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Abstract

We study differential game problems in which the players can select different maximal
monotone operators for the governing evolution system. Setting up our problem on a
real Hilbert space, we show that the Elliott-Kalton upper and lower value of the game are
viscosity solution of some Hamilton-Jacobi-Isaacs equations. Uniqueness is obtained by
assuming condition analogous to the classical Isaacs condition, and thus the existence of
value of the game follows.

1. Introduction and definitions

In various control problems of distributed parameter system, the system can be
modelled by an evolution equation on a Hilbert space

^-X(s) + AX(s) = f(s, X(s), q(s)).
ds

Here q is the control function, A is a maximal monotone operator on a Hilbert space
and / is the nonhomogeneous term. In some practical applications like population
control problem [13] and gain adaptive direct strain feedback control problems [8],
the operator A may also depend on the control function (see also [1])- In other
words, the control function can control the monotone operator of the system and it is
desirable to study problems of this nature. In this paper, we are interested in control
problems in which the control function can select a different A out of a given class
of /V's and select different / ' s and different cost functionals out of a given class of
of / ' s and cost functionals. We will study such control problems in a more general
setup - a differential game framework. The benefit of working on a differential game
setup is to allow more flexibility in the application of our results. For instance, if a
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[2] Differential game with switching controls 231

control problem has an uncontrollable disturbance, then we could regard this random
disturbance as an opposition force that always act against the control function and our
framework applies. Indeed, nonlinear H°° control theory can be put into a differential
game framework by similar argument (see for instance [11]). Readers may consult
[6,7] and [9] for more background on differential games.

We should point out that the differential game that we are studying in this paper
has no switching cost. One of the motivations for studying this no-switching-cost
problem comes from "chattering control" problems [see 20], in which the optimal
policy is sought for by switching the control variables indefinitely rapidly, so as to
simulate the continuous actions of the true control functions. As the original problem
has no switching cost whatsoever, we put no switching cost into our setup. Another
important application of our results is to problems for which a Bang-Bang principle
is known.

Readers should also note that J. Yong has studied differential games with positive
switching costs extensively in a series of papers [14-17]. His motivation is very
different from ours. He starts from a concrete practical problem that has a switching
cost nature and has studied it directly. Ours, as we have pointed out, stems from an
optimal problem that has no switching nature and purposely replaces the continuous
action of the control function by "chattering control", and results in switching the
control variables indefinitely rapidly. However, since one of the main results in
Yong's papers as well as this paper is to show that the value of the differential game is
unique, it is desirable to see if Yong's uniqueness result can be used to deduce ours by
taking the switching costs to zero. It is our feeling that the uniqueness results of Yong
and the present study supplement each others rather than one deduced from the other.
As Yong pointed out in [16] that his uniqueness result holds for the positive switching
cost case without any Isaacs-type condition, he also pointed out that as the switching
costs go to zero, his uniqueness result will not hold unless some restrictions are put
on the switching time of the control function. This restriction will forbid the control
function to switch freely at any time that it wants, and Yong felt that this assumption
is unnatural (and we agree) even though the assumption will support uniqueness. On
the other hand, our approach yields uniqueness by assuming an Isaacs-type condition,
which we felt is more natural. So it appears to us that our results of the zero-switching-
cost case supplement the results in [14-17], and all together they form a quite complete
investigation for differential games with switchings. We shall comment more on the
results of [14-17] in the final remark after the presentation of our results.

As for this paper, dynamic programming identities are proved for our differential
game. The associated upper and lower Elliott-Kalton value functions are shown
to be the viscosity solution of some Hamilton-Jacobi-Isaacs equations. Comparison
principles and convergence theorems for the Hamilton-Jacobi-Isaacs equations may be
proved by modifying the steps in [4,5]. The existence of the value of the differential
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game is proved by assuming certain conditions analogous to the classical Isaacs
condition.

The time interval that we shall be working on is either [0, oo) or [/, T] with
0 < t < T. We shall refer to the former as the infinite horizon case and the later as the
finite horizon case. There are a lot of similarities between treatments of the infinite
and finite horizon cases. We shall use the same terms of definitions and the same
notation for both of them. All definitions and results are stated and proved mostly for
the infinite horizon case but only briefly mentioned for the finite horizon case since
those of the latter can easily be deduced from the former. We will treat the infinite
and finite horizon cases concurrently until it is necessary to separate them.

In a differential game problem, two players (usually called player 1 and player
2) are involved in a conflicting situation. One (player 1) wants to minimize the
cost functional while the other (player 2) wants to maximize it through their own
control functions. More than that, each player can respond to their opponent's control
function by altering their own control function after knowing their opponent's move.
This type of response will be called a strategy whose rigorous definition together with
others are defined next. Since the role of player 2 is symmetric with that of player 1,
corresponding definitions for player 2 will be very brief. We begin with the definition
of the control function.

Let H and V be two real Hilbert spaces and suppose that / and J are two arbitrary
index sets. Let {<2, : i e 1} and {Z; : j e J] be two collections of subsets of V. We
always assume that

for i € I, j e J,A(i, j) is a linear and densely defined maximal

monotone operator in H. (A)

DEFINITION 1 (controls). An /-indexed control a := (q, N, AN) for the infinite hori-
zon problem is defined to consist of:

(i) a strongly measurable function q : [0, +00) —> V,
(ii) a natural number N,

(iii) an /-indexed partition of [0, +00), AN := {(rn, in)}%=] C [0, +00) x / such
that 0 = r, < r2 < • • • < rN < +00 and q([rn, /-„+,)) C <2,n.

The set of all these /-indexed controls a is denoted by 'tf.
For the finite horizon case, 0 < t < T, an /-indexed control a := (q, N, AN) is

defined to consist of:

(1) a strongly measurable function q : [t, T] -> V,
(2) a natural number Af,
(3) an /-indexed partition of [t,T], AN := {(rn, in)}"=l C [t, T] x / such that

t = rx < r2 < • • • < rN < T and q([rn, r n + , ) ) C £>,„.
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[4] Differential game with switching controls 233

The set of these /-indexed controls is denoted by ^[t, T]. In both the infinite
and finite horizon cases, we will write the control as either a = (q, N, AN) or

a = (q,N,{(rnJn)}Ll)-
For convenience, whenever we say rN+i hereafter while we are dealing with AN,

we will always mean the convention rN+i := +00 (or respectively, rN+i := T for the
finite horizon case).

If the given index set is / , we may define the /-indexed partition SlM :=
l(sm, jm)}m=\ (M € N) and the /-indexed control £ := (z, M, QM) analogously.
The set of all /-indexed controls is denoted by Q and @[t, T] respectively for the
infinite and finite horizon cases.

In the sequel, given an /-indexed partition AN := {(rn, in)}%=1 and a /-indexed
partition £2M := {(sm, jm) }^=,, we shall make heavy use of the following two functions
to simplify our notation:

N M

i(t) •= ^2inXlrn,rn+AZ)> j (?) •= ^ jm X[sm,sm+,) ( t )
n=l m=\

and we caution the readers not to be confused with a single index i € / or j e J.

