Journal of Functional Programming 1 (2): 229-234, April 1991

THEORETICAL PEARLS

Self-interpretation in lambda calculus

HENK BARENDREGT
Faculty of Mathematics and Computer Science, Catholic University of Nijmegen, The Netherlands

This editorial emphasizes results from the theory behind functional programming (including
lambda calculus, type theory and term-rewriting systems) that are particularly beautiful, and
which have short and elegant proofs. Readers are encouraged to send comments or
contributions to:

Henk Barendregt

Faculty of Mathematics and Computer Science,

Catholic University, Nijmegen,

Toernooiveld 1, 6525 ED Nijmegen,

The Netherlands

E-mail: henk@cs.kun.nl

Programming languages which are capable of interpreting themselves have been
fascinating computer scientists. Indeed, if this is possible then a “strange loop’ (in the
sense of Hofstadter, 1979) is involved. Nevertheless, the phenomenon is a direct
consequence of the existence of universal languages. Indeed, if all computable
functions can be captured by a language, then so can the particular job of interpreting
the code of a program of that language. Self-interpretation will be shown here to be
possible in lambda calculus.
The set of A-terms, notation A, is defined by the following abstract syntax

A =V|AAAV.A
where V= vV

is the set {v,v’,v”,v”, ...} of variables. Arbitrary variables are usually denoted by x,
y,Z,... and A-terms by M, N, L, .... A redex is a A-term of the form

(Ox.M)N
and has as contractum MIx: = N],

that is, the result of substituting N for (the free occurrences of) x in M. Stylistically,
it can be said that A-terms represent functional programs including their input. A
reduction machine executes such terms by trying to reduce them to normal form; that
is, redexes are continuously replaced by their contracta until hopefully no more
redexes are present. If such a normal form can be reached, then this is the output of
the functional program; otherwise, the program diverges.

From the point of view of a reduction machine, a A-term M can be considered as
an executable. It ‘itches’ at many places: all redexes want to be reduced.

https://doi.org/10.1017/50956796800020062 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800020062

230 Henk Barendregt

1 Definition
(i) Each A-term M has a unique natural number #M as code. One way of coding

s HvO = €0,i),
#(MN) =<1, {(#M, #N>),
#0x.M) = (2, (%, MDD,

where {—,—) is some effective coding of pairs of numbers as a single number, for
example, {(n,m) =}n+m)(n+m+1)+m.

(i) Let 07, 717,727, ... be some set of numerals (A-terms representing the natural
numbers). We take the Church numerals 'n1 = Mx . f*(x).

Write "M = M #M", the internal A-code of M. Now "M does not itch: being a
Church numeral it is in normal form.

Write FV(M) for the set of free variables of M. A A-term M is closed if
FV(M) = (. the set of closed A-terms is denoted by A°.

2 Definition
(i) An interpreter (or evaluator) is an (external) function E: A — A such that

E(MY) =M.
(i) A self-interpreter is a A-term E such that for M e A® one has
ETM? =M. 1)

Here = (or simply =) denotes convertibility between elements of A.

3 Remarks

(i) Equation (1) cannot hold for open terms containing free variables. Indeed, E
has at most a finite number of free variables and "M being a numeral has none, but
on the right-hand side M may have arbitrarily many free variables.

(ii) Define the quote to be the function Q: A — A such that

QM) = "M
A self-quote is a A-term Q such that l(say for closed terms M)
QM =,"™".
Such a self-quote does not exist, however. Indeed, the existence of Q implies
M =,Q() =,Ql =,

Since numerals are in B-normal form it follows that TII7 =T, so #(Il) = #I.
However, Il and | are different terms, and so have different codes, which is a
contradiction.

Kleene already in (1936) showed that there is a self-interpreter E for the lambda
calculus. One would think that E is defined by recursion on the structure of its
argument. There is, however, a difficulty: closed terms are not built up inductively,

https://doi.org/10.1017/50956796800020062 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800020062

Theoretical pearls 231

but formed as a subset of the wider class of open terms. Kleene avoided this problem
by building up closed terms from combinators S, K and | (actually, he worked with
the Al-calculus and used combinators like S, B, C and |). The construction was as
follows CL Eey

™1™, '>M, =M

where CL is a compiler from A-terms to combinatory terms, and E;, is an interpreter
for combinatory terms. The translation CL gives, for example,

(Az.zz),, = Sll (=5Az.12(12) = Az.22).

P. de Bruin (my former student) gave an essentially simpler construction of a self-
interpreter for the A-calculus. He used an idea from denotational semantics. In the
following construction, F plays the role of an environment in the sense that it
determines the values of the free variables.

