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1. Introduction. In recent years, a number of special integral equations of the first kind
was discussed by several authors (see [l]-[4], [6], [7], [9]-[18]). The kernels of these integral
equations are special functions of the hypergeometric family, and it was necessary to restrict
the parameters appearing in these functions to secure convergence of the integrals. If these
restrictions are removed, the integral fails to converge but it may possess a finite part (in
Hadamard's sense), and the question arises whether the methods used in the restricted case
will also apply in the new situation. Indeed, one could pose the more general problem of
Volterra integral equations involving finite parts of divergent integrals [19].

Volterra integral equations of convolution type involving finite parts of divergent integrals
have been solved by Butzer [5] by means of Mikusinski's operational calculus. The special
integral equations we have in mind here are not of convolution type, but they are sufficiently
closely related to convolutions to allow the application of related techniques. Presumably,
very general Volterra integral equations involving finite parts of divergent integrals would
require research into repeated finite part integrals; in the case of the special integral equations
we have in mind here, one can use the known connection of hypergeometric functions with
integration of fractional order, and the distribution theory of fractional integrals, to solve the
integral equations.

In this note, one of the numerous special integral equations has been selected for detailed
discussion. It is believed that the methods applied here could be used for the solution of the
others.

The integral equation

F(g)=[*(x2-t2)xl2P;*(j\g(t)dt=f(x) (0<a^x<b), (I)

where P~k is the Legendre function, was investigated in [7]. Since P~x = PlJ_,, Re v ^ |
may be assumed without loss of generality; and the additional condition R e A > - l was
imposed in [7] in order to secure convergence of the integral in (1). If this last condition is
violated, the integral will be divergent but it will possess a finite part (in the sense of Hadamard)
if g(t) is differentiable to a sufficiently high order.

It was shown in [7] that, under the conditions assumed there, (1) could be transformed
into

{(2*)"" V*)} =/(*), (2)

where /"„ denotes the operator of integration of (fractional) order a with respect to x". If
Re a > 0,
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while for Re a < 0,1" is the inverse of I~a.
If Re a ^ 0, and/is sufficiently smooth, the divergent integral in (3) will possess a finite

part, and define the operator I". This interpretation of I" for Re a ^ 0 is consistent with
I" = (/"")"1, and we wish to show, without placing any restriction on X that, with this inter-
pretation, (1) and (2) are equivalent. Actually, it will be more convenient to use the theory
of generalized functions (distributions) and work with pseudo-functions and the regularization
of integrals [8, Chapter I, §3].

2. Pseudo-functions and fractional integration. We shall use largely the notations and
terminology of [8] and for the sake of convenience abbreviate " [8, Chapter I, §2, section 3] "
as 1.2.3.

For Re a > 0,

% l f X > 0 > (4)
0 if x£0,

defines a locally integrable function on R which generates a (regular) distribution. This distri-
bution is an analytic function of a and can be continued analytically to an entire function of
a (1.3.2. and 1.3.5.). The distribution thus defined for all a is a pseudo-function of x: if
a # 0, — 1, —2,..., the support of pa(x) is [0, oo[, and pa(x) = x*~ J/F(a) on ]0, oo[; if a = — n
and n is a non-negative integer, p~n(x) = <5(n)(;c).

If Re a > — n, / ( n - 1 )(x) exists (in the ordinary sense) and is absolutely continuous, the
(possibly) divergent integral

1pJLx)f{x)dx (5)
o

is interpreted as

and this is the finite part of (5). Similarly,

pjx-t)f{x)dt (7)

possesses a finite part for almost every x in [a, b], if/(n~ 1}(f) exists and is absolutely continuous
in[a,b].

More generally, the convolution/>„•/ (in the distribution sense) is well defined whenever
/ i s a distribution whose support is bounded on the left; and

/;/=w (8)
D2
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defines, for all values of a, the integral of order a of the left-bounded distribution/(I.5.5.).
The rules

I°J=f, I*Mf) = Il+l>f (9)
follow immediately. If/is an integrable function and Re a > 0, the definition (8) coincides
with that of the Riemann-Liouville integral of order a.