From now on, we shall concentrate on player 1 only. Exact parallel arguments for
player 2 can be deduced by obvious modifications. We next define the nonanticipating
strategy, which is the response of player 1 to his opponent's control function. Interested
readers may consult [6] for the motivation for the classical nonanticipating strategy.

DEFINITION 2 (Non-anticipating strategies). A player 1 strategy for the infinite (and
finite) horizon problem is any mapping £ : ̂  —>• <& (and respectively any mapping
| : 1f[t, T] - • 9[t, T]). The value of the strategy £ will be denoted by £(a) =
(z(a), M(a), S2w(a)) (or simply by (z, M, ftM) for brevity).

Leta := (q, N, {(rn, /J}^=1) and a := (q, N, {(fn, in)]"=l) be two controls and let
£(a) and £(a) be the values of the strategy £ respectively. The player 1 strategy f is
called nonanticipating if for any s > 0 (or any s e [t, T]), properties

(i) q = q a.e. on [r1( s],
(ii) for all except finitely many of those h e [rus], i (h) = i (h)

imply that

(1) z = z a.e. on [rus],
(2) for all except finitely many of those h € [r\,s], j(h) = j(h).

A player 2 nonanticipating strategy £ : & -*• <£ (£ : &[t, T] -> 'rfU, T]) is defined
analogously. We will denote the collection of all nonanticipating strategies by 88 in
the infinite horizon case and by 38[t, T] in the finite horizon case. Corresponding
nonanticipating player 2 strategies are denoted by si and
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The definition of trajectories is a little complicated since there are two players
involved and hence, two partitions of [0, +oo) (or of [t, T]) occur. We first define the
union of two partitions.

The cost functionals of the differential game that the two players seek to extremize
over all control a = (q, N, {{rn, /n)}^=1) in ^ (and respectively ^[t, T]) and all
strategy f = (z, M, QM) in 38 (and respectively 38\t, T]) are respectively

L(X(s; x), q(s), z(s); i(s), j(s))e s ds

and

L(s, X(s; x), q(s), z(s); i(s), j(s))ds + f(X(T; x)).

Here L(-\ i, j) is the running cost defined on H x (?, x Zj (or [0, T] x H x Qt x Z;)
for each i e I and each j e J, X is a trajectory on [0, +oo) (or respectively on [t, T])
from the initial point x e H and its definition is as follows.

DEFINITION 3 (Trajectories). Given any control a = {q, N, AN) e ^ and any strategy
£ € SB, we set £(a) = (z, M, £2M). For any x e H, we associate a trajectory X(f; x)
to a and £(a) as the mild solution of

ds
= f(X(s;x),q(s),z(s);i(s),j(s)) on (rurN+i)

with X(ri\ x) = x.
Trajectories of the finite horizon case is defined similarly and we shall refer to the

trajectory defined as "the trajectory corresponding to control a, strategy £ and the
starting point x". If necessary, we will denote X(t; x) simply as X(t) dropping the
starting point.

Notice that, under condition (A) and the following assumptions:

there exists K > 0 such that ij/(-) are Lipschitz continuous 1
with modulus K and also bounded by K on H I

and

there exists K > 0 such that for each i e / and each j e J,
both L(-; i, j), and/(•;/ , j)are Lipschitz continuous with .
modulus K and also bounded by K on H x Qt x Z-s (or '
on [0, T] x H x Qt x Zj for the finite horizon problems),
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the cost functional is finite and we have the following estimates of X:

\\X(s;x)\\<\\x\\ + Cs, (1.3)

for some constant C > 0 and for all s > 0 (or s £ [t, T]) and x e H.
The structural assumptions (1.1) and (1.2) may be relaxed without affecting the

results of the first two sections if we incorporate the convergence result developed in
later sections. Please consult the discussion at the end of this paper for details of this
relaxation.

To enhance smooth presentation of our main results, we gather together some
technical definitions that we will need in later sections. We shall define switching
between two controls, strategies and trajectories. The geometric pictures of the
definitions are very clear. We just switch from an original to a new one at a given
time. We also define left time-shifting of controls, strategies and trajectories.

For brevity, we use the same symbol ®h for the switchings of different objects, but
it should be clear by the use which definition the notation implies.

DEFINITION 4 (Switching of controls). Given h > 0, let a = (q,N,AN), a =
(q, N, Afi) G # with AN = {(rn, /„) : n = 1, • • • , W} and A# = {</„, /„) : n =
1, • • • , N}. We define a new control a ®h a by a (Bh a := (q@hq, N®hN, AN®hkN)
where

(i)

I q(s), 0<s<h

q(s -h), s >h
(ii) the natural number N@hN and the /-indexed partition AN ®h AN respectively

are the total number of partition points (that are different from rw+1) and the
/-indexed partition associated with the step function

Switching on ^[t, T] at t + h is defined similarly and so are those on & and *2>\t, T).

It is easy to see that the newly defined a ©A a belongs to ^ . Indeed, it is the
same as a when 0 < t < h but switches to a when t > h along with an adjustment
in the f-scale by an amount of h. The same is true for the finite horizon case. We
define another operation on the control functions, namely the left shifting of a control
function.
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DEFINITION 5 (Left shifting of controls). Given any control a = (q, N, {(rn, /n)}"=1) e
'io and any h > 0, a new control ah = (<?, Af, A^) € If with A^ = {(rh i,) : / =
1, • • • , Af} is defined by

(i) q(t)=q(t + h);
(ii) N and A^ are respectively the total number of partition points (that are

different from rN+l) as well as the /-indexed partition associated with i (t) :=
i(t + h).

The left shifting of control is defined similarly for the finite horizon case.

DEFINITION 6 (Switching of strategies). Let £, f e 3S be two strategies with f (a) :=
(z(a), M(a), QM(a)) and f(a) := (z(a), M(a), £2^(a)) on a control a =
{q, N, A AT) € ^ \ We define their switching f ©A f, at a given time /i > 0, by

l A z(a*), iV(a) ©A ^(aA), ««(«) 0 , nA(a*)),

where a* is the left shifted a by an amount of h (see Definition 5). The switching
between two strategies is defined similarly for the finite horizon problem.

Roughly speaking, the resultant strategy in the above definition has the same
response as strategy f when t < h but switches to the response of f when t < h along
with an adjustment in the time scale. It is easy to check that £ ®h f belongs to SB,
i.e. it is also a nonanticipating strategy. The same remarks are also true for the finite
horizon case.