4 Theorem (Kleene, 1936 )
There exists a self-interpreter E for the lambda calculus.

Proof (de Bruin)
By the representability of computable functions there is a term E, such that

E,"xTF =, Fx7,
E,"MN'F =, F(E,"MF) (E,"NF),
E,"Ax.MTF =,Ax.(E,"MF .. ,),

where F = F’x, with

[x"x]
Fx™x1=;x,
F'xTyl=,Fyl, ify=%x.
By induction on the structure of M €A it can be shown that
E,”MTF = M[x,: = F'x,7,....x,: = F'x;7] 2)
(simultaneous substitution), where {x,, ..., x,} = FV(M). Now we can take
E=Am.Eml
Indeed, for closed M it follows by equation (2) that
E'M™ =,E," MY =M. O

Using the self-interpreter E it can be shown that certain A-terms exist without giving
details. We first introduce some A-terms inspired by the language LISP.

5 Definition
COoNs = AXyZ.ZXy;
nil = Axyz.y;
null = Ax.x(Aabcd . d).

https://doi.org/10.1017/50956796800020062 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800020062

232 Henk Barendregt

6 Proposition
(1) null nil = Axy.x = true;
(i)) null (cons a b) = Axy.y = false.
(iii) Moreover, there exist terms car and cdr such that
car (cons a b) = a;
cdr (cons a b) =b.
Proof
(i), (ii). Easy. (iii) Take car = Ax.x(Aab.a) and cdr = Ax.x(Aab.b). O

7 Notation

Write a:b=cons ab;

(> = nil;

(Kps oves Xpyr) = Xy Xyy ooos Xpyr -

For example, <{a,b) = a:b:nil = (cons a (cons b nil)).
The following problem was raised by Dr Wim Vree of the University of
Amsterdam.

8 Problem
Does there exist a A-term F such that for all neN one has

Fnl =2dx; ... %, Xy ooy X0 7 3
Solution
Write M, = Ax,...Xx,.{X;,....X,). Clearly, #M, is computable from n, say
#M, = g(n) with g recursive. Let g be A-defined by G, say. Then

Gl =rgn)' =™,
Then F = An.E(Gn) satisfies equation (3)
FInl=EG™") =E"M_1=M,. O

At first, Vree thought the answer to Problem 8 was negative. After seeing the positive
answer, he came up with a more constructive solution.

Constructive solution
One can find a A-term rev such that for all n

rev < Xy, ..., X)) = Xy ooy Xy 0.
(For ekample, rev=AL,.rev’L, (),
with rev'(a:b)L, =rev'b(a:L,)
rev' nilL, = L,.

So take rev’ = Y(ArL, L, . if[null L,]then [L,] else [r (cdr L,) ((carL,): L,)]), where Y is
the fixed point combinator and if X then Y else Z is simply XYZ.)

https://doi.org/10.1017/50956796800020062 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800020062

Theoretical pearls 233

Construct a A-term V such that

Vin+17 = ALx.(V'n(x: L)),
VT07 = rev.

(For example, V = Y(Avn.if[zero? n]then rev else [ALx.v(predn)(x:L)]), where
pred represents the predecessor function.)

Then F = An.Vnnil satisfies equation (3). Indeed

Fnlx,...x, = VnTnilx, ...x,
=ALx.Vin—1(x: L)) nil x, ... x,
=Vin—-1(x,:nilx,...x,
= (ALx.Vin—2(x: L)) (x,: nil)x, ... x,,
=Vin-27(x,:x;: nil)) x; ... x,

= VI0(x,:...:x,:nil)
=rev{X,...,X;)

= (Xy5.es Xp)e O
A concrete A-term satisfying equation (3) is the following

F = An.(Aab.b(aab)) (Aab.b(aab))
(Avn.[n(Axyz.y) (Axy.x)]
[AL.(Aab.b(aab)) (Aab.b(aab))
(ArL, L,.[L,(Aabed . d)] [L,] [r(L,(rab.b)) (Az.z(L,(Aab.a)) L,)])
L(Axyz.y)]
[ALx.v(Ayz.n(Apq.q(py)) (Aw.z) (At.t)) (Az.zxL)])
n(Axyz.y).

9 Exercises
(i) Show that there is no A-term G such that for all ne N one has

Gx, ... x, = Xy, o0 X)) @
(it) Construct a A-term H such that for all ne N one has
H™,...x, = Az.zx, ... X,. %)
References

Hofstadter, D. R. 1979. Gédel, Escher, Bach: an Eternal Golden Braid, Basic Books.
Kleene, S. C. 1936. A-definability and recursiveness. Duke Math. J. 2, 340-353.

https://doi.org/10.1017/50956796800020062 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800020062



