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THEORETICAL PEARLS

Self-interpretation in lambda calculus
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Programming languages which are capable of interpreting themselves have been
fascinating computer scientists. Indeed, if this is possible then a “strange loop’ (in the
sense of Hofstadter, 1979) is involved. Nevertheless, the phenomenon is a direct
consequence of the existence of universal languages. Indeed, if all computable
functions can be captured by a language, then so can the particular job of interpreting
the code of a program of that language. Self-interpretation will be shown here to be
possible in lambda calculus.
The set of A-terms, notation A, is defined by the following abstract syntax

A =V|AAAV.A
where V= vV

is the set {v,v’,v”,v”, ...} of variables. Arbitrary variables are usually denoted by x,
y,Z,... and A-terms by M, N, L, .... A redex is a A-term of the form

(Ox.M)N
and has as contractum MIx: = N],

that is, the result of substituting N for (the free occurrences of) x in M. Stylistically,
it can be said that A-terms represent functional programs including their input. A
reduction machine executes such terms by trying to reduce them to normal form; that
is, redexes are continuously replaced by their contracta until hopefully no more
redexes are present. If such a normal form can be reached, then this is the output of
the functional program; otherwise, the program diverges.

From the point of view of a reduction machine, a A-term M can be considered as
an executable. It ‘itches’ at many places: all redexes want to be reduced.
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1 Definition
(i) Each A-term M has a unique natural number #M as code. One way of coding

s HvO = €0,i),
#(MN) =<1, {(#M, #N>),
#0x.M) = (2, (%, MDD,

where {—,—) is some effective coding of pairs of numbers as a single number, for
example, {(n,m) =}n+m)(n+m+1)+m.

(i) Let 07, 717,727, ... be some set of numerals (A-terms representing the natural
numbers). We take the Church numerals 'n1 = Mx . f*(x).

Write "M = M #M", the internal A-code of M. Now "M does not itch: being a
Church numeral it is in normal form.

Write FV(M) for the set of free variables of M. A A-term M is closed if
FV(M) = (. the set of closed A-terms is denoted by A°.

2 Definition
(i) An interpreter (or evaluator) is an (external) function E: A — A such that

E(MY) =M.
(i) A self-interpreter is a A-term E such that for M e A® one has
ETM? =M. 1)

Here = (or simply =) denotes convertibility between elements of A.

3 Remarks

(i) Equation (1) cannot hold for open terms containing free variables. Indeed, E
has at most a finite number of free variables and "M being a numeral has none, but
on the right-hand side M may have arbitrarily many free variables.

(ii) Define the quote to be the function Q: A — A such that

QM) = "M
A self-quote is a A-term Q such that l(say for closed terms M)
QM =,"™".
Such a self-quote does not exist, however. Indeed, the existence of Q implies
M =,Q() =,Ql =,

Since numerals are in B-normal form it follows that TII7 =T, so #(Il) = #I.
However, Il and | are different terms, and so have different codes, which is a
contradiction.

Kleene already in (1936) showed that there is a self-interpreter E for the lambda
calculus. One would think that E is defined by recursion on the structure of its
argument. There is, however, a difficulty: closed terms are not built up inductively,
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but formed as a subset of the wider class of open terms. Kleene avoided this problem
by building up closed terms from combinators S, K and | (actually, he worked with
the Al-calculus and used combinators like S, B, C and |). The construction was as
follows CL Eey

™1™, '>M, =M

where CL is a compiler from A-terms to combinatory terms, and E;, is an interpreter
for combinatory terms. The translation CL gives, for example,

(Az.zz),, = Sll (=5Az.12(12) = Az.22).

P. de Bruin (my former student) gave an essentially simpler construction of a self-
interpreter for the A-calculus. He used an idea from denotational semantics. In the
following construction, F plays the role of an environment in the sense that it
determines the values of the free variables.