DEFINITION 7 (Left shifting of strategies). Given any h > 0 and £ e SS, we define a
strategy £A e ^ as follows: for any control a e ^,let£(a) = (z(t), M, {(sm, jm)}%=l),
then §*(a) := (z(f), AT, {(£,, J,)}*,) is given by

(i) ~z{t) = z{t + h);
(ii) M and {(sh ji)}f=x) are respectively the total number of partition points (that

are different from sM+l) as well as the /-indexed partition associated with

The shifting is defined similarly for the finite horizon case.

DEFINITION 8 (Switching of trajectories). Let X (t) be the trajectory corresponding to
control a, strategy £ and starting point x. Let X(t) be the trajectory corresponding
to control a, strategy f and starting point X(h) for an given h > 0. Then a new
trajectory Y on [0, +oo) denoted by X ®h X is defined by

JX(O, 0<t<h
[X(t-h), t>h.

For the finite horizon case, the switching is defined similarly.
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2. Value function and dynamic programming identity

We again give description for player 1 only. Those for player 2 are summarized in
Remark 2.

DEFINITION 9 (Value Function). We treat both horizon cases concurrently. Let / and
J be two arbitrary index sets. Suppose that (1.1) and (1.2) hold and let X(s; x) be
the trajectory corresponding to control a = (q, N, AN), strategy £ (with f (a) =
(z, M, QM)) and starting point x. The function u : H -+ R given by

u(*) = supinf I / L(X(s;x),q(s),z(s);i(s),j(s))e-sds\ (2.1)
fe*"6* [Jo \

is called the upper (Elliott-Kalton) value function of the infinite horizon differential
game problem.

For the finite horizon case, the function

u(t,x) = sup inf I / L(s,X(s;x),q(s),z(s);i(s)J(s))ds
'»6«'[»r] J J

+ ir(X(T;x))\, (2.2)

mapping [0, T] x H to R, is called the upper (Elliott-Kalton) value function of the
finite horizon differential game problem.

Notice that u would be the value function of a conventional optimal control problem
if both L and / are independent of z, i and j .

NOTATION. TO avoid clumsy integral representation and in view of the classical non-
switching differential game cases, we will use the following short-hand integral nota-
tion:

= supinf /
$€&<**'* JO

L(X(s;x),a(s),i;(a)(s))e-sds,

u(t, x) = sup inf

in the integral representations of (2.1), (2.2) and other integrals if necessary.

We are now ready to prove dynamic programming identities for the value function
u.

https://doi.org/10.1017/S0334270000008821 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008821


238 Siu Pang Yung [9]

THEOREM 1 (Dynamic Programming Identities). Suppose that (A), (1.1) and (1.2)
hold. Then, for all h > 0,

f
= supinf{/ L(X(s;x),a(s),$(°t)(s))e-s ds + u(X(h;x))e-"}, (2.3)

%€3S Jo

and for 0 < h < T - t,

u(t,x)= sup inf | / L(s, X(s; x), a(s),%(ct)(s))ds

+ u(t + h,X(t + h;x))\, (2.4)

X(s; x) is the trajectory corresponding to control a, strategy £ and starting
point x.

PROOF. We only prove (2.3). Let the right hand side of the assertion be w, that is,

uw(x) := sup inf / L(X(s; x), a(s), S(a)(s))e-
S ds + u(X(h; x))e~h . (2.5)

We want to show that w(x) < u(x). Given e > 0, from (2.5) there exists strategy
|i G SS so that for all control a e ^ ,

fh

w(x) < / L(X(s; x), a(s), %\(a)(s))e~s ds + u(X(h; x))e~h + €, (2.6)

where X(t; x) is the trajectory corresponding to control a, strategy %x and starting
point x. If we let cr = X(h; x), then from (2.1) there exists fCT e ^ so that for all
a etf,

/•OO

= u(X(h;x))< L(Y(s;o),a(s),£a(a)(s))e~sds + €, (2.7)
Jo

where Y(t\ a) is the trajectory corresponding to control a, strategy £CT and starting
point <r. Let f = £i ©/, ĈT (see Definition 6). For this f, (2.6) and (2.7) imply that for
all control a e ^ . w e have

w(x) I< I
Jo

where X(s; x) := X(s; x) ®h y{s\ cr) is the associated trajectory. Thus, letting € I 0,

w(x) < sup inf f L(X(s; x), a(s), £(a)(s))<TJ ds = u(x).
$zSSa^ Jo
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We next verify the opposite side w > u. From (2.1), there exists f € SB such that
for all a € <€,

u(x) < /
Jo

L(X(s; x), a(s),l(a)(s))e-s ds + €, (2.8)

where X(s; x) is the trajectory corresponding to control a, strategy f and starting
point x. Since w (x) is an infimum over ^, so for strategy f there exist a\ e ^ so that

w(x)> L(X(s;x),ads),Ucxi)(s))e-sds + u(X(h;x))e-h-e, (2.9)

where X(t; x) is the trajectory corresponding to control au strategy f and starting
point x.

On the other hand, if we define a new strategy £2 by £2(a) := \h(ax @h a) (see
Definition 7 and Definition 4), then (2.1) implies that there exists a2 6 ^ for this
strategy £2 such that

/•OO

ds-e, (2.10)K ( X ( A ; X ) ) > /
Jo

where K(s) above is the trajectory corresponding to control a2, strategy §2 oc :=
a, 0A a2 and X = X ®h Y, then (2.9), (2.10) and (2.8) imply that

w(x)> / L(X(s;x),6e(s),l(a)(s))e-sds-2e>u(x)-3€
Jo

for any e > 0. Hence, it; > u and the proof is completed.

3. Viscosity solution of Hamilton-Jacobi-Isaacs equation

The viscosity solution was introduced in [2] and [3]. One of the virtues of this
solution notion is that comparison principle and (hence) uniqueness can be achieved
quite easily. By modifying slightly the framework of [5], we can achieve a nice vis-
cosity solution theory for both the infinite and finite horizon problems. Corresponding
convergence theorems under this modified framework may be obtained by adapting
the proofs in [5] and we shall refer to [5] from time to time for preliminary results and
motivations. Similar to [5], we impose further restriction on A(i, j) that is not too
restrictive to exclude important applications. In addition to (A), we always assume
that condition (BO) holds:

(BO) there exists an operator B on H that is bounded, linear, self-adjoint and
positive-definite such that for each i e I and each ; 6 / , A*(i, j)B is a bounded
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linear operator on H and sup {|| A*(i, j)B\\ : i e I, j e J} < +00. Furthermore, we
also assume that one of the following conditions hold:

(Bl) for the operator B in condition (BO), there exists a constant Co 6 D& such that
for all / e I,j e J and all x e H, ((A*(i, j)B + C0B)x, x) > ||;t||2;

(B1) ,̂ for the operator B in condition (BO), there exists a constant Co G K such that
for all / € I,j € J, and all * e tf, ((A*((, ;)fi + Cofl)*, x) > 0.

