, k; over k. Then there is a

tamely ramified character y of Ij such that there is a x-preserving, support-preserving
L*-isomorphism

n:H' =HG'/ /1y, ) —HG/ /s, ps) =H

defined as follows: For w € W', let &, € H with &,(w) = 1 and Supp(&,,) = LwI, and
let f,, € H with f,,(w) = 1 and Supp(f,,) = JswJs. Then

w(Jswls)

1
12,

(éw) = <> w with C, = —

! Cy / w(gwlp)
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where fw € H is properly normalized with ﬁ1 =f, or —f,. Moreover, H is
L*-isomorphic to ® H(G)/ /1()", ;{|I()") as an C-algebra via a x-preserving, support-
preserving map.

Proof of Theorem 7.4.1. From (4.2.6), we see 1 in Theorem 7.4.1 is a linear
isomorphism. It can be proved similarly as in Theorem 6.2.2 that 5 is a *-preserving
L?-isomorphism. From the following Lemma, we see that # is support-preserving,
that is, Supp(n(e,)) = JsSupp(e,)Js.

LEMMA 7.4.2. For we W', (JswJs) NG’ = [wi},.

Lemma can be proved similarly as in (6.2.3) replacing Ty with (Z5(T*)), where
T =[]T.

Rest of this section is devoted to proving 7 is an algebra isomorphism. We find
generators and relations in H. Recall (see the proof of (7.1.7)) that when py is a
character, we have

1\7If( V) = Mf(ﬁf*) where = $(—1—ord(y} — ;).

For all cases (A)—(D) in (7.1.4), we have the following relations:

PROPOSITION 7.4.3.

(L) Length preserving relation. If [(ww') = l(w) + (W) for w,w € W,

1
(GG,
fw *fw’ = < é ‘/v>fww’-

ww

In particular, if w; € W} and w; € W} for i # j, we have f, * fu, = fu, * fu-

(B) Braid relation. If s;ys; is of order m,,

fyﬁ/*fy//_,*...:f;///*fyii,*...

=

fs- In particular, if i #,

where each side has m, factors and where f; = (l)

Cs
S *Ssy = Jsy * s

(Q) Quadratic relation. Let g; be the cardinality of the residue field of o;-fixed subfield
k; of F;. Then

P L .
]FSU’ *ﬁii’ = q;j” Csu‘/f; :t C i'ii’ (q;] - l)fsm
for some j; € Z" and for G, = u(JssivJs)/q;" .

Proof. Note that (B) follows from (L). To prove (L), we first claim that
JswJswJg) NG’ = (Jsww'Jz) N G'. Consider first the case w € Wl/(J and w' € Wj/o
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with iy # jo. Regarding I' as an element in gI(V), we first construct a representation
p, on some open compact subgroup J in GL( V) as in [K1] such that Jy =GN J
and Supp(H(GL(V)/ /J p)) = J Coi V>(F)J as follows: Let Py be the parahoric
subgroup in Cgr(y)(I') associated to lattice chains in (1.5.2) and let P1 be the lattice
in the Lie algebra corresponding to the maximal pro-p subgroup Py of Py. Define
a lattice J » in GL(V) as

Tp=P1+ Y Mi(=1—ord(} —7) +1a)

where ) runs over v=(i,j,7,j) withi,j=1,...,m, i € Ix;, j/ € Ix; and 7 € Gal,
(recall that Gal, is defined in (2 1. 1)) Then followmg the construction and proof
in [K1], we can define p_ on J="Py- exp(J ») satisfying above property. Then
(5.2.6)—-(2) and similar argument in (6.3.2)—(6.3. 4) will imply that (Jwa’J)ﬂ
CorLr) = (wa J)ﬂ CgL(r). Moreover, since Jyz C J and G C CgL(r), we have
(JzWsz/Jz) N G (JzWW/Jz) N G, = I/WW/II.

Ifw, we I/NV;, it can be proved as in (6.3.2)—(6.3.4) with

= > Mf(ﬁf——) Y MIB) + (log(I) N a(Vi)
Mfecp/ Mfeqn\cp/

where f§, = 2( 1 —ord(y] —7,)), and where I\N/If € ®; means thatv € Y, t € Gal] with
M! e @, . Note that f] is the same for any v € ®].

