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ABSTRACT. The results from a numerical -probabilistic experiment aimed at evalu-
ating avalanche-release probabilities are presented in order to show the problems and the
possibilities of such an approach. A snow slab on a mountain slope is modeled as a thin
elastic non-moment shell resting on a three-dimensional hard underlying surface. The
thickness of snow is considered as an inhomogeneous Gaussian spatial random field with
a predetermined covariance that was obtained previously by field measurements. The
stress distribution o(x, y) is calculated by solving the equations of equilibrium using a fi-
nite-difference method with a mesh of lines of curvature on a mountain slope. As a criter-
ion of avalanche release, exceeding some threshold value of stress &, by the calculated
value a(z, y) is applied. The field P(a(x,y) > 0 thres: T, y) derived, using the Monte-Car-
lo method, is regarded as a measure of the spatial distribution of avalanche-release prob-
ability. This simulation scheme at present has no claim to forecast avalanche release but

may be used to pinpoint the importance of snow distribution on a slope.

INTRODUCTION

Forecasting an avalanche hazard can be done by estimating
the snow-cover stress field, which is related to snow thick-
ness, density, shear and tensile properties and a dry-friction
coefficient. If values of these parameters are known at any
point on a snow slab, we can compute the stress field and
determine potentially dangerous zones where the stress ex-
ceeds its threshold value.

Such a simple scheme is rarely applied to predicting an
avalanche or to pinpointing dangerous zones in a determi-
nistic manner. The reason is that the spatial variability of
snowpack parameters is significant and, in practice, cannot
be estimated with sullicient accuracy. This fact suggests the
use of probabilistic methods, where the probability of density
and covariance of snowpack parameters are used instead of
their exact values, In previous work (Chernouss and Fedor-
enko, 1997), we undertook a numerical experiment consider-
ing snowpack thickness, cohesion and friction coeflicients,
and snow density as random values. It was not easy to inter-
pret the results obtained because of the effect of multiple fac-
tors. In this study, we concentrate only on investigating the
influence of random snowpack thickness to demonstrate the
applicability of a probabilistic approach per se.

PROBLEM FORMULATION

The aim of our work is to determine snowpack stability on
an arbitrarily shaped mountain slope, calculating the stress
field within a three-dimensional snowpack. This is a very
time-consuming task. However, as has been shown pre-
viously (Nefed’yev and Bozhinsky, 1989), the three-dimen-
sional analysis may be reduced to a two-dimensional
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problem if the mechanical parameters of snow depend
weakly on snow depth. In this case, the theory of equili-
brium of thin shells can be applied.

The most appropriate coordinate system for this
problem is a local orthogonal unit with vectors e), e, es,
where e; and es are tangential to the two lines of curvature
at any point of the surfacc and ey = e; x e, (Love, 1944). We
assume that all points of the surface are non-umbilical and
s0 at any point two distinct curvature lines exist. Under such
assumptions, the stress field in the snowpack is governed by
a simple system of partial differential equations expressing
the equilibrium of a thin elastic shell (Nefed'yev and Boz-
hinsky, 1989);
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where e, is a unit vector representing the gravitational force
direction, s;,82 the curvature coordinates, i = h(s|.s92)
the snowpack thickness measured perpendicularly to the
slope surface, ;; the stress tensor, i, j = 1,2, p the snow
density, g the gravitational acceleration and cosa; and
cos oy the directional cosines of the displacement vector w
Note that cosa = cos s if and only if |u| = 0. F}, is the
absolute value of the friction force between the snowpack
and underlying surface. ¢ is the coeflicient of cohesion, f is
the coeflicient of friction, and N is the normal pressure of
the snowpack on the underlying surface. Equations (1)
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should be complemented by adding a system of linear equa-
tions which couples strains and stresses in the snowpack
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where E is the Young’s modulus and » is the Poisson ratio.
According to Nefed'yev and Bozhinsky (1989) this system of
equations must be solved with the Dirichlet boundary con-
ditions up = 0, where I' is the boundary of the snowpack
surface.

In order to solve this set of equations, all snow para-
meters have to be specified. Many field experiments reveal
a large spatial variability of the snow depth h which suggests
a stochastic description of this parameter. Other para-
meters, such as p and ¢, can also be considered as random
but their variability is usually less than the variability of h
(Fohn, 1989). Since Equations (1) contain derivatives of h, it
is expected that the spatial random variation of h will affect
the solution more than the variations of p and ¢. Specifically,
in this study, the snow thickness is represented as an inho-

mogeneous Gaussian spatial-random field with a predeter-
mined covariance, which is obtained by field measurements.

The calculated displacement 1 and stress tensor @; j, also
become stochastic. Our aim is to find different statistical
moments, like the probability P(o(z,y) > 0ihres; €, Y) to
exceed some threshold value e of stress at every point
in the snowpack. The stochastic solution to the problem con-
sidered in this study is obtained by a Monte-Carlo simul-
ation scheme. According to this scheme, Equations (1) and
(2) are solved for a large number of realizations of h(sy, $2).
From the large number of deterministic solutions for these
realizations, any desired statistical moment can be
obtained.

PREPROCESSING

Because of the extreme requirement for computational
speed, we chose a finite-difference technique for solving
Equations (1) and (2) numerically. The first step was to gen-
erate a mesh of lines of curvature and build a random field
of snowpack thickness with Gaussian distribution and pre-
scribed  covariance. As assumed, the slope surface
z = z(x,y), where x,y, z are Cartesian coordinates, does

Fig. 1. The geometry of avalanche starting zone No. 46 at the quarry of the ‘Apatit” JSC in Khibiny mountains, Kola Peninsula.
Numbered triangles on the slope surface denote the points where the snow thickness has been observed. The thick solid line indicates

the boundary 1" where the condition ur = 0 is applied.
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Fig. 2. Lsolines of the regular term h(x, y) in m of snow thickness ( solid) and the steep-slope topagraphy in m a.s.l. ( dashed ).