Following [5], we shall refer to the strong B and the weak B case when respectively
condition (Bl) and condition (Bl)m hold. Let us remark that when A(i, j) = 0 (i e
I, j 6 J), conditions (BO), (Bl) and (Bl)^ hold with B chosen to be the identity
operator of H. For the nontrivial cases, like {A(i, j) : i e I, j e 7} which
corresponds to a family of elliptic differential operators or respectively wave operators,
we can also choose B appropriately so that (BO), (Bl) and (Bl)^ hold. We will use
some simple examples to illustrate this.

Let G be a C1 bounded open domain of K" (an element of R" is denoted as
(P\, • • • , pn)) and let H := L2(G). Suppose that A(i, j) is the operator on
associated with the elliptic operator

(3-D

subject to Dirichlet boundary value and the coefficients of these operators satisfy

V i e N , Vk , I = 1, • • • , n, a^J
k = aft e K, ciJ > 0;

38 > 0 , V T ? = ( J J , , ••• , ? ; „ ) e R " .

3M > 0 such that \a'.i \ < M and c'7 < M, V i, j g N, Vifc, / = 1, • • • , n.

(3.2)

We let D{A{i, j)) := WQ-2(&) n W22(^) and clearly condition (A) holds. By taking
B := (—A)"1, we can easily see that condition (BO) is true while condition (Bl)
follows as a consequence of the Sobolevskii inequality [12] (see also [10]).

Notice that this particular B — (—A)"1 is compact on H = L2(G). In contrast,
(Bl) can not hold when {A(i, j)} is a family of skew-symmetric operators for any
compact operator B. This includes, in particular, the case that [A(i, j)} is a family of
densely defined maximal monotone operators corresponding to some wave operators.
To see what could go wrong, suppose that the index sets / and J are singleton sets and
A := A(i, j) is skew symmetric with B being compact. Let v € H be an eigenvector
of this compact operator B with eigenvalue v. If (Bl) holds then

IMI2 < -v(Av, v) + vC0\\vf < vC0\\vf;

this prohibits the eigenvalues of B from tending to zero, and hence B could not be
compact.
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Rather than giving up our freedom of choosing compact B, we change to the weaker
assumption (Bl),,,. It holds, for instance, when H = WQ2{&) X L2(G) and

where Id is the identity operator on L2{0), E(i, j) is given by 3.1 and 3.2 on @ and
0 is the corresponding zero operator on WQ'2(&) and L2{&). In this case, B can be
chosen as

A ( - A ) - 1 0 \
V o M(-A)-7

and (Bl)^ follows from the Sobolevskii inequality with suitably large positive con-
stants X and fx. The two simple examples above are chosen only for illustration
purposes. Treatments of maximal monotone operators that are associated with more
sophisticated differential operators can be found in the discussions of [4].

In terms of the operator B, a special kind of continuity, called Z?-continuity, will be
used in our study. Its definition and various related terminologies are adopted from
[5].

Let B be a positive, self-adjoint, bounded linear operator on H. We define, for
each s > 0, a new inner product and a corresponding new norm on H, namely
(x, y)_s = (B5x, y) and \\x\\_s = (Bsx, x)l/2 and denote the completion of H under
||JC||_j by H-s. Using this operator B, we define a notion of continuity on H which,
in general, is weaker than weak sequential continuity but stronger than the usual
continuity on H.

DEFINITION 10 (B-continuity). We give a definition for the finite horizon case. The
corresponding definition for the infinite horizon case can be obtained by regarding
u to be independent of t. Let E be an arbitrary subset of [0, T] x H and let B
be an operator on H. A function u : E ->• R is B-upper-semicontinuous (respect-
ively, B-lower-semicontinuous) on E if lim supn_+oo u(tn, xn) < u(t, x) (respectively
liminfn_*+oo u(tn, xn) > u(t, x)) for every sequence {tn, xn) c E and any (f, x) e E
that satisfies xn -*• x in H and (Bxn, tn) -> (Bx, t) in [0, T] x H.

We call u B-continuous on E if it is both B-upper-semicontinuous and B-lower-
semicontinuous on E. These two semicontinuities will be abbreviated as B-usc and
B-lsc.

We refer readers to [5] for the following facts about B-continuity.

LEMMA 1. Let E be an arbitrary subset of[0, T]x H and let B be a positive, self-
adjoint, bounded linear operator on H. Then we have the following.

(i) Ifu is B-continuous on E, then u is continuous on E.
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(ii) Ifu is weakly sequentially continuous on E, then u is B-continuous on E.
(iii) If B is compact, then u is B-continuous on E if and only if u is weakly

sequentially continuous on E.
(iv) For each t e [0, T], u(t, •) is B-continuous on E if and only if u(t, •) is

continuous on each ball BR (R > 0) with respect to the H_2 norm.
(v) If u is Bs-continuous on E for some s > 0, then u is Bs -continuous on E for

all s' > 0.
(vi) The statements in (i) - (v) are true if we replace all involved continuities by

upper semicontinuities (or lower semicontinuities).
(vii) Let (//_.,)' denote the dual space of H_s. Then, for all % e (H_s)', s > 0, there

exists x] € H such that for all x e H, £(*) = {Bs/2r], x) and |

One of our goals is to show that the value functions are solutions respectively of
some Hamilton-Jacobi-Isaacs equations on H and [0, T) x H in a viscosity solution
sense that is modified from [5] to suit our problems. The modified definitions are as
follows:

DEFINITION 11 (Viscosity Solution). We give the definition for the finite horizon case
and the corresponding definition for the infinite horizon case can be obtained by
regarding all the functions involved to be independent of t.

Given 0 < T < +oo and let Q be an open subset of H. Let u e C([0, T] x Q)
and let F(-; i, j) be a real-valued function on [0, T] x £2 x OS x H for each i e I and
j 6 J. Then u is a viscosity subsolution (respectively, supersolution) of

-u,(t, x) + supinf {{A(i, j)x, Du(t, x)) + F (t, x, u(t, x), Du(t, x); i, j)} = 0
16/ J£j

on [0, 7") x SI if for every local maximum (respectively, minimum) point (s, y) e
[0, 7") x £2 of u — <p — g (respectively, u + <p + g) where <p : [0, 7] x £2 —> K and
g : £2 —> OS satisfy, respectively, condition (<p) and condition (g) below:

<p is B-lower-semicontinuous on (0, 7] x Q; D<p exists and is continuous
on [0, 7] x Q, with Range (D<p) C f]iel jeJ Domain (A*(i, j));
and also the mapping (t, x) i-> {x, A*(i, j)D<p(t, x)} from [0, 7] x Q
toK is equi-continuous in i e / and j e J

there exists h : [0, +oo) —> (R such that
h is nondecreasing, C \ h'(0+) = 0 and
g(x) = h(\\x\\) VxeH,

we have

-<p,(s, y) + supinf{(;y, A*(i, j)D<p(s, y)) + F(s, y, u(s, y), D<p(s, y)

+ Dg{y); i, j)} < 0

(8)
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(respectively,

<p,{s, v) + supinf{(y, -A*(i, j)D<p(s, y)) + F(s, y, u(s, y), -D<p(s, y)
iel J^J

We call u a viscosity solution on [0, T) x Q if it is both a viscosity subsolution and a
supersolution on [0, T) x Q.

