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HOMOGENIZATION OF THE SYSTEM OF HIGH-CONTRAST
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To Vladimir Gilelevich Maz’ya on the occasion of his 75th anniversary

Abstract. We study the system of Maxwell equations for a periodic composite
dielectric medium with components whose dielectric permittivities ε have a high
degree of contrast between each other. We assume that the ratio between the
permittivities of the components with low and high values of ε is of the order η2,
where η > 0 is the period of the medium. We determine the asymptotic behaviour
of the electromagnetic response of such a medium in the “homogenization limit”, as
η→ 0, and derive the limit system of Maxwell equations in R3. Our results extend
a number of conclusions of a paper by Zhikov [On gaps in the spectrum of some
divergent elliptic operators with periodic coefficients. St. Petersburg Math. J. 16(5)
(2004), 719–773] to the case of the full system of Maxwell equations.

§1. Introduction. In the present article we carry out the asymptotic analysis
of an operator family that has been coming, since the mid 1990s, to the fore
of attention by researchers in a number of disciplines, in relation to wave
propagation through periodic composite materials. The family in question has
been proposed as a mathematical model of the “photonic crystal”, a periodic
material that prohibits propagation of waves in specified frequency ranges [15],
which correspond to gaps (or “lacunae”) in the spectra of the operators involved.
This property of a photonic crystal is impossible in usual periodic media at
high frequencies, as was recently proved in [23] for the Schrödinger operator of
quantum mechanics. In the early days of photonic crystals, it was also suggested
that the above band-gap effect can be exploited in the design of “photonic
crystal fibres”, which ensure that waves of a given frequency propagate in a
specific direction without much interference from the outside [25]. A number of
mathematical works followed, including [12, 13, 16, 28, 29], which provided
an analytical framework for these physical phenomena in the setting of a
scalar wave equation. The main thrust of the related analysis is on the spectral
properties of a family of self-adjoint differential operators of second order
with periodic coefficients. However, in contrast to the “classical” case of a
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periodic composite medium (see e.g. [3, 14, 21]), where the analysis of the
fibre decomposition [19] leads to a homogeneous effective medium in the limit
of vanishing period, in the case of a photonic crystal one deals with operator
families whose ellipticity constants go to zero along with the period in the
coefficients. These are often referred to as high-contrast problems, on account
of the contrast between different material components in a composite, which
increases as the period becomes smaller.

The subsequent progress in the mathematical analysis of photonic crystals
has proceeded in several directions. On the one hand, new classes of structures
have been considered, e.g. periodic arrangements of “thin” structures (see [24]
and references therein), shedding a new light on the earlier achievements of
asymptotic analysis of networks and junctions (see e.g. [18]). This activity is also
related to the study of spectral properties of “quantum graphs”, i.e. structures of
“zero thickness” (see e.g. [4] and references therein). On the other hand, the
analysis of the full vectorial (i.e. three-dimensional) problems in the context of
linearized elasticity or electromagnetism, which seems to be a natural objective
from the applied point of view, has been pursued. This presents an additional
challenge compared to the scalar case, due to the more complicated geometric
structure of the operators involved and the lack of certain technical tools for
systems of partial differential equations, such as e.g. the maximum principle.

From the perspective of the mathematical theory of homogenization, non-
uniformly elliptic operator families are often referred to as “non-standard”,
due to the fact that sequences of elements of the operator domains that have
uniformly bounded energies are not necessarily compact with respect to the
standard energy norm. It implies, in particular, that the usual “one-scale” L2-
topology does not suffice for obtaining a homogenized limit whose energy is the
limit of the energies of the original sequences (“energy identity”), and one has
to resort to a more advanced multiscale L2-topology on a product of the “slow”
(macroscopic) and “fast” (microscopic) domains of the independent variable.
Another consequence of this lack of compactness is the two-scale structure of the
limit operator; see e.g. [28]. Several analytical tools, which have been developed
to study homogenization problems, allow us to treat this multiscale aspect of
high-contrast problems, including the method of two-scale convergence [2, 22],
the method of periodic unfolding [8], the method of multiscale asymptotic
expansions [5, 26] and the method of resolvent asymptotics in the Bloch space
(see [6]; see also [17], where a general approach to degenerate problems is
discussed, based on the generalized Weyl decomposition). Arguably, any of
these techniques can be employed for the analysis of the full system of Maxwell
equations, which is of interest to us in the present work. Based on our previous
experience (see e.g. [6, 7, 9]), we adopt the method of two-scale convergence in
combination with the analysis of the “space of microscopic oscillations” for the
Maxwell operator, which in the general form was introduced in [17].

The structure of the present paper is as follows. In §2 we outline the problem
at hand and formulate the main result of the paper. In §3 we prove several
statements used in the subsequent analysis of equations (5). These concern the
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structure of the null set of the curl-operator on Q1 and the well-posedness of the
associated unit-cell problems. Section 4 is devoted to the proof of the main result,
which consists of several stages, namely: the proof of two-scale compactness
of solution sequences uη, and their gradients, for equations (5) with right-hand
sides f η that are uniformly bounded in [L2(R3)]3, as well as the “structural
relations” between limits of sequences and their scaled curls (Lemma 4.1); the
proof of “macroscopic regularity” of the two-scale limit of the solutions uη

(Proposition 4.3); the derivation of the limit system (6)–(8) in the main theorem
(Theorem 2.1); ending with the characterization of Ahom (Lemma 4.4) and the
study of the solution set of (6)–(8).

§2. Problem formulation and main result. A time-harmonic electromagnetic
wave E, H propagating with frequency ω through a three-dimensional dielectric
composite is governed by the system of Maxwell equations in R3:

curl E = iωµH , (1)
curl H = −iωεE (2)

with
div(εE) = 0 and div(µH) = 0. (3)

Here µ and ε are the magnetic permeability and electric permittivity of the
dielectric medium. This article considers the class of problems described by
µ = 1 and ε(x) = εη(x) = ε1(x/η) + η−2ε0(x/η), η ∈ (0, 1

2 ), where ε0, ε1

are periodic scalar functions with respect to Q = [0, 1)3 and are such that

supp(εi ) = Qi , 0 < ν 6 (εi |Qi )
−1 6 ν−1, i = 0, 1,

where Q0 is an open C2-set compactly contained in Q and such that Q1 :=

Q\Q0 is simply connected. Important questions in applications concern the sets

Sη := {ω2
: ∃ a non-trivial (quasiperiodic) solution E, H to (1)–(3)}, η ∈ (0, 1

2 ),

and their limit behaviour as η→ 0. By a straightforward manipulation, it is seen
that if λ = ω2

∈ Sη, then the corresponding magnetic component H solves the
“reduced” system

curl(ε−1
η curl H) = λH, div H = 0, (4)

where ε−1
0 , ε−1

1 are the inverses of ε0, ε1 on their support and zero elsewhere. In
other words, we find that the set Sη is the spectrum σ(Aη) of the self-adjoint
operator Aη associated with the problem (4). With the aim of analysing the
behaviour of Sη in a future work, we focus in this article on the convergence
of the family of resolvent operators (Aη + I )−1 with respect to the two-scale
topology; see [2, 22, 28]. Namely, for a given family of divergence-free functions
f η two-scale converging to f, we shall study the two-scale convergence of the
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family uη of (weak) solutions to

curl(ε−1
η curl uη)+ uη = f η, div uη = 0 in R3. (5)

We now present our main result.