Slope angles vary from 20° to 45°.

not contain umbilical points. The lines of curvature in this
case may be found by solving the ordinary differential equa-
tions (Korn and Korn, 1968)
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In practice, a mountain slope is represented as a discrete
set of samples (2, yi, z1). To calculate the coefficients of E to
N of Equation (3), the mountain slope in the vicinity of a
possible avalanche starting zone should be interpolated or
approximated, for example, by a cubic surface. The pair of
Equations (3) may then be solved easily by the adaptive
Runge—Cutta method (Press and others, 1992).

As assumed above, the fluctuating component of the
snowpack thickness H(sl. s9) has a normal distribution and
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covariance 1y, (81, $2), which is obtained from field measure-
ments. The realization of the snowpack thickness h(sy, s2) is
a sum of regular h(sy, s2) and fluctuating h(s;, s2) compo-
nents, h(sy,s2) = h(si,s2) + ﬁ(sl,sz). Here, we assume
that the regular term varies much more slowly than the fluc-
tuating one. The regular term may be found from direct
measurements of snow thickness at the control points on
the slope Hi,i = 1,..., M, where M is the number of con-
trol points on the considered slope. To build a random field
with such properties we perform the following steps:

Generate the Gaussian é—correlated spatial random
field hs(s1, s2) with zero mean and given variance.

Transform the generated random field hgs(s;, s2) from the
space domain to wave-number domain by the two-dimen-
sional fast Fourier transform (Press and others, 1992).
Transform in a similar manner the covariance
Y (51, 52) to its power spectra Uy (K, ka).

Fit h(s1, $2) to snow thickness data H; obtained by direct
measurements.

Build the fluctuating component h(s, s2) in a space do-
main by inverse TFourier transform of the function
hﬁ(kl,k’_})\/‘l’]](kl,kg) and calculate the desired field
h(s1,52) = h(s1,59) + h(s1,59).

These operations yield a mesh of curvature lines and a
random field of snow thicknesses conforming both with the
existing covariance 1, (51, $2)and measured values H;.
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Fig. 3 Preliminary results of simulation. The columns present the spatial distribution of the probability
P(o(x,y) > 0 thwes: T, ). The maximum value of probability is 0.21, the mintmum is 0.012. The values of P(0 > 0 tpyes) less

than 0.01 are not shown.

SOME RESULTS AND DISCUSSION

The main goal of this study was to demonstrate the applic-
ability of the probabilistic approach and to improve our un-
derstanding of stochastic behavior of the stress field in the
snowpack with a random component of the thickness. The
ultimate goal is to identify slopes which may be dangerous.
For our simulation we took avalanche start-zone number 46
(Fig. 1) at the quarry of “Apatit” JSC in the Khibiny moun-
tains, Kola Peninsula. The contoured part of the slope was
substituted with a cubic surface, where the rms fitting error
was ahout 2.1 m. The grid of lines of curvature used in the fi-
nite-difference simulation was evaluated by the Runge—Kut-
ta method (Press and others, 1992). The regular term of snow
thickness (Fig. 2) was found by the program “surface” that is a
component of generic mapping tools (GMT) software (Wes-
sel and Smith, 1995). The fluctuating part of the snow thick-
ness was calculated using the empirical covariance
Pu(l) = [0.38A(s1, 52)]” exp(—0.091'%), | = /83 + 53,
obtained from long series of field measurements in Khibiny
(Chernouss, 1995). We chose typical values of snow density
p=300kg m_z, coefficient of cohesion ¢ = 2000 Pa, coefhi-
cient of friction f=04 and o,. = 2000Pa, »=0.3,
E =107 Pa.

The results of stochastic modeling are shown in Figure 3.
The most important result of our simulations is that the
probability of avalanche release depends on snow thickness.
At the upper part of the avalanche start zone, where the
snow slab 1s thickest, the
P(0 > ouues) appears to be much larger whereas the slope
geometry is quite similar. This result is expected and sub-
stantiates the validity of the method. Using our simulation
method, it is possible to obtain other quantities, such as the
density function of the probability of avalanche-release oc-
currence at any point on the slope. At present, it is beyond
the scope of our work to forecast the time and place of ava-
lanche release, even if this were feasible, since we do not
have suflicient knowledge of the snow parameters.

excedance probability

Our experience testifies to the efficiency and good con-
vergence of the finite-difference scheme on regular slopes

https://doi‘,fé%1 0.3189/1998A0G26-1-303-306 Published online by Cambridge University Press

that do not include umbilical points and lines of inflection.
The demand for regularity may be a serious limitation of
this scheme, since the surface of a real slope often contains
singularities and hence numerical difficulties arise while
building the model mesh. A possible way of avoiding this
limitation is to use the finite-element method to solve Equa-
tions (1) and (2) numerically.

In order to introduce the proposed method for esti-
mating avalanche-release probability for avalanche fore-
casts, it has to be verified beforehand using the available
data. Since we obtain statistical values as an output of our
simulation, the raw data should be statistically processed
in order to obtain comparable data. The database and the
necessary software are currently in preparation at the
Centre of Avalanche Safety of the “Apatit” JSC.
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