We prove a technical lemma for later use.

LEMMA 2. Suppose that (A), (1.1) and (1.2) hold. Given control a = (q,N,
{(/•„, in)}"=i) e <€, strategy £ e SB (with £(a) = (z(r), M, £2M)) anc? a pomr x e H,
let X(t) := X(t; x) be the corresponding trajectory. Letcp : H —> OS satisfy condition
(cp) and g : H —> K satisfy condition condition (g).

(1) For eac/j /i e [0, oo), we

,A*(i(t)J(
o

- (D<p(X(t)), f(X(t), q(t), z(t); i(t), j(t)))}dt = <p(X(O)) - <p(X(h))e-h.

(2) For h e [0, oo), we have

I
h

(Dg{X(t)), f(X(t), q(t), z(t); i(0, j(t))) dt < g(X(h)) - g(X(0)).

(3) Suppose in addition that (BO) and (Bl) hold. Let Y(t) := Y(t;y) be the
trajectory corresponding to the same control a and same strategy I- of X but
different starting point y, then there exists a positive constant C that depends
only on CQ, K (the Lipsc'hitzian modulus of f) and || B || such that

f \\X(s)-Y(sn2ds<ec'(B(x-y),x-y), (3.3)
Jo

(B(X(t) - Y(t)), X(t) - Y(t)) < ec'(B(x -y),x-y), (3.4)

and

t\\X(t)-Y(t)f <(B(x-y),x-y}e2l"\l+ f Ce*-2**ds\ (3.5)
I Jo J

for each t € [0, oo).
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PROOF. (1) We denote the semigroup of linear operators generated by A(i, j) by
e-Mij)i for t > o. We want to show that

/ e-{<p(X(t)) + (X(t), A*(i(t), j{t))D<p{X{t)))
Jo

- (D<p(X(t)), f(X{t), q{t), z(t); i(t), j(t)))}dt = <p(X(0)) - <p(X{h))e-h,

where

f
Jo

X(t) = X(0) + f e-Mi(s)'nsm'-s)f(X(s), q(s), z(s); i(s), j(s))ds,
Jo

for t € [0, (X>). The assertion is true if each A(i, j) is a linear bounded operator
defined on all of H because for almost all t e [0, oo),

= e-[<p{X{t)) - (^-X(t), Dcp(X(t))}]
at

= e-'[<p(X(t)) + (A(/(0, j(t))X(t), D(p(X(t)))

- (f(X(t), q(t), z(t); i(t), j(t)), D<p(X(t)))]

and an integration over [0, h] proves the result.
To prove the case when A (i, j) is unbounded, we consider the Yosida approximation

of A(i, j), Ak(i, j) :=k~l(I + kA(i, j))'1, which is a bounded operator for all A. > 0.
If we let

Xk(t) :=X,(0)+ f e-AMs)jum'-s)f(Xk(s),q(S),z(sy,i(s)J(s))ds,
Jo

then the previous argument holds and

/ e-'{<p{Xx{t)) + (XAt), {Al(i{t), j(t)))D<p(Xk(t)))
Jo

) , f(Xk(t), q(0, Z(t); i(t), j(t)))}dt =<p(Xk(0)) -<p(Xk(h))e-".

Let X I 0 and then using routine estimations, we can conclude (1).

(2) We may use the Yosida approximation similarly. Just as in (1), we can assume

that each A(i, j) is bounded and defined on all H since we can always replace A(i, j)

by Ak(i, j) and let A | 0. Letting

e~Amj(m'~s) f(X(s), q(s), z(s); i(s), j(s)) ds,

we then have

=e-[g{X{t)) + (A(i(r), j(t))X(t), Dg{X{t)))

- </(X(0, q(0, z(t); i(t), j(0), Dg(X(t)))]
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almost everywhere on [0, oo). Therefore, the claim follows from an integration over
[0, h] and the fact that 0 < (A(/(0. j(.O)X(t), Dg(X(t))).

(3) We begin with the proof of (3.3) and (3.4) and keep in mind that we may
treat all the monotone operators involved as bounded operators by using Yosida's
approximation as before. Proceed as in [5], we differentiate (B(X(s) — Y(s)), X(s) —
Y(s)). From (Bl) and the Lipschitz continuity of g, we obtain

^-{B(X(t)-Y(t)),X(t)-Y(t))
at

< 2C0(B(X(t) - Y(t)), X(t) - Y(t)) - 2\\X(t) - Y(t)\\2

+ 2K\\B(X(t)-Y(t))\\\\X(t)-Y(t)\\

< C(B(X(t) - Y(t)), X(t) - Y(t)) - \\X(t) - Y(t)\\2

for some positive constant C. In the above, we have also used the inequality ||Z?z||2 <
\\B\\{Bz,z) forz e H. Multiplying by an integrating factor, we have

), X(t) - Y(t))\ < -e~c'\\X(t) - Y(t)\\2

ai i I

and

e~Cl f \\X(s)-Y(s)\\2ds+e-Cl{B(X(t)-Y(t)),X(t)-Y(t))
Jo
< (B(x-y),x-y)

Splitting it into two inequalities gives (3.3) and (3.4).
To show (3.5), we differentiate and then integrate {X(a) - Y(a), X{a) - Y{o))

on (s, t) C [0, oo) and conclude that

\\X{t) - Y{t)\\2 < \\X(s) - Y(s)\\2 + 2K f \\X(a) - Y(o)\\2do
Js

via the monotonicity of A{i, j)'s and the Lipschitz continuity of / . Integrating both
sides with respect to s on (0, t) gives

t\\X(t)-Y(t)f< f \\X(s)-Y(s)\\2ds + 2K f f \\X(a)-Y((7)\\2dads.
Jo Jo Js

Making use of (3.3) and interchanging the order of integration, we have

t\\X(t) - Y(t)\\2 < {B(x - y ) , x - y)ect +2K I a\\X(a) - Y(a)\\2da.

Jo

By treating this condition as a generalized Gronwall-type inequality (see [8, p.4]), we
conclude that

t\\X(t) - Y(t)f < (B(x -y),x- y)e2t" /
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We now prove the main results of this section by starting with the infinite horizon
case first.

i

THEOREM 2. Suppose that (A), (BO) and (1.2) hold. Then, the value function u
given by (2.1) is a bounded Lipschitz continuous viscosity solution of the stationary
Hamilton- Jacobi-Isaacs equation

u(x) + supinf | {A(i, j)x, Du(x))

+ sup inf {-(Du{x), f{x, q, z; i, j)) - L(x, q, z\ i, j)} = 0. (3.6)
qeQ, ^z> J

Moreover, //"(BO) and (Bl) hold, then u is B-continuous on H and can be extended
so that u is bounded and uniformly continuous on H^\.