THEOREM 2.1. Suppose that a sequence f η ∈ [L2(R3)]3sol weakly (strongly)
two-scale converges to f ∈ [L2(R3

× Q)]3 as η → 0. Then the sequence
of solutions uη ∈ [H1(R3)]3 to the equations (5) weakly (strongly) two-scale
converges to the function u0(x, y) = u(x) + ∇yu1(x, y) + u2(x, y), where the
triplet (u, u1, u2) ∈ Hcurl × L2(R3

; H2
# (Q)) × [L

2(R3
; H1

0 (Q0))]
3
=: H is a

solution to the system

curlx (Ahom curlx u(x))+ u(x)+
∫

Q0

u2(x, y) dy

=

∫
Q

f (x, y) dy, x ∈ R3, (6)

curly(ε
−1
0 (y) curly u2(x, y))+ u(x)+∇yu1(x, y)+ u2(x, y)

= f (x, y), (x, y) ∈ R3
× Q0, (7)

divy(∇yu1(x, y)+ u2(x, y)) = 0, (x, y) ∈ R3
× Q. (8)

Here [L2(R3)]3sol is the subspace of [L2(R3)]3 consisting of divergence-free
vector fields, Hcurl := {u ∈ [L2(R3)]3 : curl u ∈ [L2(R3)]3} and Ahom is
a symmetric, positive-definite matrix. In the equation (8), we assume that the
function u2 is set to zero on Q1.

Remark 2.2. The matrix Ahom is described by solutions to certain degenerate
“cell problems”, which are presented, along with the description of Ahom, in
Lemma 4.4. Therein, we prove the duality relation

Ahom
= (εhom

stiff )
−1,

where the positive-definite matrix εhom
stiff is the homogenized coefficient matrix

given by

εhom
stiff ξ · ξ := inf

u∈H1
# (Q),

∇u=−ξ in Q0

∫
Q1

ε1(ξ +∇u) · (ξ +∇u), ξ ∈ R3,

which arises in the homogenization of periodic problems with stiff inclusions;
see for example [14, Ch. 3].

Remark 2.3. For any two solutions (u, u1, u2), (v, v1, v2) ∈H of (6)–(8), the
equalities u = v and∇yu1

+u2
= ∇yv

1
+v2 hold. Conversely, if (u, u1, u2) ∈H

is a solution to (6)–(8), then all (u, v1, v2) with (v1, v2) ∈ L2(R3
; H2

# (Q)) ×
[L2(R3

; H1
0 (Q0))]

3 such that ∇yv
1
+ v2

= ∇yu1
+ u2 are also solutions to

(6)–(8). These claims are proved in Proposition 4.8.
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Henceforth, for a linear set X , we denote by [X ]3 the space of vector-valued
functions whose components belong to X, i.e. for u ∈ [X ]3, u = {u1, u2, u3},

where u1, u2, u3 ∈ X . Whenever X is a Banach space, we consider [X ]3 to
be endowed with the product topology (which makes it a Banach space). We
define the integral of a vector function (such as e.g. in (6)) to be the vector of
the integrals of its components. We use the subscript “#” to indicate spaces of
periodic functions, i.e. the closures of the space of periodic C∞-functions with
respect to appropriate norms.

§3. Auxiliary results. In this section we establish several technical results
which will be employed when passing to the homogenization limit in the
Maxwell system (5). We start with a discussion of properties of functions that
belong to the spaces

V := {v ∈ [H1
# (Q)]

3
: curl v = 0 in Q1} (9)

and V⊥, the orthogonal complement of V in [H1
# (Q)]

3 with respect to the
following equivalent H1-norm:

‖v‖H :=

(∣∣∣∣∫
Q
v

∣∣∣∣2 + ∫
Q
|∇v|2

)1/2

,

associated with the inner product

(v,w)H :=

(∫
Q
v

)
·

(∫
Q
w

)
+

∫
Q
∇v · ∇w.

LEMMA 3.1 (Characterization of the space V ). A function v ∈ [H1
# (Q)]

3

belongs to the space V if and only if v = a+∇b+c for some a ∈ R3, b ∈ H2
# (Q)

and c ∈ [H1
0 (Q0)]

3. Furthermore, the choice of a = a(v) is unique and there
exists a constant C > 0 such that

|a(v)| 6 C‖v‖
[H1

# (Q)]
3 for all v ∈ V . (10)

Proof. It is clear that any function of the form v = a+∇b+c for some a ∈ R3,
b ∈ H2

# (Q) and c ∈ [H1
0 (Q0)]

3 belongs to V . Therefore, its only necessary to
prove the reverse inclusion.

For a fixed v ∈ V , by definition curl v = 0 in Q1. It is known (see [10,
p. 219]) that since Q1 is simply connected, v = a + ∇b in Q1 for some a ∈ R3

and† b ∈ H2
# (Q1). Denoting by b̃ ∈ H2

# (Q) a fixed extension of b to Q0 given by
the extension theorem for Sobolev functions (see [1, Ch. IV], [20, §1.1.16] and
[27, p. 181]) and by trivially extending a,we introduce the function ṽ := a+∇b̃.
The function c := v− ṽ, by construction, belongs to [H1

0 (Q0)]
3. The uniqueness

of a follows from observing that for given p ∈ [H1
# (Q1)]

3, a ∈ R3 satisfying
∇ p = a in Q1, a is necessarily zero by the connectedness of Q1.

† The space H2
# (Q1) is defined to consist of restrictions to Q1 of functions from H2

# (Q).
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To end the proof, we mention that a(v) satisfies (10). As smooth functions
are dense in V (see for example the proof of Lemma 4.1, Step 2), we only need
to show (10) for φ ∈ [C∞# (Q1)]

3 such that curl φ = 0. This follows from noting
that since Q1 is simply connected, one can construct b as follows:

b(y) :=
∫
C
φ · dτ −

3∑
i=1

ai yi , y ∈ Q1,

where C is a smooth path in Q1 connecting the points 0 and y whose unit tangent
vector at each point is denoted by τ, and the vector a = (a1, a2, a3) is given by

ai =

∫ 1

0
φi (tei ) dt, i = 1, 2, 3, (11)

where ei , i = 1, 2, 3, are the Euclidean basis vectors. The bound (10) now
follows by a standard embedding theorem (see e.g. [1, Ch. VII]).

LEMMA 3.2 (Characterization of the space V⊥). A function w ∈ [H1
# (Q)]

3

belongs to V⊥ if and only if the following two conditions hold.
(i) The average of w over Q is equal to zero:∫

Q
w = 0. (12)

(ii) There exists a vector function p ∈ [L2(Q1)]
3 such that the identity∫

Q
∇w · ∇φ =

∫
Q1

p · curl φ (13)

holds for all φ ∈ [H1
# (Q)]

3. (In particular, divw = 0 in Q and all
components of w are harmonic in Q0.)

Proof. Suppose that both (i) and (ii) hold for a functionw ∈ [H1
# (Q)]

3. Then,
for φ ∈ V , one has

(w, φ)H =

(∫
Q
w

)
·

(∫
Q
φ

)
+

∫
Q
∇w · ∇φ =

∫
Q1

p · curlφ = 0

and therefore w ∈ V⊥.
Conversely, notice that w ∈ V⊥ immediately implies (12) by considering the

products (w, φ)H , where φ are constant elements of V . To prove the property
(ii), we follow the classical description of linear continuous functionals on
Sobolev spaces (see e.g. [1, Theorem 3.8]).

Denote by H1 the space [H1
# (Q)]

3/R3 equipped with the following
equivalent H1-norm:

‖ · ‖H1 = (‖div · ‖2L2(Q) + ‖curl · ‖2
[L2(Q)]3)

1/2
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and consider the (isometric) mapping M : H1
→ [L2(Q)]4 given by Mφ =

(divφ, curlφ) and the functional fw defined on the image of M by the formula

fw(Mφ) = (w, φ)H , φ ∈ [H1
# (Q)]

3/R3.