General cases will follow from combining the above two cases and the claim is
proved.

Now the coefficient (C,,C,/ wa,)% can be computed as in (6.3.4).

To prove the quadratic relations (Q), we first find Supp(f; x f;). The following
Lemma can be proved exactly as in (6.3.6):

LEMMA 7.4.4. For any s€ S;, (JesJssJs) N (JsG'Js) = Js U JssJs. Moreover,
fs*xfs = c1fi + oof s for some constants c¢| and c;.

7.4.5. For each case (A)—(D), ¢; and ¢, in (7.4.4) can be found as in (q5)—(q6). That is,

e = fixfi(l) = /G [ dx
= L:0fi(x N dx = w(JssTs)
JzSJE

e = fix fi(s) = / £ (1) dx
/ fiGssx)fs(x's7l g s) dx

Js€As
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where 4; = Jx/(Jx N sJxs) = (Jx N sJzs)\Jz. Now we will compute ¢; and ¢; more
explicitly.

7.4.6. Quadratic relation for s;, i’ # d;

Assume G is not of type (Bl) with d; = 1. Let ¢; be the cardinality of the
residue field of the o;-fixed field F7". Then for s;; € S; with /' =1,...d;— 1,
we have

f‘Y,’," *fy,‘ﬂ = q;,ii,f‘l + Sii/(q;/ﬁ, - l)fg,','/

where V;; coincides with the weight of s, for the Iwahori Hecke algebras (we refer to
those numbers in (7.3.4)) and &;; = —H‘or —1.Infact, &y = Z’F (det(s;7)) where 7’r is the
character of Oy such that pg|Ij' =7 o det.

Let s;7 € S; with i’ # d;. Denote the image of v € Y under the action of w € W by
w(v). Since we have f, = B, ) and a, = ay,«),

Ad(si)(MEN Yr) = Ad(sii’)( M;(57) )
= Mzﬁ’(v)(ﬁz) = Mzi:”(")(ﬁzz’i’(‘)))

~

=M, N Ir

and thus Ad(s;)(Yr) = Yr. Hence the computation occurs in G’ and the relation (Q)
is inherited from the quadratic relation in a tamely ramified Hecke algebra
H(G'// 1, x7), where y7 is as in S2-(1) or (3.4.2), from which (7.4.6) follows. For
example, for s;; with i/ # 0, d;, we have ¢;; = 1 and

b = qifi + (qi — 1)fs,  if F;/F/" is ramified or o; = 1,
w s @ 4+ (g — Dy, if F;/F{" is quadratic unramified.

Now let i/ = d;. We first consider the case (A2). Then we have the following
quadratic relations:

7.4.7. Quadratic relations for s;4, in case (A2)
fé‘m,- *fé‘m,- = quSm,fl + Csi'm,» (qi — l)me,-
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Denote s;4, by s for simplification. Let
e = L(=1—ord(y} — 7))
VO = (lv i, _di, dl) € Y
v=(j,i.j,d) € Y with i # J,
5 =91 orv=(,ii,d) with i # d;, —d;
veGall,  AdSMB) c r

I, = {(vo, 1) | l#zte€ Gal‘jo} @)

Ay = Jz/(Jz N Sst) = (Jz N Sst)\Jz

N, (;) exp| Do ML)+ D M)

F (vo, 7)€l (v, 7)€l
a 2
1 o 2 Y 1
N, (;) exp[ > M;, <ﬂ§0+e—> + Y Mg(ﬁHe—)
! (vo, 7)€L, Fi v, 7)€l Fi

Note that for (v, 7)¢1, U 1, Ad(s)(l\];(ﬁi)) C Yr. Continuing from (7.4.5),

o1 = (A, =Y Al =Y fils ). @2)