//"(BO) and (Bl),,, hold instead of (BO) and (Bl), then u is continuous in the norm
of H_\ on every bounded subset of H and hence, B-continuous on H. Furthermore,
u can be extended to be bounded and uniformly continuous on H_\ if we assume in
addition that there exists K > 0 such that for each i e /, j e J, q e Qt and z € Z,-,

\L(x, q, z; i, j) - L(y, q, z; i, j)\ < K\\X - y\U (3.7)

for all x, y e H.

PROOF. It is easy to see that u is bounded and Lipschitz continuous. To show that
u is a viscosity solution, we first show that u(x) is a supersolution by contradiction.
Assume that u(a) + <p(a) + g(a) < u(x) + cp(x) + g(x) in a neighborhood of a, or
even further we can assume that <p(a) = —u(a), g(a) = 0 and <p(x) + g(x) > — u(x)
near a. Suppose that there exists 8 > 0 such that

u(a) + supinf I (A(i, j)a, -D<p(a))
iel J£J l

+ sup inf {(D<p(a) + Dg(a), f(a, q, Z; i, j)) - L(a, q, z\ i, j))}\ < -A9.

Thus, for each / G / there exists j = _/,- e J such that

- <p(a) - g(a) - {A(i, ji)a, D<p(a))

+ inf {(D<p(a) + Dg(a), f(a, q, ^; i, J,)) - L(a, q, z\ i, j,))} < -39
Z€Zj

for all q € Qj. By continuity of L, for each i e / , there exists z € Z, (z depends on
/) and there exists an open set containing q, such that for all p in that set of q,

<p(a) + g(a) + (A(i, j,)a, D<p{a))

- (D<p(a) + Dg{a), f(a, p, z; i, ji)) + L(a, p, z\ i, jt) > 29.

https://doi.org/10.1017/S0334270000008821 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008821


[18] Differential game with switching controls 247

Engaging a partition of unity argument, we can find, for each i e /, a continuous
function rj' : Q, —*• Qt so that for all q e Qt,

<p{a) + g(a) + (A(i, ji)a, D<p(a))

- (D<p(a) + Dg(a), f(a, q, rf{q); i, j,)) + L(a, q, rf(q); i, j,) > 26. (3.8)

Given any control a = {q, N, {(rn, «n)}^=1) G *&, define a new strategy f G £8 with
| ( a ) = (2(r), M, « A ) as follows:

(i) for « = 1, • • • , N and t e [/-„, rn+1), let £(0 := 171- (9(0);
(ii) let M := Â  and for m = 1, • • • , M, let (sm, jm) := (rm, jim);

(iii) let fi^ := {{sm, jm) : m = 1, • • • , M).

Let X(t) be the trajectory corresponding to control a = (q, N, AN), strategy | and
starting point a. Then, since / is uniformly continuous and estimates (1.3) of X(t) is
independent of a, there exists h > 0, so that for all t € [0, h],

e-{ip{X{t)) + g(X(t)) + (X(t), A*(i{t),

- (D<p(X(t)) + Dg(X(t)), f(X(t), q{f), z(t)\

- L(X(t), q(t), z(t); i(0. 7/(.))} > B. (3.9)

From (1) of Lemma 2, we conclude that for all h > 0

-h- {D<p{X{t)), f(X(t), q(t), z(t)\ i(0, y/(o)»<" = ^(^(0)) - <p(X(h))e-h.

This and an integration of (3.9) over [0, h] yield

/

A

<T'L(X(f), «(0, £(a)(0)d* + G(^) > A 0

with

G(h) := g{X(h))e-h + f e-'{g(X(t)) - (Dg(X(t)), f(X(t),a(t),i(a)(t)))}dt.

From (2) of Lemma 2, we know that G{h) < g(a) — 0. Hence, for all control
a = (q, N, AN),

-u(a) = <p(a)

- / e-L(X(t)ta(t),UaKt))dt+h6
Jo

inf { /
aeV Jo

- / e-
Jo

f
> -e-"u(X(h)) - / e-L{X{t), a(t),l(a)(t))dt + h0

J
f

u(a) < sup inf { / L(X(t), a(t), ^a)(t))e"dt + u(X(h))e-"} = u{a)
eV J
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due to the dynamic programming identity and we have a contradiction!
We next show that u(x) is a subsolution by a similar contradiction. Assume that

u{a) — <p(a) — g(a) > u(x) — (p{x) — g(x) in a neighbourhood of a and cp(a) =
u(a), g(a) = 0, so <p(x) + g(x) > u(x) near a. Suppose that there exists 6 > 0 such
that

u(a) + supinf I {A(i, j)a, D(p(a)) + sup inf {-(D<p(a) + Dg{a), f(a, q, z\ i, j))

- L(a,q,z; i,j)}\ > 39.

Hence there exists / e / and p e <2, so that for any j e J and any z e Z,-, we have

<p(a) + g(a) + (A(J, j)a, D<p(a))

- (D<p(a) + Dg(a), f(a, p, z; /, j)) - L(a, p, z; /, j) > 26.

Let a = (q, 1, {(0, 0}) with q(t) = p and let X(t) be the trajectory corresponding
to control a, strategy £ and starting point a. Let tj(6t) := (z(?), M, Q.M) with QM :=
{(sm, jm) • m = 1, • • • , M}. Then, there exists h > 0 so that [0, h] c [0, s2) and

),A*(i,j2)D(p(X(t)))

- (D<p(X(t)) + Dg(X(t)), / (*(/) , q(t), z(t); i, j2

-L(X(t),q(t),z(t);lj2)} > 6 (3.10)

for all t G [0, h]. Integrating (3.10) over [0, h] and using Lemma 2 again as in the
supersolution case, we conclude that for all strategy £ € SB,

u(a) =(p(a)

> e-h{<p(X(h)) + g(X(h))} + f e-L(X{t), a(t), Ua)(t))dt + h6
Jo

["
Jo

fh
u(a) >supinf{l L(X(t),a(t), ${a){t))e 'dt + u(X(h))e } = u(a),

"~"° Jo

hence, u is a subsolution.
Next, we want to show that u is fi-continuous on H assuming, in addition, that

(Bl) holds. Let x, y e H be given and let X(s; x) and Y(s; y) respectively be the
trajectory corresponding to a control a G cto, a strategy £ e 38 but different starting
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point x and y respectively. From the definition of u and (1.2), there exists constant
K, M > 0, such that

\u(x)-u(y)\ <*:supsup / \\X(s;x)-Y(s;y)\\e-sds + KMe-'\
{€»«€¥ [JO J

K r f i
<-supsup / \\X(s;x)-Y(s;y)\\2dsV/2 + KMe-'\.

tteaaevUo J ( 3 1 1 )

Notice that the second term on the right hand side would be made small by choosing
t large and for this chosen t, the first term would also be small if (B(x — y),x — y)
is small enough due to (3.3) of Lemma 2. Thus, u is B-continuous on H and can be
extended to a bounded uniformly continuous function in H-\.