The functional fw is linear and bounded, due to the fact that the norm ‖ · ‖H1

is equivalent to ‖ · ‖H on [H1
# (Q)]

3/R3. By the Hahn–Banach theorem, there
exists a norm-preserving extension f̃w of fw to the whole of [L2(Q)]4. Further,
by the Riesz representation theorem, there exist q ∈ L2(Q) and p ∈ [L2(Q)]3

such that

(w, φ)H = fw(Mφ) = f̃w(Mφ) =
∫

Q
(q, p) · Mφ

=

∫
Q

q divφ +
∫

Q
p · curlφ for all φ ∈ [H1

# (Q)]
3/R3. (14)

Note that if (q, p) satisfies (14), then so does (q + c, p + ∇ω + d) for any
ω ∈ H1

# (Q), c ∈ R, d ∈ R3.

Setting φ = ∇χ, where χ ∈ H1
# (Q) is a solution to the problem 1χ = g for

an arbitrary function g ∈ L2(Q) with zero integral over Q, we note that ∇χ ∈ V
and consequently obtain

0 = (w, φ)H =

∫
Q

q1χ =
∫

Q
qg for all g ∈ L2(Q)/R;

hence, q = −c for some c ∈ R. Further, considering φ ∈ [C∞0 (Q0)]
3
⊂ V yields

0 = (w, φ)H =

∫
Q0

p · curlφ for all φ ∈ [C∞0 (Q0)]
3

and hence curl p = 0 in Q0. This implies, in turn, that p = −∇ω − d in Q0 for
some ω ∈ H1

# (Q), d ∈ R3.

Since, as noted above, the identity (14) holds with q replaced by q+c, which
is equal to zero, and p replaced by p + ∇ω + d, which is equal to zero in Q0,

the proof of the claim (ii) is complete.

LEMMA 3.3. There exists a constant C such that

‖w‖H 6 C
(∫

Q1

|curlw|2
)1/2

for all w ∈ V⊥.

Proof. The identities (12) and (13) imply that for all w ∈ V⊥ one has

‖w‖2H =

∣∣∣∣∫
Q
∇w · ∇w

∣∣∣∣ = ∣∣∣∣∫
Q1

p · curlw
∣∣∣∣ 6 ‖p‖[L2(Q1)]3

‖curlw‖[L2(Q1)]3
.

https://doi.org/10.1112/S0025579314000424 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579314000424


482 K. CHEREDNICHENKO AND S. COOPER

Further, the identity (14) with q = 0, p|Q0 = 0 implies that

‖p‖[L2(Q1)]3
= ‖p‖[L2(Q)]3 = ‖(q, p)‖[L2(Q)]4 = ‖ fw‖H1?

= sup
φ

‖φ‖−1
H |(w, φ)H | 6 C‖w‖H

for some C > 0. Here fw is the functional that was introduced in the
proof of Lemma 3.2. Combining the two estimates above yields the claim of
the lemma.

LEMMA 3.4. For fixed F ∈ ([H1
# (Q)]

3)∗, the space of bounded linear
functionals on [H1

# (Q)]
3, the problem

curl(ε−1
1 curl w) = F (15)

is weakly solvable in [H1
# (Q)]

3 if and only if 〈F, v〉 = 0 for all v ∈ V .
Furthermore, any weak solution to (15) is uniquely described in V⊥. Henceforth
〈· , ·〉 denotes the duality relation between ([H1

# (Q)]
3)∗ and [H1

# (Q)]
3.

LEMMA 3.5. Let u ∈ [L2(Q)]3 satisfy (u, 9)[L2(Q)]3 = 0 for all 9 ∈

[L2(Q)]3 such that curl (ε−1/2
1 9) = 0. Then u = ε

−1/2
1 curlw for some w ∈

[H1
# (Q)]

3. The choice of w is unique up to an element of V .

Lemmas 3.4 and 3.5 are a consequence of Lemma 3.3 and were first proved
by Kamotski and Smyshlyaev, see [17], in the more general context of equations
with “partial degeneracies”. For completeness, we next present the related
proofs.

Proof of Lemma 3.4. Let w be a solution of (15) and let v ∈ V . Then, using
the definition (9) of the space V, we have

〈F, v〉 =
∫

Q
ε−1

1 curlw · curl v = 0. (16)

Conversely, let 〈F, v〉 = 0 hold for all v ∈ V and seek a solution v ∈ [H1
# (Q)]

3

to (15). By (16), the identity (15) holds automatically for all v ∈ V ; therefore,
it is sufficient to verify it for all v ∈ V⊥. Also, by seeking the solution w to
belong to V⊥ it remains to show that, in the Hilbert space V⊥ with the inherited
[H1

# (Q)]
3-norm ‖ · ‖H , the problem (15) satisfies the conditions of the Lax–

Milgram lemma; see for example [11]. First, the bilinear form

B(w, v) :=
∫

Q
ε−1

1 curlw · curl v

is shown to be bounded in V⊥, i.e. with some C > 0 one has

|B(w, v)| 6 C ‖w‖H ‖v‖H for all v,w ∈ V⊥.
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This follows from the assumption that ε−1
1 ∈ L∞(Q). Further, the form B is

coercive, i.e. for some ν > 0 the bound

B[v, v] > ν ‖v‖2H for all v ∈ V⊥

holds. Indeed, we have

B(v, v) :=
∫

Q
ε−1

1 curl v · curl v = ‖ε−1/2
1 curl v‖2

[L2(Q1)]3
> ν‖v‖2H .

In the last inequality we have used the fact that ε−1/2
1 is positive on Q1 and

Lemma 3.3. Finally, by the Lax–Milgram lemma, there exists a unique solution
to the problem

w ∈ V⊥ : B(w, v) = 〈F, v〉 for all v ∈ V⊥

and hence to (15).

Proof of Lemma 3.5. Let u satisfy the assumption of the lemma. Defining the
right-hand side F ∈ ([H1

# (Q)]
3)∗ by F := curl(ε−1/2

1 u), we see that F satisfies
the condition 〈F, v〉 = 0 for all v ∈ V , since for such v one has

〈F, v〉 = 〈curl(ε−1/2
1 u), v〉 =

∫
Q
ε
−1/2
1 u · curl v = 0.

By Lemma 3.4, there exists a unique w ∈ V⊥ such that

curl(ε−1
1 curlw) = curl(ε−1/2

1 u). (17)

It remains to show that u = ε−1/2
1 curlw. Indeed, we have

‖u − ε−1/2
1 curlw‖2

[L2(Q)]3 = (u, u − ε−1/2
1 curlw)[L2(Q)]3

−(ε
−1/2
1 curlw, u − ε−1/2

1 curlw)[L2(Q)]3 =: S1 + S2.

It follows from (17) that S1 = 0, since for 9 := u − ε−1/2
1 curl w one has

curl(ε−1/2
1 9) = 0 and therefore (u, 9)[L2(Q)]3 = 0 by the assumption on u. On

the other hand,

S2 =

∫
Q
ε−1/2 curlw · 9 =

∫
Q

curlw · ε−1/2
1 9 =: 〈curl(ε−1/2

1 9),w〉 = 0

by (17). Hence, ‖ u − ε−1/2
1 curlw‖[L2(Q)]3 = 0, yielding the desired result.

The above construction also ensures that w is determined uniquely up to any
function from V ; in particular, it is unique in V⊥.
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§4. Homogenization. This section contains the proof of the main result
(Theorem 2.1). We have structured our presentation in two parts: the analysis
of compactness properties of the sequence of solutions uη and the passage to the
limit as η→ 0 in the weak formulation of (5).