Je€ls Je€s
Since fi(s~'jzs) # 0 if and only if s~'jzs € JssJs, we have

o
2= ). pslojes ). @)
U g )ehs xAs
“/‘Z“il/‘,xn\é.lz

We can write js, j5 € 4, as
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Js = ”10(2) - exp Z (a(;) — a(a?)) ,

| ,
‘e:,\u:s

e =20 exp| 3 (0 ~o(0)))

veigU ’/v

(94)

where 7} (Z) = exp(Z), n!(Z)=exp(Z') with Z, Z' € ker(Trgp)Np, C F =
F; C Hom(F7%, F%) and a, b) € MY(f7). Note that a —a(a)), b, —a(b,) €
MI(f}). In a matrix form, jz can be written as

Jz= > a(‘,” 1

(t)
Z+3 a,

—%O'(U)U —Za(a(‘f’) e 1 e _Zg(a(vm)

— Y o(d)

> a(‘,ﬂ 1

(@5

and j5 can be written in the same way. For simplicity of notation, let

w
w=m,, 4= Zw, 7'=Zyjw, e=—.

w

To find the condition on js, j such that sjss™'jis € JesJs, we compute sjss™ s
rather explicitly in a matrix form. Again, we will write down only terms of nontrivial
contribution for computation;
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. 1. mod
§jzS Je8 =

Zoe+ L =(1+ ZoZye)+
éz a(r) —ZT%(U(a‘, )+ Z i(Zob(”i—i-
o T 7V . T Vo T
11 X Zoa (b))t 0z

—3=0(U)U 22
* *

1= (2d 4 B+
Z‘[ a(vf) * ) * Zr( v

(o)) @' Z)%
* *
Zye+
o e _ Zr O'(b(‘ﬂ) e (Zr b(VTO) %)
—Lo(UNU' L

(g6)

Here, for v = (o, B, o, f), define ¥ as follows;

9 — { (OC, ﬁv —OC/, ﬁ/) lf “/¢Vi
v

if o € V,‘.’

Recall V; is defined in (2.1.1)—(1). Then (4, /, ', j)-diagonal component for j* > 0 or
J' €V is given by

dy =1~ (Z a) %) (Z a(b“)> where vy = (. i,/ d). @)

From (¢6), sjss~'jgs € Jx if and only if

Fi

/ ©) © © o~ . 1
1+ ZoZye=0, Zb, +a,cZy=0, a, €M (ﬁvo + e—), @

(r)

O'(a:)) + Zya(b,) =0, b(:) + a?Zé =0, for v € 1.

https://doi.org/10.1023/A:1012023315726 Published online by Cambridge University Press


https://doi.org/10.1023/A:1012023315726

HECKE ALGEBRAS OF CLASSICAL GROUPS 159
Hence j5 is determined by js, that is,
1 ® I ol ~ 1
(e — T T
Zo=—7% bv0=70av070€Mv0 Futo)

Fi

(@9
P =a" = for v € 1.

In these cases, if we let Dy, be an element (1,...,1, Zpe, 1, ..., 1, —Zio.s, I,...,1)in
the torus T and let er be as in (7.4.6), we can compute

px(siss™jes) = 10(Dz,)x, (D7 sjzs™'jes)

~i 1 o 1 ol
—7(n-oT Tr(y - (Y =—— —
Xr( ) ( Tk ko © r(Vl ( - Zow.aw) + ZZ{JS b\'a w—)))
o 1 ()
| | O\ Traywy o Tr| &y - Za"/ﬂ o] Z U(b°/7’> (q10)

T

Jell,..., ([/-)UVJ-.
J'#d;

— (1 ol T T o 1 b(z”)
= 4D l_[ R AV _Za‘fzf’go- U
' T
J €l d)UV;
J'#d;

o — 1 ifj eV
7 =12 otherwise.