In the case that (Bl)w holds rather than (Bl), we can argue similarly. By replacing
each A{i, j) by its Yosida approximation Ak(i,j), the ||X — F|| terms inside the
supremumof (3.11) can be approximated arbitrarily by [ft \\Xk(s; x) — Yk(s; y)\\2ds]i.
We also notice that each Ak(i, j) also satisfies (B1)M with a different constant:

1 -k

So we may assume that all the maximal monotone operators A(i, j) that generate the
trajectories in (3.11) are bound operators. On the other hand, for each n > 0 and each
i e / , we have

> ^ l l * l l 2

for all x € H. So, putting all these together, we can go through the estimations as in
(3.5) to conclude that there exists C > 0 such that for all A. > 0,

I \\Xk{s; x) - Yk(s; y)\\2 ds < eCl [(B(x -y),x-y) + i| |* - y\\2].
Jo

Thus, u is continuous in the norm of //_, on every bounded subset of H and hence,
B-continuous on H. The last assertion follows easily from (3.7).

The corresponding result for the finite horizon case is as follows.

THEOREM 3. Let T > 0. Suppose that (A), (1.1) and (1.2) hold. Then the value
function u given by (2.2) is bounded, Lipschitz continuous in x uniformly in t, uniformly
continuous in t uniformly for bounded x. Moreover, u is a viscosity solution on
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[0, T)xHof

- u,(t, x) + supinf \{A{i, j)x, Du(t,x))

+ sup mf{-{Du(t, x), f(t, x, q, z\ i, j)) - L(t, x, q, z; i, ./)} j = 0 (3.12)

and for each bounded subset S C H,

lim(sup{|K(f,jc) - iK*)|})= 0. (3.13)

In addition, if (BO) and (B1) holds, then u is B-continuous in [0, T) x H and for each
t G [0, T), u(t, •) is uniformly continuous in H under the H_{ norm with the same
modulus of continuity uniformly in t.

If (Bl)w holds rather than (Bl), then for each t G [0, T), u(t, •) is uniformly
continuous in the norm of H_\ on every bounded subset ofH with modulus uniformly
in t and hence, B-continuous on [0, T) x H. Furthermore, if we assume in addition
that there exists K > 0 such that for each i e I, j € J, q € Qh z e Z; and each
t e to, n

\L(t, x, q, z; i, j) - L{t, y, q, z; i, j)\ < K\\X - y||_, (3.14)

for all x, y G H, then u can be extended to a bounded and uniformly continuous on
[0, T) x //_,.

PROOF. First, from (1.1), (1.3) and (1.2), it follows that u is bounded, Lipschitz
continuous in x uniformly in t, uniformly continuous in / uniformly for bounded x
and satisfies the terminal condition (3.13). The verification of the assertion that u is a
viscosity solution of (3.12) is similar to that of Theorem 2 and is so omitted.

To show that u is B-continuous, let x, y € H and let X(s; x) and Y(s; y) respect-
ively be the trajectory corresponding to a control a G ^[t, T] and strategy £ G 38\t, T]
but different starting point x and y respectively. Since M(-, X) is Lipschitz continuous,
it suffices to show that u(t, •) is B-continuous on H for each t G [0, T). From the
definition of u and (1.2), there exists constant K > 0, such that

\u(t,x)-u(t,y)\< (3.15)

K sup sup ( / \\X(s;x)-Y(s;y)\\ds + \\X(T;x)-Y(T;y)\\\.

In view of (3.5), we conclude that u is B-continuous in [0, T) x H . Indeed, for each
t e [0, T), u{t, •) is uniformly continuous in H under the H_i norm with the same
modulus of continuity uniformly in t.

In the case that (B1 )w holds rather than (B1), we can argue similarly as in Theorem 2.
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REMARK 1. Notice that all our assumptions and definitions ((A), (BO), (Bl),
(1.2), . . . ) are direct modifications (uniform in J and j) of those in [5]. So the
comparison principles in [5] are directly applicable to our Hamilton-Jacobi-Isaacs
equations. Thus, the upper value function u given by (2.1) (and respectively (2.2)) is
the unique viscosity solution of (3.6) (and respectively (3.12) that satisfies the terminal
condition (3.13)).

In fact, even more is true. The proof of the comparison principles in [5] can
be modified (as pointed out in [5]) to yield convergence theorems - namely that
if the Hamiltonian of the Hamilton-Jacobi-Isaacs equation is approximated locally
uniformly on bounded sets by regularized Hamiltonians, each of which satisfies some
structural hypotheses ((FO), (Fl), (F2), (F3), (F4) in [5]), then the viscosity solutions
corresponding to these regularized Hamiltonians will converge to a viscosity solution
of the original Hamilton-Jacobi-Isaacs equation. This convergence result can be used
to extend our results obtained so far to more general differential games problems. We
shall further discuss this in Section 4.

REMARK 2. Although our emphases are on player 1, results for player 2 can be deduced
from those of player 1 if we replace the cost functions L and rj/ by — L and — ty. We
summarize them as follows (using the short-handed notation in Section 2).
(1) The lower Elliott-Kalton value of the infinite (and respectively finite) horizon
differential game problem is defined as

/»OO

v(x) = inf sup / L(X(s; x), £03)(s), P(s))e~s ds

(and respectively

v(t,x)= inf sup

(2) They satisfy the following dynamic programming identities respectively:

v(x) = inf sup I / L(X(s; x), £(£)(*), p(s))e~s ds + u{X(h; x))e~h

!*& [Jo

h>0,

v(t,x)= inf sup If L(s,X(s;x),$(P)(s),P(s))ds

\, 0<h < T-t.
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(3) They are viscosity solutions of respectively

v(x) + inf sup {{A(i, j)x, Dv(x))

+ inf sup{-(Dv(x), f(x, q, z; i, j)) - L(x, q, z; i, j)}} =0, xe H,

-v,(t,x) + inf sup \(A(i,j)x, Dv(t,x))

+ inf sup{-{Dv(r, x), fit, x, q, z\ i, j)) - Lit, x, q, z; i, j)}\ = 0,

it, x) e [0, T) x H.

In view of the uniqueness results of viscosity solution in [5], we may deduce the
existence of the Elliott-Kalton value of the differential game by assuming that

A*ii, j) has a common domain which is denoted by 5?, (3.16)

and

sup inf I (x, A*{i, j)p) + sup inf {-(/?, fit, x, q, z; i, j)) - Lit, x, q, z; i, j)}\

= inf sup I {x, A*ii,j)p)

+ inf sup{-(p, / ( / , x,q, z; i, j)) - Lit, x, q, z\ i, j)}\ (3.17)

for all x e H, p e y and t e [0, +oo) (or / e [0, T]).
Condition (3.17) is analogous to the classical one. Condition (3.16) is necessary

for the postulation of (3.17) but not too restrictive in view of the two examples in
Section 3.