4.1. Two-scale compactness of solution sequences.

LEMMA 4.1. Suppose that a sequence f η ∈ [L2(R3)]3sol weakly two-scale
converges to f ∈ [L2(R3

×Q)]3. Then the sequence uη ∈ [H1(R3)]3 of solutions
to (5) weakly two-scale converges, up to a subsequence that we do not relabel,
to u0(x, y) ∈ L2(R3

; V ), where

divy u0
= 0 (18)

and
u0(x, y) = u(x)+∇yu1(x, y)+ u2(x, y) (19)

for some (u, u1, u2) ∈ Hcurl × L2(R3
; H2

# (Q)) × [L
2(R3
; H1

0 (Q0))]
3
=: H.

Furthermore, one has

η curl uη(x) 2
⇀ curly u0(x, y), (20)

ε−1
1 (x/η) curl uη(x) 2

⇀ ε−1
1 (y)[curl u(x)+ curly w(x, y)] (21)

as η → 0. Henceforth we denote by 2
⇀ and 2

→ the weak and strong two-scale
convergence, respectively. The function w ∈ L2(R; V⊥) in (21) is the unique
solution in V⊥ to the problem

curly(ε
−1
1 (y)[curly w(x, y)+ curl u(x)]) = 0. (22)

In particular, one has

w(x, y) = M(y) curl u(x) for a.e. (x, y) ∈ R3
× Q, (23)

where M ∈ [H1
# (Q)]

3×3 is a matrix-valued function whose columns Mr , r = 1,
2, 3, are the unique solutions in V⊥ to the problem

curl(ε−1
1 [curl Mr

+ er ]) = 0. (24)

Here, as before, er , r = 1, 2, 3, are the Euclidean basis vectors.

Remark 4.2. Note that equations (18) and (19) give (8).

Proof. Let uη be the sequence of solutions given in the hypothesis of the
lemma. We begin by noting that there exists a constant C > 0 such that

‖uη‖[L2(R3)]3 6 C‖ f η‖[L2(R3)]3,

‖η curl uη‖[L2(R3)]3 6 C‖ f η‖[L2(R3)]3,

‖ε
−1/2
1 curl uη‖[L2(R3)]3 6 C‖ f η‖[L2(R3)]3 .
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Indeed, as uη is a weak solution to (5), by definition uη satisfies∫
R3
(ε−1

1 + η
2ε−1

0 )(x/η) curl uη(x) · curl φ(x) dx +
∫
R3

uη(x) · φ(x) dx

=

∫
R3

f η(x) · φ(x) dx for all φ ∈ [H1(R3)]3. (25)

Setting φ = uη in (25) yields the above inequalities.
As bounded sequences in [L2(R3)]3 have two-scale convergent subsequences

we find, upon extraction of a suitable subsequence, that

uη 2
⇀ u0, η curl uη 2

⇀ 40, ε
−1/2
1 (·/η) curl uη 2

⇀ ξ0

for some u0, 40, ξ0
∈ [L2(R3

× Q)]3. What remains is to show that these limit
functions satisfy the announced properties of the lemma. The proofs of these
facts shall be presented in several distinct steps.

Step 1. Here we shall show that u0 belongs to L2(R3
; V ) and that equations

(18)–(20) hold. Suppose that9 ∈ [C∞0 (R
3
;C∞# (Q))]

3
; then, passing to the limit

as η→ 0 in the identity∫
R3
η curl uη(x) ·9

(
x,

x
η

)
dx

=

∫
R3

uη(x) ·
[
η curlx 9

(
x,

x
η

)
+ curly 9

(
x,

x
η

)]
dx

yields∫
R3

∫
Q
40(x, y) ·9(x, y) dy dx =

∫
R3

∫
Q

u0(x, y) · curly 9(x, y) dy dx,

which implies equation (20). By a similar passage to the limit in the identity

0 =
∫
R3
ηuη(x) · ∇9

(
x,

x
η

)
dx

=

∫
R3

uη(x) ·
[
η∇x9

(
x,

x
η

)
+∇y9

(
x,

x
η

)]
dx,

which holds as div uη = 0, one finds that

0 =
∫
R3

∫
Q

u0(x, y) · ∇y9(x, y),

which implies (18). The above two observations concerning curly u0 and divy u0

imply, in particular, that u0(x, ·) ∈ [H1
# (Q)]

3 for almost every x ∈ R3. What
remains of this step is to show that u0

∈ L2(R3
; V ), which, in turn, by

Lemma 3.1, implies equation (19) and the fact that u (given by (11)) belongs
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to [L2(R3)]3. To accomplish this we note that, on the one hand, the convergence

lim
η→0

∫
R3
ηε
−1/2
1

(
x
η

)
curl uη(x) ·9

(
x,

x
η

)
dx = 0 (26)

holds, due to the L2-boundedness of the sequence ε−1/2
1 (·/η) curl uη. On the

other hand, by (20) one has

lim
η→0

∫
R3
ηε
−1/2
1

(
x
η

)
curl uη(x) ·9

(
x,

x
η

)
dx

=

∫
R3

∫
Q
ε
−1/2
1 (y) curly u0(x, y) ·9(x, y) dy dx . (27)

Combining (26) and (27) and using the arbitrary choice of the test function 9
yields

ε
−1/2
1 (y)curly u0(x, y) for a.e. x, y ∈ R3

× Q

and hence u0(x, ·) ∈ V ; see (9).

Step 2. To prove (22)–(24), which is the subject of Step 3 below, we shall
require the following identity:∫

R3

∫
Q
ξ0(x, y) ·9(x, y) dy dx

=

∫
R3

∫
Q
ε
−1/2
1 (y)u0(x, y) · curlx 9(x, y) dy dx (28)

for all test functions 9 ∈ W ∩ [C∞0 (R
3
; L2(Q))]3, where

W := {9 ∈ [L2(R3
× Q)]3 : curly(ε

−1/2
1 (y)9(x, y)) = 0 for a.e. x ∈ R3

}.

We shall now prove (28). Let ϕk = ϕk(x, y), k ∈ N, be the sequence of functions
obtained by the convolution (“mollification”) of ε−1/2

1 (·)9(x, ·) with functions
ω(k·) such that ω is a C∞0 -function with integral equal to unity:

ϕk(x, y) =
∫
R3
ε
−1/2
1 (y − ξ)9(x, y − ξ)ω(kξ) dξ, k ∈ N,

where ε−1/2
1 (·)9(x, ·) is extended to R3 by Q-periodicity. Let us recall some

properties of these mollifications that we shall employ. Namely, we notice
that ϕk ∈ [C∞0 (R

3
;C∞# (Q))]

3 and that the sequence ϕk(x, ·) converges to the
function ϕ := ε−1/29 strongly in [C(K ; L2(Q))]3, where the compact set K
is the support of 9 with respect to x . Similarly, the sequence curlx ϕk(x, ·)
converges to curlx ϕ = ε−1/2 curlx 9 strongly in [C(K ; L2(Q))]3. Moreover,
one has curly ϕk(x, y) = 0 for all k and, by integration by parts, we have the
identity∫