Now (¢3) becomes

y = *}?f_(_l) . Z l_l Q(Trk/ko ° Tr<8_,v){,~ ) (_ Za(‘; %0@3‘/’1)))))

j’e(l....‘.dj}uvj.
J'#d;
1
2
=72 [T Gy, Q1)
(vo, 7)€}
Z 1_[ O Trip, o Tr &7y, - _Zam ia a(j—u €
¥ /o 7 — T i Z
Je
j’s(l...../dj)uvj,
J#d;

where the first Y runs over (jz, j) satisfying (¢7), (¢8) and the second ) runs over
®

a,, and Z, satisfying (¢7) and where (45);, =Ny (f}) / Niﬂ(ﬂiﬂ—i—e—i_). Let

Vo Vo
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(As)y = Nﬁ(ﬁc)/Nﬁ(ﬁﬁ + é) Then for j'¢V;, since v;y # V7, we have

= ool (it )

1

- (e, 0))"

(q12)

For the case /' € V;, we need the following results on Gaussian sums over finite fields:

LEMMA 7.4.8 [S, IR]. Let s be a character of ;. Let 'V be an n-dimensional vector
space over ¥, and let Q(v) be a nondegenerate quadratic form on 'V over Iy. Let

G, Q) = >,cv Y(O(). Then

() G, Q) = ¢" =4(V), hence G(, Q) = =(/9)" = ££(V),
2) Gy, xQ) = sgn(x)"G(y, Q)

where sgn is the unique nontrivial quadratic character of I,

Let j/ € V;, then we have vj; =9 € Y. Then computing rest of factors,

o 1 «hH &
O Trix oTr<y<~ (— a(v_)_,:o(ao_/ —))))
u\Za;,”/ (vjlnl_r)[ay ( ’ ! Z‘L': vo Y ZO

’
a7
il .
J EVI

T S |
= ; (vjj,l_f)[aY <Trk/k0 o Tr <Z ( ) )/]a(\}/)/ w)) .
i’ Ve, !

(q13)

We first note that (As) isaright IF; -vector space. Let /;; be its dimension over I
From (2.2.5)-(2), (2. 2. 4)—(5) and (2 2.7), we can define a nondegenerate quadratlc
form Q; on (Ax)‘,ﬁ, = Z(v”r,r)ez_\.(ls)vﬁ/ as follows;

Oy (s, = > (4)y, — Ty, NEnd(F,, )

(v D)€l

& o 1
Za“_)z( (()) ) “)]1,5 FquF

i

) (q14)

where (a(a(‘;,)y»am_ %)F is the projection on F; (see [KI; (0.2)]) regarding

J Vit
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a(a(‘;,)yja(vj; L as an element of F};) Then by the above Lemma 7.4.8,

@

wy= 3 T1 6(75 )

X (v
ZOEFW (\//mz)el_y

/v
= > I sen@0)6G. o)
ZOEF;I (v Dets (qlS)
J'ev;

= Z sgn(Zo)Z[ﬁ/ 1_[ G(ir Q)

Z()E]FX

Vi DEls
P (D€

ey
/'€

where 7, is the character of I induced from y, . Since sgn(Zy) = 1 for any Z, € I,

@3 =7 - [] 6G. 0 =70~ [] (:,,)"

O
il . il .
J'€vj J'ev;

JT)Els (vj]v/.r)a;

(ql6)

=

Here, last equality follows from G(,., Q;) = :I:(n(is)v”_,) . Since 7' (—1) is also =£1,
combining all together, ”

e = (g — D[ (B = 2@ — D - 8() = £C, (g — . (al?)

Hence we have (7.4.7) for i’ = d;. ]

7.4.9. Quadratic relations for (A)

1
(AD) fSid, *fSid, = QiCSidlfl + G, (qi — l)fsm,
(A3)—(A4) These cases happen only when G and G| arerelated asin (7.1.7)—(2).
fé'm[ *fsm,» = qz3 CS:‘dﬁ + Cf‘mi (qz3 - 1)fsm‘.

In case (A1), we can compute ¢, ¢; in (7.4.5) exactly in the same way as in (A2) by
putting ¥ = Y’ = 0. Now, since (A3) and (A4) are similar, we will consider only the
case (A3). Let s =s;,. Note that we have F;, =k, k; = ko, e, = 1 in this case.
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Moreover, since k is unramified over kg, we may choose n = m; = my,.