For x, t > 0 and Re X > Re v > - 1 , we have [7, equation (3.8)]

>t, do)

where the notation on the right hand side is intended to indicate a function that has the given
value if x > t and vanishes otherwise.

With the definition (8), the left-hand side of (10) has a meaning for all X and is an entire
function of X. Moreover, the equation

shows that the right-hand side of (10) may be written in the form

«-i (x-t \
E ckt~

kPx+k+i(x-t) + t npx+n+i(x-t)qn[—-,X , (11)
*=o \ '

where n is any positive integer,

and qn{z, X) is analytic for | arg z\ < n and Re X > — n. Equation (11) defines a distribution
which is an analytic function of A when Re X > — n, and by the theory of analytic continuation,
(10) holds in this half-plane. Since n is arbitrary, (10) holds for all X.

From (9), I$i;af=f, so that from (10) we also have

( j > p , + l ( x 2 - t 1 ) (x>0) (12)

for all X.

3. The integral equation. Let g be a locally integrable function on [a, oo [ c ] 0, oo [,
and extend g to be equal to zero on ] — oo, a [. Then g defines a regular distribution with left-
bounded support, and we shall denote this distribution also by g. We shall now show that
the left-hand side of (1) can be interpreted for such g.

Let n be a positive integer such that Re X> —n. Then

(fc = 0,l n-l)
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exists as the convolution px+k+i(x)* [x~k9(x)]> s i n c e x~k is infinitely differentiable on the
support of g, and x~kg(x) is a distribution. Also,

exists for almost every x, since />A+n+t(x—t) and #(f) are locally integrable, and the other
factors are bounded and continuous. Thus, (11) leads to a definition of the left-hand side of
(1), and this definition is independent of n, since whenever Re X+k > 0,

•J"
Jo

= Px+k+i(x-t)t kg(t)dt (13)
Jo

for almost every x.
Furthermore, with this interpretation, the left-hand sides of both (1) and (2) are entire

functions of X. Since they are equal when Re X > — 1, they must be equal for all values of X.
For a locally integrable function g with left-bounded support in ] 0, oo [, (1) or (2) define

a distribution/whose support is also bounded on the left, but/will not in general be a regular
distribution, or even a pseudo-function.

One could ask: for which distributions / d o e s (1) possess a solution g that is a regular
distribution on [a, oo [? Now, it was proved in [7, section 6], that corresponding to each g,
there is a unique regular distribution h such that

Fj1(2x)-*-1g(x) = rx
+1h(x), (14)

and conversely. We then have/(x) = I*+Ih(x), and hence the necessary and sufficient con-
dition for a solution of (1) to exist is that I~x~*/ be a regular distribution. Under these circum-
stances the values (in the sense of distributions) of g on [a,b[ depend only on the values of/
on [a, b [.

If g(n~ *\x) exists and is absolutely continuous on [a, b], and Re X > — n, then the integral
in (1) possesses a finite part, and this finite part coincides, on [a,b[, with the interpretation
based on the theory of distributions. It is seen from [7, equation (6.5)] that this situation will
arise if and only if h, determined by (14), is (n -1 ) times differentiable, with hf>"~ l\x) absolutely
continuous on [a, b\. In this case,

Kx) = Pn(x)> {H(x-a)h<"Kx)}+"z fcW(fl)p4+1(x-fl)
*=o

and hence

f(x) = Ix
x
+ih(x) = n

From here one sees that (1) will have a solution g such that g(n~l) exists and is absolutely
continuous on [a, b] if and only if/is of the form

/ (* )= t cmP;n.m+i(*-«)+/iM> (15)
m = l
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where the cm are constants, Re 1 + n > - 1 , and/x eBx+n+i (this class is defined in [7, section
6]); and in this case the finite part of the integral must be taken. Solution formulae corres-
ponding to those given in [7] can be based on the representation (15).
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