R3
curl uη(x) · ϕk

(
x,

x
η

)
dx =

∫
R3

uη(x) · curlx ϕk

(
x,

x
η

)
dx . (29)
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We wish to pass to the limit k → ∞ in (29), which requires proving that
for a fixed η, the functions ϕk(x, x/η) (respectively curlx ϕk(x, x/η)) converge
strongly in [L2(R3)]3 to ϕ(x, x/η) (respectively curlx ϕ(x, x/η)). We will only
show this for ϕk(x, x/η) as the argument for curlx ϕk(x, x/η) is identical.
Recalling that K denotes the support of ε−1/2(x)9(x, y) with respect to x
and taking {Qi }

n
i=1 to be a finite set of translations of Q which covers η−1K ,

we find that∫
R3

∣∣∣∣ϕk

(
x,

x
η

)
− ϕ

(
x,

x
η

)∣∣∣∣2 dx =
∫

K

∣∣∣∣ϕk

(
x,

x
η

)
− ϕ

(
x,

x
η

)∣∣∣∣2 dx

=

∫
η−1 K

η3
|ϕk(ηy, y)− ϕ(ηy, y)|2 dy

6 η3
∫
η−1 K

sup
x∈K
|ϕk(x, y)− ϕ(x, y)|2 dy

= η3
n∑

i=1

sup
x∈K

∫
Qi

|ϕk(x, y)− ϕ(x, y)|2 dy → 0

as k →∞ by the properties of the mollification. Therefore, we can replace (29)
with∫
R3
ε−1

1

(
x
η

)
curl uη(x)·9

(
x,

x
η

)
dx =

∫
R3

uη(x)·ε−1
1

(
x
η

)
curlx 9

(
x,

x
η

)
dx

(30)
and, by passing to the limit in (30) as η→ 0, we obtain (28).

Step 3. Here we shall prove (22)–(24). Let us first show that∫
R3

∫
Q
ε
−1/2
1 (y)∇yu1(x, y) · curlx 9(x, y) dy dx

= 0 for all 9 ∈ W ∩ [C∞0 (R
3
; L2(Q))]3. (31)

Indeed, by integration by parts, along with the identity divy curlx = −divx curly ,
we find that∫

R3

∫
Q
ε
−1/2
1 (y)∇yu1(x, y) · curlx 9(x, y) dy dx

=

∫
R3

∫
Q

u1(x, y) divy(ε
−1/2
1 (y)curlx 9(x, y)) dy dx

=

∫
R3

∫
Q

u1(x, y) divy curlx (ε
−1/2
1 (y)9(x, y)) dy dx

= −

∫
R3

∫
Q

u1(x, y) divx curly(ε
−1/2
1 (y)9(x, y)) dy dx = 0
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for 9 ∈ W ∩ [C∞0 (R
3
; L2(Q))]3. Substituting the representation (19) into (28)

and noting (31), we find that∫
R3

∫
Q
ξ0(x, y) ·9(x, y) dy dx =

∫
R3

∫
Q
ε
−1/2
1 (y)u(x) · curlx 9(x, y) dy dx

for all 9 ∈ W ∩ [C∞0 (R
3
; L2(Q))]3.

In fact, as all smooth vector functions in R3 can be approximated in [H1(R3)]3

by smooth functions with compact support, we find that∫
R3

∫
Q
ξ0(x, y) ·9(x, y) dy dx =

∫
R3

∫
Q
ε
−1/2
1 (y)u(x) · curlx 9(x, y) dy dx

for all 9∈W ∩ [C∞(R3
; L2(Q))]3. (32)

Assuming for the moment that curl u ∈ [L2(R3)]3, an integration by parts in (32)
and a standard density argument imply that∫

Q
[ξ0(x, y)− ε−1/2

1 curl(x)] ·9(x, y) dy = 0

for all 9 ∈ W for a.e. x ∈ R3.

In view of Lemma 3.5, we now arrive at

ξ0(x, y)= ε−1/2
1 (y) curl u(x)+ε−1/2

1 (y) curly w(x, y) for a.e. (x, y) ∈ R3
×Q
(33)

for some w ∈ L2(R3
; V⊥), which gives (21). Finally we note, by passing to

the limit as η → 0 in (25) with test functions of the form φ = η9(· , ·/η) for
arbitrary 9 ∈ [C∞0 (R

3
;C∞# (Q))]

3, that

curly(ε
−1/2
1 (y)ξ0(x, y)) = 0 for a.e. (x, y) ∈ R3

× Q, (34)

which, along with (33), gives (22). The decomposition (23) then simply follows,
since the existence of solutions to (24) is guaranteed by Lemma 3.4.

Step 4. Here we show that the assumption we used in Step 2, namely that
u ∈ Hcurl, holds. To this end, we prove the following proposition.

PROPOSITION 4.3. For all φ ∈ [C∞0 (R
3)]3 there exists 9φ ∈ W ∩

[C∞(R3
; L2(Q))]3 such that

curlφ(x) =
∫

Q
curlx (ε

−1/2
1 (y)9φ(x, y)) dy, x ∈ R3. (35)

Further, for all functions w ∈ W there exists C(w) > 0 such that∫
R3

∫
Q
w(x, y)9φ(x, y) dy dx 6 C(w)‖φ‖[L2(R3)]3 for all φ ∈ [C∞0 (R

3)]3.

(36)
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Notice that if Proposition 4.3 holds, for an arbitrary φ ∈ [C∞0 (R
3)]3 we

choose the corresponding9φ as the test function in (32) which will subsequently
yield ∫

R3
u(x) · curlφ(x) dx = l(φ),

where the linear functional l : [C∞0 (R
3)]3 → R3 is given by

l(φ) :=
∫
R3

∫
Q
ξ0(x, y)9φ(x, y) dy dx .

The inequality (36), which holds since ξ0
∈ W (see (34)), implies that l is

bounded and can therefore be extended to a bounded functional on [L2(R3)]3.
Hence, by the Riesz representation theorem, we find that curl u ∈ [L2(R3)]2.

Proof of Proposition 4.3. For fixed φ ∈ [C∞0 (R
3)]3, let φ0

∈ [H1(R3)]3 ∩

[C∞(R3)]3 be a solution to the problem

curl(Ahom curlφ0) = curlφ, divφ0
= 0, (37)

where the positive-definite matrix Ahom is given by Lemma 4.4. By a standard
Fourier transform argument, the solution φ0 exists and is unique in the class
indicated. Next, take φ1

∈ L2(R3
; V⊥) ∩ [C∞(R3

; H1
# (Q))]

3 to be the solution
to

curly(ε
−1
1 (y)[curly φ

1(x, y)+ curl φ0(x)]) = 0,

whose existence is guaranteed by Lemma 3.4. Setting

9φ(x, y) := ε−1/2
1 (y)[curly φ

1(x, y)+ curlφ0(x)], (x, y) ∈ R3
× Q, (38)

we see by construction that 9 ∈ W ∩ [C∞(R3
; L2(Q))]3 and∫

Q
ε
−1/2
1 (y)9(x, y) dy = Ahom curlφ0, x ∈ R3, (39)

where the last equality is derived from Lemma 4.4 below and by observing
that φ1(x, y) = M(y) curlφ0 for a matrix M whose columns Mr solve the cell
problem (24). Finally, equations (37) and (39) imply (35).

The inequality (36) results from the following observations. For each w ∈ W
we obtain, in view of the representation (38), that∣∣∣∣∫

R3

∫
Q
w(x, y) ·9φ(x, y) dy dx

∣∣∣∣
=

∣∣∣∣∫
R3

∫
Q
w(x, y) · ε−1/2

1 (y) curlφ0(x) dy dx
∣∣∣∣

6

(∫
R3
|curlφ0(x)|2 dx

)1/2(∫
R3

∫
Q
|ε
−1/2
1 (y)w(x, y)|2 dy dx

)1/2

.
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Furthermore, by (37) and the fact that Ahom is positive definite, there exists a
constant C such that∫

R3
|curl φ0

|
2 6 C

∫
R3

Ahom curlφ0
· curl φ0

= C
∫
R3
φ · curl φ0

6 C
(∫

R3
| curl φ0

|
2
)1/2(∫

R3
|φ|2

)1/2

.