T 1 T
ﬁv = 5(_1 - Ord("/i - Vj))
vé’ = (l’ iv _di’ 5,)’ Vo = (l’ ia _di’ dl) € Y
(j.i.j dy) € Y with i # J,
Y or v =(i,i,i,d;) with i’ # d;, —d;
veGall,  AdEMI(E) € Ir CI)
is = Js/(Js NsJss) = (Js N sJss)\Js
_NL(D) N (0) exp(Z@,ﬂax Mi(ﬁi))
=, . -~
Nu@ - N exp(3 e, MiB + 1))

Then we put

Jg = m (Y)-ny (Zomg) - CXP( > (a{"r) B a(a(‘:))>>,

(D)€

Jo=nl,(Y) -l (Zimw) - eXF'( > (0 - “(”t))))

(v, 7)€l

(q19)

where n‘l,é,(Y) =exp(Y) and n)(Zom) =exp(Zom) with Y € Of C I:"‘(,Ol) =
F; C Homk(Fi_d", Ea') and Zj € ker(Trg,) N OF, C Homk(Fl._d", Fi‘[") respectively
and where a(‘f) € M{(f;) and at) — cr(a(v”) € M;(B}). j5 is written in a similar way.

In a matrix form, jg can be written as follows;

1 1 0
0 1 1
. mod —O’(U)
= =
mZ ly Y —1Ua(U) U ly
—7'Ck7 1 1
1 0
1
—a(U) .
= . (q20)
nkZ—%Ua(U) U ly Y
—TEk? 1
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where

Z=(Zy—-1YY) with Z;=-Z,

. _ ’ 21
U= 3 d eHomk(F:du P F) b
el ()G —di)

We can write js analogously. To find the condition on Js, jz such that
sjss~Les € JesJs, we find sjzs~!jos in a matrix form;

3jzs_1j’zs:
L_1lusu)t
U+ +HZ - Lius(v)) Z - LLusUpLy
Z—23Ua(U) [ o A Ehai
(Z =33 Ua(U)7 U (2 =2 Ua(U) 2 +ivy
—-LlyY
e
—~o(U) __
—o(U) Id —o(U) ;- U’ - —a(U) L Y™
’ —o(U)Z' = L Ue(U)) L Z
™ v Z' =3 U'e(U)5; Y’
- o —Y(Z —Lueu)L B
Yy _YU® ( z_[ ( )Tfk) Ty
-Y
(q22)
From (¢22), sjzs~'jss € Jx only if
1 Y 1
ZeOr, Z=-=, Y=-=U=-=-U. 23
’ 4 7 7 (q23)

Moreover, from the terms (f) in (¢22), for sjss~'jzs to be in Js, we should have

Ue > Mi(B+1).

(v,7)€ely
Then (¢22) becomes

Z

Nl—~

NINI

for some j € kerpy. Hence pg(sizs™'jgs) :X(—l). By counting the number of
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Y, Z, U satisfying (¢23), we can find

~i 3
2 =7, (=1)Ci(g; — ). (a24)
7.4.12. Quadratic relations for (B)
(1) In cases (Bl) with d; = 2, (B2) and (B3),
1 .
f:"id‘ *ﬁr([ 14 C.Yiz/,ﬁ + CJZ‘M,- (qi - l)fw,- l'flogq,(CSid,-) =0 (I’l’lOd 2)
’ i 4iCs;, i if log, (Cy, ) =1 (mod 2).

(2) In case (Bl) with d; =1, let i/ =0, 1.

If log, (Cy,) = log, (Cy,, ) = 0 (mod 2),

id;
1
Sy * sy = 4iCs i £ G5, (qi — D,
If log, (Cy,) = logqi(CMl_) =1 (mod 2),
fsn" *fsn’ = quSii’fl'

In (2) above, by counting, it is not difficult to see that log, (Cy,) = log, (Cy,,)
(mod2). For all (B1)—(B3), if i’ = d;, the computation can be done following the same
procedure (¢1)-(¢17) as in the case (A2) with i/ =d;. In (q15), if ) l; is even,
[1sen(Zo)" = 1and we get ¢; asin (¢17). If 3 Ly is odd, [] sgn’' = sgn is a nontrivial
quadratic character of F; and thus we get ¢; = 0 in (¢16). Finally since log,, (%), is
even for any v € 1,