4 Theorem (Kleene, 1936 )
There exists a self-interpreter E for the lambda calculus.

Proof (de Bruin)
By the representability of computable functions there is a term E, such that

E,"xTF =, Fx7,
E,"MN'F =, F(E,"MF) (E,"NF),
E,"Ax.MTF =,Ax.(E,"MF .. ,),

where F = F’x, with

[x"x]
Fx™x1=;x,
F'xTyl=,Fyl, ify=%x.
By induction on the structure of M €A it can be shown that
E,”MTF = M[x,: = F'x,7,....x,: = F'x;7] 2)
(simultaneous substitution), where {x,, ..., x,} = FV(M). Now we can take
E=Am.Eml
Indeed, for closed M it follows by equation (2) that
E'M™ =,E," MY =M. O

Using the self-interpreter E it can be shown that certain A-terms exist without giving
details. We first introduce some A-terms inspired by the language LISP.

5 Definition
COoNs = AXyZ.ZXy;
nil = Axyz.y;
null = Ax.x(Aabcd . d).
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6 Proposition
(1) null nil = Axy.x = true;
(i)) null (cons a b) = Axy.y = false.
(iii) Moreover, there exist terms car and cdr such that
car (cons a b) = a;
cdr (cons a b) =b.
Proof
(i), (ii). Easy. (iii) Take car = Ax.x(Aab.a) and cdr = Ax.x(Aab.b). O

7 Notation

Write a:b=cons ab;

(> = nil;

(Kps oves Xpyr) = Xy Xyy ooos Xpyr -

For example, <{a,b) = a:b:nil = (cons a (cons b nil)).
The following problem was raised by Dr Wim Vree of the University of
Amsterdam.

8 Problem
Does there exist a A-term F such that for all neN one has

Fnl =2dx; ... %, Xy ooy X0 7 3
Solution
Write M, = Ax,...Xx,.{X;,....X,). Clearly, #M, is computable from n, say
#M, = g(n) with g recursive. Let g be A-defined by G, say. Then

Gl =rgn)' =™,
Then F = An.E(Gn) satisfies equation (3)
FInl=EG™") =E"M_1=M,. O

At first, Vree thought the answer to Problem 8 was negative. After seeing the positive
answer, he came up with a more constructive solution.

Constructive solution
One can find a A-term rev such that for all n

rev < Xy, ..., X)) = Xy ooy Xy 0.
(For ekample, rev=AL,.rev’L, (),
with rev'(a:b)L, =rev'b(a:L,)
rev' nilL, = L,.

So take rev’ = Y(ArL, L, . if[null L,]then [L,] else [r (cdr L,) ((carL,): L,)]), where Y is
the fixed point combinator and if X then Y else Z is simply XYZ.)
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Construct a A-term V such that

Vin+17 = ALx.(V'n(x: L)),
VT07 = rev.

(For example, V = Y(Avn.if[zero? n]then rev else [ALx.v(predn)(x:L)]), where
pred represents the predecessor function.)

Then F = An.Vnnil satisfies equation (3). Indeed

Fnlx,...x, = VnTnilx, ...x,
=ALx.Vin—1(x: L)) nil x, ... x,
=Vin—-1(x,:nilx,...x,
= (ALx.Vin—2(x: L)) (x,: nil)x, ... x,,
=Vin-27(x,:x;: nil)) x; ... x,

= VI0(x,:...:x,:nil)
=rev{X,...,X;)

= (Xy5.es Xp)e O
A concrete A-term satisfying equation (3) is the following

F = An.(Aab.b(aab)) (Aab.b(aab))
(Avn.[n(Axyz.y) (Axy.x)]
[AL.(Aab.b(aab)) (Aab.b(aab))
(ArL, L,.[L,(Aabed . d)] [L,] [r(L,(rab.b)) (Az.z(L,(Aab.a)) L,)])
L(Axyz.y)]
[ALx.v(Ayz.n(Apq.q(py)) (Aw.z) (At.t)) (Az.zxL)])
n(Axyz.y).

9 Exercises
(i) Show that there is no A-term G such that for all ne N one has

Gx, ... x, = Xy, o0 X)) @
(it) Construct a A-term H such that for all ne N one has
H™,...x, = Az.zx, ... X,. %)
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