This completes the proof of Lemma 4.1.

4.2. Proof of Theorem 2.1. We first consider the case f η 2
⇀ f 0 and let uη,

u0 be given by Lemma 4.1. Then, for φ0
∈ C∞0 (R

3
; V ∩ [C∞# (Q)]

3), we set
φ = φ0(· , ·/η) as the test function in (25). We note, by the convergence (21), that∫

R3
ε−1

1

(
x
η

)
curl uη(x) · curl φ(x) dx

=

∫
R3
ε−1

1

(
x
η

)
curl uη(x) ·

[
curlx φ0

(
x,

x
η

)
+ η−1 curly φ

0
(

x,
x
η

)]
dx

=

∫
R3
ε−1

1

(
x
η

)
curl uη(x) · curlx φ0

(
x,

x
η

)
dx

η→0
−→

∫
R3

∫
Q
ε−1

1 (y)(curl u(x)+ curly u1(x, y)) · curlx φ0(x, y) dy dx .

We similarly note, by (20), that∫
R3
η2ε−1

0

(
x
η

)
curl uη(x) · curl φ(x) dx

=

∫
R3
η ε−1

0

(
x
η

)
curl uη(x) · curly φ

0
(

x,
x
η

)
dx + o(η)

η→0
−→

∫
R3

∫
Q
ε−1

0 (y) curly u0(x, y) · curly φ
0(x, y) dy dx .

Therefore, passing to the limit in (25) for such functions φ yields∫
R3

∫
Q
ε−1

1 (y)(curl u(x)+ curly u1(x, y)) · curlx φ0(x, y) dy dx

+

∫
R3

∫
Q
ε−1

0 (y) curly u0(x, y) · curly φ
0(x, y) dy dx

+

∫
R3

∫
Q

u0(x, y) · φ0(x, y) dy dx

=

∫
R3

∫
Q

f (x, y) · φ0(x, y) dy dx for all φ0
∈ C∞0 (R

3
; V ∩ [C∞# (Q)]

3).

(40)

Now we shall use the identity (40) to obtain the equations (6)–(7) of the main
theorem. (Recall that the equation (8) was obtained earlier; see Remark 4.2.)
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First, using the equation (23), we find that∫
R3

∫
Q
ε−1

1 (y)(curl u(x)+ curly u1(x, y)) · curlx φ0(x, y) dy dx

=

∫
R3

∫
Q
ε−1

1 (y)[I + curl M(y)] curl u(x) · curlx φ0(x, y) dy dx

=

∫
R3

Ahom curl u(x) · curl φ(x) dx

+

∫
R3

∫
Q
ε−1

1 (y)[I + curl M(y)] curl u(x) · curlx ∇yφ
1(x, y) dy dx,

(41)

where Ahom is given by Lemma 4.4. Let us now show that the second term on
the right-hand side of (41) is zero. For functions φ1

∈ C∞0 (R
3
; H2

# (Q)), we find
by the identity curlx ∇y = −curly ∇x and the equation (24) that∫

R3

∫
Q
ε−1

1 (y)[I + curl M(y)] curl u(x) · curlx ∇yφ
1(x, y) dy dx

= −

∫
R3

∫
Q
ε−1

1 (y)[I + curl M(y)] curl u(x) · curly ∇xφ
1(x, y) dy dx

= −

∫
R3

∫
Q

curly(ε
−1
1 (y)[I + curl M(y)]) curl u(x) · ∇xφ

1(x, y) dy dx

= 0. (42)

As was noticed in Lemma 3.1, for all (φ, φ1, φ2) ∈ [C∞0 (R
3)]3 × C∞0 (R

3
;

C∞# (Q)) × [C
∞

0 (R
3
;C∞0 (Q0))]

3 the function φ0(x, y) = φ(x) + ∇yφ
1(x,

y) + φ2(x, y) is an element of C∞0 (R
3
; V ∩ [C∞# (Q)]

3). Equations (19), (40),
(41) and (42), along with the identity curly ∇y = 0, imply that for such triplets
(φ, φ1, φ2) one has∫

R3
Ahom curl u(x) · curl φ(x) dx

+

∫
R3

∫
Q
ε−1

0 (y) curl yu2(x, y) · curly φ
2(x, y) dy dx

+

∫
R3

∫
Q
(u(x)+∇yu1(x, y)+ u2(x, y))

× (φ(x)+∇yφ
1(x, y)+ φ2(x, y)) dy dx

=

∫
R3

∫
Q

f (x, y) · (φ(x)+∇yφ
1(x, y)+ φ2(x, y)) dy dx . (43)

Using a closure argument, we infer that (43) holds for all (φ, φ1, φ2) ∈ H.
(See Theorem 2.1 for the definition of the space H and note that Hcurl and V
contain dense subsets of smooth functions, which can be seen by arguing with
mollifications as in Step 2 of the proof of Lemma 4.1.) Therefore, equation (43)
is the weak formulation of the first two equations of the system (6)–(8).
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Further, we claim that if the strong two-scale convergence f η 2
→ f holds,

then the convergence of solutions is strong, too, i.e. uη 2
→ u0. Since strong two-

scale convergence of f η to f implies weak two-scale convergence, the above
result immediately implies that uη weakly two-scale converges to u0. Therefore,
it remains to show (see e.g. [2]) that

lim
η→0

∫
R3
|uη(x)|2 dx =

∫
R3

∫
Q
|u0(x, y)|2 dy dx . (44)

To this end, we follow the approach of [28]. Consider the solution wη ∈

[H1(R3)]3 to the problem∫
R3
(ε−1

1 + η
2ε−1

0 )

(
x
η

)
curlwη(x) · curl φ(x) dx +

∫
R3
wη(x) · φ(x) dx

=

∫
R3

uη(x) · φ(x) dx for all φ ∈ [H1(R3)]3. (45)

Using Lemma 4.1 and the present proof above, we argue that wη(x) 2
⇀ w(x)+

∇yw
1(x, y)+ w2(x, y), where the triplet (w,w1, w2) ∈ H satisfies the identity∫

R3
Ahom curlw(x) · curl φ(x) dx

+

∫
R3

∫
Q
ε−1

0 (y) curl yw2(x, y) · curly φ
2(x, y) dy dx

+

∫
R3

∫
Q
(w(x)+∇yw

1(x, y)+ w2(x, y))

× (φ(x)+∇yφ
1(x, y)+ φ2(x, y)) dy dx

=

∫
R

∫
Q

u0(x, y) · (φ(x)+∇yφ
1(x, y)

+φ2(x, y)) dy dx for all (φ, φ1, φ2) ∈ H. (46)

Taking φ = uη and φ = wη as test functions in (45) and (25), respectively,
implies that ∫

R3
uη · uη =

∫
R3

f η · wη,

which, by the strong two-scale convergence of the sequence f η, gives

lim
η→0

∫
R3

uη · uη =
∫
R3

∫
Q

f 0(x, y) · w0(x, y) dy dx . (47)

Finally, taking (φ, φ1, φ2) = (w,w1, w2) and (φ, φ1, φ2) = (u, u1, u2) as test
functions in (43) and (46), respectively, implies that∫

R3

∫
Q

f 0(x, y) · w0(x, y) dy dx =
∫
R3

∫
Q

u0(x, y) · u0(x, y) dy dx,

which, in combination with (47), yields (44).
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4.3. Properties of the two-scale limit. We begin this section by studying the
homogenized matrix Ahom which appears in Theorem 2.1.