(4
log, (C.y) = log,
= Y lp+2 Y log,t0y), + Y log, 5(k), = Yy (mod 2),
(v D)€L, J €V very, j/¢UV; Vel

(g2%)

and hence (1) and part of (2) follow. Now we consider the case i/ = 0 for (B1) with
d; = 1. Then

and the computation is similar to s;4 case. In this case, we have

= Cglo(q, - 1) .if 1qui(Cs,,0) = 0 (mOd 2) (q26)
0 if log,(Cs,) =1 (mod 2).
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Lastly, the quadratic relations for (C)—(D) can be computed similarly. We sum-
marize the result as follows;

7.4.13. Quadratic relations for (C1)—(D)
In all cases (C1)—(C4),

Wi(sid; )

Wi(sid;) z
fSiz(,- *fsid,- =4dq; ! Csm,ﬁ + C§m,- (qz - l)fsid,-

where wt(s;4,) coincides to the value of the weight function corresponding to Iwahori
Hecke algebras in IADD (See (7.3.4)).

1
In case (D), fSidi *f;'id,‘ =di CSid,fl + Cgid,- (g — l)fé‘m,»'

We notice that in all (C1)~(D), when py is a character, log, (Cy, ) is even. Now,
following the computation as in (¢1)—(¢17) and (¢25)-(¢26), we get (7.4.13).

7.4.14. Concluding Theorem 7.4.1.

Let fsﬁ/ = £f;, where £ coincides with the sign of the coefficient ¢; of f;, in
(7.4.6)—(7.4.13). Based on the results (7.3.4) and (7.4.3)—(7.4.13), we can choose
a tamely ramified character y of Ij =[], I as follows. Let &; be a tamely character
of I) defined as

%o if G} is of type (A), (C) or (D),
E =1 if Glisof type (B) and log, (Cs,) =0 (mod 2).
71 if Gjis of type (B) and log, (C;,) = 1 (mod 2)

Recall from (7.3.4) that in each case (A1)—(D), y, is the trivial character of I()i and y,;
is the character of 1) corresponding to the second row of each IADD. Then

1= ®ié;.

Now from the choice of y and (7.3.4), (7.4.3)—(7.4.13), we see that n defined as in
(7.4.1) is an algebra isomorphism.

Considering the map n:'H' — ® H(G)//I}/, &) defined by fi— ®; (f|I}), it is
obvious that ' is a x-preserving, support-preserving L*-isomorphism of C-algebras.
Composing 7 and 1'~!, we see that 5o n’_I:H(G;//I(’Ji, &) —> H is a x-preserving,
support-preserving L’-isomorphism of C-algebras.

Combining above with the previous remark at the start of the proof of (7.4.1), now
Theorem 7.4.1 is proved. ]

Conclusion

Via the reduction step carried out in Section 5 (especially in (5.2.6)), now Theorems
6.2.2 and 7.4.1 imply the main theorem. Here, we restate the theorem with more
explicit description of 5. In the following, we keep all the previous notation and
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also recall the Haar measure on G’ (resp. G) are normalized such that the volume of
I (resp. Jx) is 1.

MAIN THEOREM. Let k satisfy (3.2.3) and let ¥ = (I', I}, 1) be as in (Hs). Let
(Jz, ps) be a pair consisting of an open compact subgroup Js and its irreducible rep-
resentation ps associated to T as in Theorem 4.2.9. Suppose ps is a character. Then
for some tamely ramified character y of I)), there is a x-preserving, support-preserving
L?-isomorphism

n:H' =H(G'/ /1y, 1) — H(G/ /s, ps) =

of C-algebras. More explicitly, n is defined as follows: Let Py be the parabolic
subgroup associated to X in (5 2.6) and let op, be the modulus function associated
to Ps. For we W', where W' is an affine Weyl group of G’ with G' = I W/Ié let
ey € H' with é,(w) =1 and Supp(e,) = I[jwl, and let 0 e H with fo(w) = 5;)2(w)
and Supp(f?) = JswJs. Then

1\ WJswls)
e ) = —_— ) lh Cw == )
e =(g,) gt wpwl;)
where }f is properly normalized with f o or —f2.
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