THEOREM 4. Suppose that (A), (3.16), (BO), (1.1), (1.2) and (3.17) hold and let
0 < t < T. If (Bl) or (Bl)^ and (3.14) hold, then u(x) = v(x) for all x e H and
u{t,x) = v(t,x)forall(t,x) 6 [0, T] x H.

4. Relaxation of the structural hypotheses

In order to present our result in a more direct way, the structural assumptions (1.1)
and (1.2) of the problem are postulated in a simple way and may be too restrictive
to include some practical applications. These structural assumptions may be relaxed
further without affecting the validity of our results. Roughly speaking, any structural
assumptions that the differential game problem makes sense on, our results will still
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hold. To be more precise, whenever the value function is well-defined and the dynamic
programming identity hold under a set of structural assumptions, the rest of our results
would hold on them. As an example, we take out two sets of assumptions from [5]
and use them to illustrate how our results could be extended. They are as follows.

(1) There exist positive constants K0, *-,, K2 and m e [0, K^1) such that

I/O, x, q, v, i, j) - fit, y, q, z\ i, j)\ < «bll* - y\\ ,

\fit,O,q,z;i,j)\<Kt,

Vi € /, V/ e J,Vq g Qi, VZ g Zj, Vx, y<= H and W.
(2) There exist positive constants K0, KU K2 and m e [0, K^1) such that

| /(r , x, q, z; i, j) - f(t, y, q, z; /, j)\ < KO\\X - v|| ,

\fit,x,q,z;i,j)\ <AC, ,

\Lit,x,q,z;i,j)\ < ^ m | W I ,

Vi 6 /, V/ e J,Vq e Qh Vz e Z;, Vx, y e H and V?.

Both the finite and infinite horizon problems make sense on these assumptions and
the dynamic programming identities hold (see details in [5]).

A way of extending our results to these structural assumptions is to approximate / ,
L and i/r by more regular ones until they fit the structural hypotheses (1.1) and (1.2) in
our setting, and we can deduce the desired results on these regularized functions. The
results would then be extended to that of the original setting via some convergence
theorems together with a stability result saying that limit of viscosity solutions is
a viscosity solution of the limiting problem. These convergence theorems can be
proved by modifying the proof of the comparison principle in [5] and indeed, had
been remarked in [5]. Readers who are interested in the detailed modifications may
follow the comments in [5] or consult [18,19] (where the whole procedure is exhibited
but will double the size of this paper if included here).

Some regularizations on / that we could use in extending our results to other
structural assumptions are (with n e N):

(1) fn '•= max{min{/, n), —n). It transforms an unbounded / to a bounded /„.
(2) fnit,x,u, p) := Xni\\x\\)Xni\H\)Xni\\p\\)fit,x,u, p) where Xn is a cutoff func-

tion satisfying *n(r) = xfy with x e C~(IR), 0 < x < 1, x(r) = 1 for \r\ <
1. It transforms a bounded locally uniformly continuous / to a bounded uniformly
continuous /„.

(3) /„(*, x, u, p) := inf{/(5, y, v, q)+n\s - t\ +n\\x - y\\ +n\u - v\ +n\\p -q\\

: is, y, v, q) € [to,T] x H x K x H) .
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It transforms a bounded uniformly continuous / to a Lipschitz continuous /„
with Lipschitzian modulus n.

These regularizations can also be applied on L and \{r. Suppose / , L and \j/ are
regularized in one of the above ways by a sequence of /„, Ln and \//n. Let F be the
sup-inf term over Qt and Z, in (3.12) and let Fn be that of /„ and Ln. Then, each
Fn will satisfy hypotheses (FO) - (F4) (see [5] or [18,19] for their statements) with
the same parameters as those of F, and Fn —> F as well as V« —> V*" uniformly on
bounded sets as n -> +oo. Thus, the convergence theorems in [5] (or [18,19]) can be
applied and we have a limit of viscosity solutions. This limit is the viscosity solution
of the unregularized problem due to the following stability result quoted from [5] with
slight modifications, and proofs there can easily be modified to the present cases. We
state only that the finite horizon case and the infinite horizon case can be obtained by
regarding every involved function to be independent of t.

PROPOSITION 1. Suppose that (A) and (BO) hold and let {un}+™ be a sequence of
B-continuous viscosity subsolutions {respectively supersolutions) on [0, T) x H of

-u,(t, x) + supinf ({A(i, j)x, Du(t, x)) + Fn(t, x, u(t, x), Du(t, x); i, j) j = 0
l€ / JeJ I I

where Fn{-\ i, j) e C([0, T] x H x K x H) for each i e / and j 6 J. Let
F(-\ i, j) e C([0, T] x H x K x H) and let u e C([0, T] x H) be a B-continuous

function on [0, T) x H such that

Fn(-\ i, j) -> F(-\ i, j) locally uniformly in [0, T] x H x I x H

and uniformly in i € /

and

Vx e H, 3p > 0, such that un —> u uniformly on [0, T] x B(x, p).

Then u is a viscosity subsolution (respectively, supersolution) of

-u,(t, x) + supinf ((A(i, j)x, Du(t, x)) + F(t, x, u(t, x), Du(t, x); i, j)} = 0

on [0, T) x H.

REMARK 3. Finally, let us compare the results of J. Yong in [14-17] with ours. The
problems considered there have positive switching costs but L and / have no depend-
ence in z and q. Infinite and finite horizon problems in finite dimensional Euclidean
space were studied in [14,15] and differential games with impulse controls were
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studied in [17]. We will narrow our comparison down to [16] since the results there
(almost) cover those in [14,15] and is closer to our framework than [17].

The underlining space in [16] is a Banach space and only infinite horizon problems
were studied. The main result is the existence of the value to the differential game,
which was shown by first regularizing the differential game, showing existence of
the value for the regularized game and then establishing the convergence of the
regularized game value to the value of the original game. In doing so, a "finite-loop"
condition (condition (G5) in [16]) was initially assumed and then eliminated. So in
the end, the uniqueness of the value was established without assuming any condition.
However, as Yong pointed out in [16], the "finite-loop" condition cannot be eliminated
for the zero switching cost case (i.e. our case) unless the restriction on the choices
of partition on [0, oo) was put on the control function, and this restriction makes
the game unnatural. In other words, the existence of value holds without assuming
any Isaacs-type condition for the differential games with positive switching, but does
not hold for the zero switching cost limiting case unless restrictions are put on the
switching time of the control functions.

On the other hand, our working space is a Hilbert space and we need to assume an
Isaacs-type condition in order to establish the existence of the value for the game of
zero switching cost. So in this sense, the uniqueness result that we obtain here may
be viewed as a supplement for those in [14-17] for the zero-switching-cost cases.
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