LEMMA 4.4. Let Ahom denote the matrix

Ahom
pq =

∫
Q
ε−1

1 (curl Mq
p + δpq), p, q = 1, 2, 3, (48)

where Mq , q = 1, 2, 3, is the unique solution in V⊥ to the problem

curl(ε−1
1 [curl Mq

+ eq ]) = 0.

Then Ahom is a positive-definite symmetric matrix. Moreover, the identity

Ahom
= (εhom

stiff )
−1

holds. Here εhom
stiff is the positive-definite symmetric matrix given by

εhom
stiff ξ · ξ := inf

u∈H1
# (Q),

∇u=−ξ in Q0

∫
Q1

ε1(ξ +∇u) · (ξ +∇u), ξ ∈ R3.

Proof. Suppose that ξ ∈ R3 and let Mξ ∈ V⊥ denote the unique solution, see
Lemma 3.4, to∫

Q
ε−1

1 (curl Mξ + ξ) · curlw = 0 for all w ∈ V⊥. (49)

We introduce the matrix Ahom
: R3
→ R3 as follows:

Ahomξ :=

∫
Q
ε−1

1 (curl Mξ + ξ). (50)

Denoting by Mq the vector field Meq , and taking the inner product of Ahomeq

with ep, shows that the elements of Ahom satisfy (48). Let ξ, η ∈ R3 and let Mξ ,
Mη be the corresponding solutions of (49); then we readily find the identity

Ahomξ · η =

∫
Q
ε−1

1 (curl Mξ + ξ) · (curl Mη + η), ξ, η ∈ Rn. (51)

Indeed, (51) directly follows by taking the inner product on both sides of (50)
with η and setting ψ = Mη in (49). Identity (51) immediately implies that Ahom

is non-negative and symmetric.
We now prove the upper bound of Ahom by (εhom

stiff )
−1:

Ahomξ · ξ 6 (εhom
stiff )

−1ξ · ξ for all ξ ∈ R3. (52)
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First, we recall that the inverse matrix (εhom
stiff )

−1 can be represented as follows:

(εhom
stiff )

−1ξ · ξ := inf
v∈[L2(Q)]3sol,∫

Q v=0

∫
Q1

ε−1
1 (ξ + v) · (ξ + v), ξ ∈ R3

;

see [14, p. 102] . Then (52) directly follows from (51) and the trivial statement
that for w ∈ V⊥, the function curlw is an element of {v ∈ [L2(Q)]3sol |

∫
Q v =

0}. It remains to prove the corresponding lower bound on Ahom, i.e.

(εhom
stiff )

−1ξ · ξ 6 Ahomξ · ξ for all ξ ∈ R3. (53)

First, we will provide another representation of Ahom. Namely, we claim that

Ahomξ · ξ = min
M∈[H1

# (Q)]
3

∫
Q1

ε−1
1 (curl M + ξ) · (curl M + ξ), ξ ∈ R3.

Indeed, we see this by noting that for the functional

Fξ (M) :=
∫

Q1

ε−1
1 (curl M + ξ) · (curl M + ξ),

we find Fξ (u) = Fξ (PV⊥u) for all u ∈ [H1
# (Q)]

3, where PV⊥ is the orthogonal
projection on to V⊥. Therefore, Fξ can, without loss of generality, be minimized
on V⊥ for which (49) is the corresponding Euler–Lagrange equation.

We will now give the proof of (53). Let us recall that for an invertible matrix
A : R3

→ R3, the solution to the linear system Ax = b is also the minimum
of the functional F(η) := (Aη · η)/2 − b · η, η ∈ Rn. Choosing A to be the
multiplication by ε1 and b = curl M(x)+ ξ , one has, for almost every x ∈ R3,

the equality

1
2
ε−1

1 (curl M(x)+ξ) · (curl M(x)+ξ) = sup
η∈R3

{
(curl M(x)+ξ) ·η−

1
2
ε1η ·η

}
.

(54)
In particular, one finds that

1
2

Ahomξ · ξ = min
M∈[H1

# (Q)]
3

1
2

∫
Q1

ε−1
1 (curl M + ξ) · (curl M + ξ)

= min
M∈[H1

# (Q)]
3

∫
Q1

sup
η∈R3

{
(curl M + ξ) · η −

1
2
ε1η · η

}
> min

M∈[H1
# (Q)]

3
sup

η∈[C∞0 (Q)]
3

∫
Q1

{
(curl M + ξ) · η −

1
2
ε1η · η

}
= min

M∈[H1
# (Q)]

3
sup

η∈[L2(Q)]3

∫
Q1

{
(curl M + ξ) · η −

1
2
ε1η · η

}
> sup
η∈[L2(Q)]3

inf
M∈[H1

# (Q)]
3

∫
Q1

{
(curl M + ξ) · η −

1
2
ε1η · η

}
.
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By considering the space V := {η ∈ [H1
# (Q)]

3
|
∫

Q1
η · curl ψ for all ψ ∈

[H1
# (Q)]

3
}, we then infer that

1
2

Ahomξ · ξ > sup
η∈V

inf
M∈[H1

# (Q)]
3

∫
Q1

{
(curl M + ξ) · η −

1
2
ε1η · η

}
= sup
η∈V

inf
M∈[H1

# (Q)]
3

∫
Q1

{
ξ · η −

1
2
ε1η · η

}
= sup
η∈V

∫
Q1

{
ξ · η −

1
2
ε1η · η

}
.

Now, we note that the space {a+∇ϕ | a ∈ R3, ϕ ∈ [H1
# (Q)]

3,∇ϕ = −a in Q0}

is a subset of V and therefore

1
2

Ahomξ · ξ > sup
η=a+∇ϕ,a∈R3,

ϕ∈H1
# (Q1),∇ϕ=−a in Q0

∫
Q

{
ξ · η −

1
2
ε1η · η

}

= − inf
a∈R3

inf
ϕ∈H1

# (Q1),

∇ϕ=−a in Q0

∫
Q

{
1
2
ε1(a +∇ϕ) · (a +∇ϕ)− ξ · (a +∇ϕ)

}

= − inf
a∈R3

inf
ϕ∈H1

# (Q1),

∇ϕ=−a in Q0

{
1
2

∫
Q
ε1(a +∇ϕ) · (a +∇ϕ)− ξ · a

}

= − inf
a∈R3

{
1
2
εstiff

homa · a − ξ · a
}
.

(Here [H1
# (Q1)]

3 consists of restrictions to Q1 of elements of [H1
# (Q)]

3.)
Arguing as in (54), we arrive at (53), i.e.

1
2 Ahomξ · ξ > 1

2 (ε
stiff
hom)

−1ξ · ξ, ξ ∈ R3.

To conclude this section. we provide an equivalent formulation for the system
(6)–(8) and describe its solution set.

Definition 4.5. Suppose that f ∈ [L2(R3
× Q)]3, divy f (x, y) = 0 and

consider solutions to the system (55)–(59):

curlx (Ahom curlx u(x))+ u(x)+
∫

Q0

z(x, y) dy +
∫

Q1

∇yv(x, y) dy

=

∫
Q

f (x, y) dy, (55)

curly(ε
−1
0 (y) curly z(x, y))+ z(x, y) = f (x, y)− u(x) in Q0, (56)
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divy z(x, y) = 0 in Q0, (57)

1yv(x, y) = 0 in Q1, (58)

z(x, y) = ∇yv(x, y) on ∂Q0. (59)

The solution to the above problem is understood in the following sense. Consider
the bilinear form

B(u, φ) =
∫
R3

Ahom curl a(u)(x) · curl a(φ)(x) dx

+

∫
R3

∫
Q0

ε−1
0 curly u · curly φ dy dx

+

∫
R3

∫
Q

u · φ dydx, u, φ ∈ U ,

where

U = {u ∈ [L2(R3
; H1

# (Q))]
3
: u|y∈Q1 = a(u)+∇y pu,

pu ∈ L2(R3
; H2

# (Q)), a(u) ∈ Hcurl, divy u = 0}

and a(v) is defined by Lemma 3.1 for elements v of ∈ U considered as functions
of the variable y ∈ Q. We say that (u, v, z) ∈ Hcurl × [L2(R3

; H2
# (Q))]

3
×

[L2(R3
; H1(Q0))]

3 is a solution to (55)–(59) if there exists û ∈ U such that
u = a(û), v = pû, z = û − a(û) and

B(û, φ) =
∫

Q
f · φ for all φ ∈ U . (60)

Remark 4.6. The equation (55) of the above system is formally equivalent to
setting φ = ϕ, where ϕ ∈ [C∞0 (R

3)]3 in (60). This can be seen by noticing that∫
Q u(x) dy = u(x) and that

∫
Q0

z(x, y) dy,
∫

Q1
∇yv(x, y) dy are elements of

[L2(R3)]3 as functions of x . The equations (56)–(59) are formally equivalent
to taking φ of the form φ(x, y) = ϕ(x)ρ(y), where ϕ ∈ C∞0 (R

3) and ρ ∈
[C∞# (Q)]

3 is such that ρ|Q1 = ∇ω,ω ∈ C∞# (Q) (i.e. a(ρ) = 0) and div ρ = 0.

Remark 4.7. Notice that the interface condition (59) is equivalent to the pair
of conditions

z × n|∂Q0 = ∇v × n|∂Q0,
∂v

∂n

∣∣∣∣
∂Q0

= z · n
∣∣
∂Q0

,

where n is a unit normal to ∂Q0.

PROPOSITION 4.8. Suppose that f ∈ [L2(R3
× Q)]3 is such that divy f (x,

y) = 0; then the problem (60) has a unique solution û ∈ U . For the solution û of
(60), the triplet (a(û), pû, û−a(û)−∇y pû) is a solution to (7)–(8). Conversely,
for any solution (u, v, z) to the system (6)–(8), the function û = u + ∇yv + z,
belongs to U and is a solution to (60); in other words, (u, v,∇yv+z) is a solution
to (55)–(59).
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COROLLARY 4.9. Suppose that f ∈ [L2(R3
× Q)]3 is such that divy f (x,

y)= 0; then the system (7)–(8) has a solution. For any two solutions (u1, v1, z1),

(u2, v2, z2) to the system (7)–(8), one has u1 = u2, ∇v1−∇v2 = z2− z1 = ∇ψ̂

for some function ψ̂ ∈ H2
# (Q) ∩ H1

0 (Q0).

Proof. Suppose that f ∈ [L2(R3
× Q)]3 is such that divy f (x, y) = 0 and

let (u1, v1, z1), (u2, v2, z2) ∈ Hcurl × L2(R3
; H2

# (Q))× [L
2(R3
; H1

0 (Q0))]
3 be

two solutions to the system (6)–(8). Then, by Proposition 4.8, u1 + ∇yv1 + z1
and u2 + ∇yv2 + z2 are solutions to (60). In particular, by the uniqueness of
solutions to (60), we find that u1 + ∇yv1 + z1 = u2 + ∇yv2 + z2. Furthermore,
by Lemma 3.1, one has

‖u1−u2‖[L2(R3)]3 6 c‖(u1+∇yv1+ z1)−(u2+∇yv2+ z2)‖[L2(R3;H1
# (Q))]

3 = 0.

Proof of Proposition 4.8. We endow the vector space U with the inner
product

(u, φ)U =
∫
R3

curl a(u)(x) · curl a(φ)(x) dx

+

∫
R3

∫
Q0

curly u(x, y) · curly φ(x, y) dy dx

+

∫
R3

∫
Q

u(x, y) · φ(x, y) dy dx, u, φ ∈ U ,

with the induced norm

‖u‖2U =
∫
R3
|curl a(u)(x)|2 dx +

∫
R3

∫
Q0

|curly u(x, y)|2 dy dx

+

∫
R3

∫
Q
|u(x, y)|2 dy dx, u ∈ U . (61)

We will now show that U is a Hilbert space. For a given Cauchy sequence un ∈

U , we observe that un is Cauchy in [L2(R3
; H1

# (Q))]
3 since∫

R3

∫
Q0

|curly un(x, y)|2 dy dx +
∫
R3

∫
Q
|un(x, y)|2 dy dx = ‖un‖

2
L2(R3;H1

# (Q))
.

Therefore, un converges strongly to an element u ∈ [L2(R3
; H1

# (Q))]
3. The

condition divy un = 0 implies that divy u = 0. Moreover, as un ∈ L2(R3
; V )

(see (9)), u ∈ L2(R3
; V ) and, by Lemma 3.1, u = a + ∇yb in Q1 for some a ∈

[L2(R3)]3 and b ∈ L2(R3
; H2

# (Q)). It remains to show that curl a ∈ [L2(R3
×

Q)]3. Note that, by (61), curl a(un) is a Cauchy sequence in [L2(R3
× Q)]2,

which implies that it has a strong limit c ∈ [L2(R3
×Q)]2. Let us now show that

c = curl a. For a fixed φ ∈ [C∞0 (R
3)]3, let 9φ ∈ W ∩ [C∞(R3

; L2(Q))]3 be
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given by Proposition 4.3. Then, upon recalling (35) and (31), we find that∫
R3

curl a(un)(x) · φ(x) dx

=

∫
R3

a(un)(x) · curl φ(x) dx

=

∫
R3

∫
Q

a(un)(x) · curlx (ε
−1/2
1 (y)9φ(x, y)) dy dx

=

∫
R3

∫
Q
(a(un)(x)+∇y pun (x, y)) · curlx (ε

−1/2
1 (y)9φ(x, y)) dy dx

=

∫
R3

∫
Q

un(x, y) · curlx (ε
−1/2
1 (y)9φ(x, y)) dy dx . (62)

Passing to the limit n→∞ in (62) gives∫
R3

c(x) · φ(x) dx

=

∫
R3

∫
Q

u(x, y) · curlx (ε
−1/2
1 (y)9φ(x, y)) dy dx

=

∫
R3

∫
Q
(a(x)+∇yb(x, y)) · curlx (ε

−1/2
1 (y)9φ(x, y)) dy dx

=

∫
R3

∫
Q

a(x) · curlx (ε
−1/2
1 (y)9φ(x, y)) dy dx,

which, by another application of (35), implies that∫
R3

c(x) · φ(x) dx =
∫
R3

a(x) · curl φ(x) dx for all φ ∈ [C∞0 (R
3)]3.

Hence, U is complete.
Now that we have shown that U is a Hilbert space, the existence and

uniqueness to problem (60) follow by noting that

B(u, φ) =
∫
R3

Ahom curl a(u) · curl a(φ)

+

∫
R3

∫
Q0

ε−1
0 curly u · curly φ +

∫
R3

∫
Q

u · φ

is an equivalent inner product on U and invoking the Riesz representation
theorem. Indeed, the equivalence follows directly from (61) and recalling that
Ahom is positive definite and that ε−1

0 ∈ L∞(Q) is positive in Q0.
The remaining part of the statement follows by a direct check of equivalence

of (6)–(8) and (55)–(59) under the condition û = u +∇yu1
+ u2.
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112), Birkhäuser (Basel, 2000).

22. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization.
SIAM J. Math. Anal. 20(3) (1989), 608–623.

23. L. Parnovski, Bethe–Sommerfeld conjecture. Ann. Henri Poincaré 9(3) (2008), 457–508.
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