
7 

Renormalization group 

As we saw in Chapter 3, the renormalization procedure has considerable 
arbitrariness: the counterterm for a graph must cancel its divergence but 
may contain any amount of finite part. A rule for choosing the value of the 
counterterm we called a renormalization prescription. In one-loop order it 

I 

was clear from the examples that a change in renormalization prescription 
can be cancelled by a change in the finite, renormalized couplings 
corresponding to each divergence. Thus a change in renormalization 
prescription does not change the theory but only the parametrization by 
renormalized coupling and mass. What is not so easy is to see that this 
property is true to all orders. This we will show in Section 7.1. The 
invariance of the theory under such transformations is called 
renormalization-group (RG) invariance. 

A particularly useful type of change of renormalization prescription is to 
change the renormalization mass ll· Infinitesimal changes are conveniently 
described by a differential equation, called the renormalization-group 
equation, which is derived in Section 7.3. This leads to the concept of the 
effective momentum-dependent coupling. This concept is very useful in 
calculations of high-energy behavior, as explained in Section 7.4. The 
coefficients in the renormalization-group equation are called the 
renormalization-group coefficients and are important properties of a 
theory. Various developments of the formalism occupy the remaining 
sections. 

The renormalization group was first discussed by Stueckelberg & 
Petermann (1953) and by Gell-Mann & Low (1954). Very similar ideas are 
applied in statistical physics (Wilson & Kogut (1974)). Many important 
recent applications arise because of the asymptotic freedom of QCD. 

Results of calculations ,of renormalization-group coefficients can be 
found in many places: 

(1) Gross (1976) lists many one-loop results for theories with scalars and 
fermions and up to two loops for gauge theories with only fermions. 

(2) Cheng, Eichten & Li (1974) give the P-functionfor a general renormaliz
able theory to one-loop order. 

168 
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(3) Tarasov, Vladimirov · & Zharkov (1980) compute renormalization
group coefficients to three-loop order in gauge theories with fermions 
using minimal subtraction. 

(4) Vladimirov, Kazakov & Tarasov (1979) compute to four-loop order in 
¢ 4 theory. 

(5) Chetyrkin, Kataev & Tkachov (1981) and Chetyrkin & Tkachov (1981) 
compute the anomalous dimension in ¢ 4 theory at five-loop order. 

(6) Tkachov (1981) summarizes the methods used for the above 

calculations. 
(7) Caswell & Zanon (1981) perform calculations in supersymmetric 

theories at three-loop order. 

7.1 Change of renormalization prescription 

7.1.1 Change of parametrization 

The techniques we will describe are valid for any theory. However, to be 
specific, we will mainly work with the theory we have been using as a source 
of examples, the ¢ 3 theory in six space-time dimensions. There are three 

alternative, but equivalent, forms in which to write the Lagrangian. First of 
all, we can write it in terms of the bare field ¢ 0 : 

2 = (o¢0 ) 2 /2- m~f/>~/2- g0 f/>~/6. (7.1.1a) 

(As before, we ignore the term linear in ¢.)The importance of this form is 
that the bare field ¢ 0 is invariant under change of renormalization 
prescription: its normalization is determined, because it satisfies canonical 
equal-time commutation relations. 

When we renormalize the theory, we obtain finite Green's functions of 
the renormalized field 4> = Z- 112 ¢ 0 • In terms of the renormalized field, the 
Lagrangian is 

2 = Z(o¢)2 /2- m~Z¢2 /2- g0 Z 312 ¢ 3 /6 

= Z(o¢)2 /2- m~¢ 2 /2 -gB¢ 3 /6. (7.1.1 b) 

This is the second of the three forms. 
In the perturbative theory of renormalization, we wrote the Lagrangian 

as the sum of a free Lagrangian, a basic interaction Lagrangian, and a 
counterterm Lagrangian: 

!£l = !£l 0 + fil b + feet 

(7.1.1 c) 

This is the third form of the Lagrangian. Here, we have chosen to define a 
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basic Lagrangian 

2\asic = (oc/J)2 /2-m2 cp 2 /2- J1.3-di2gcp3 /6, (7.1.2) 

where m and g are the renormalized mass and coupling. Since we will mostly 
use minimal subtraction, it is sensible to define g to be dimensionless, and 
therefore to introduce the unit of mass Jl.· The counterterm Lagrangian is 

.If ct = {JZ(ocp)2 /2- {Jm 2 cp2 /2- {Jgcp3 /6, (7.1.3) 

and the counterterms {JZ, {Jm2, and {Jg are computed as definite functions of 
g, m and J1. with the aid of some renormalization presl;(ription. 

To be concrete, let us use minimal subtraction, so that 
00 

bZ= L (6-d)-ici(g,m,Jl.), 
j=l 

00 

[Jm2=m2 I (6-d)-ibig,m,Jl.), 
j= 1 

00 

bg=J1.3-d/2 I (6-d)-iaig,m,Jl.). 
j=l 

(7.1.4a) 

(7.1.4b) 

(7.1.4c) 

We saw, in Section 5.8, that in fact the coefficients a;, b;, c; are independent 
of m and Jl.; they are functions of the dimensionless coupling g only. 
However we will not use this fact at the moment. 

The three forms of the Lagrangian listed in (7.1.1) are equivalent- if we 
use any of them in the functional integral, then the same Green's functions 
will result. The coefficients Z, m~, and g0 will be singular when d approaches 
6 with g, m, and J1. fixed. The singularities will be just such as to give finite 
Green's functions of cp at d = 6. 

The parametrization of the Green's functions by g, m, and J1. is rather 
arbitrary. Suppose that we change variables to g', m', and Jl.', which are 
some given functions of g, m, and Jl.· These functions may even depend on the 
regulator, d, provided that the change of variable remains non-singular at 
d = 6. Then we get the same theory, for the collection of Green's functions 
GN is unchanged. It is just the numerical values of the renormalized mass 
and coupling and of the unit of mass that have changed. 

We may even change the scale of the renormalized field by writing 
cp' = ,cp, where ' is finite. The Green's functions are now different: 

G~=,NGN. 

But observe that the value of' is irrelevant for a physical observable like the 
S-matrix. For example, consider an S-matrix element involving N particles. 
It is obtained from GN by (1) dividing out an external propagator G2{p;) for 
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each external line and (2) multiplying by z112 for each external line, where iz 
is the residue of the pole of G2 (p). Finally we let the momenta P; go on-shell. 
Thus 

(7.1.5) 
But 

(7.1.6) 

so the particle pole is at the same position in G; as in G 2 and the new residue 
IS 

Hence 
S = lim{G~(z' 112t/flG;}. 

and the S-matrix is invariant, as claimed. 

7.1.2 Renormalization-prescription dependence 

(7.1.7) 

(7.1.8) 

In the bare Lagrangian (7.l.la), there are only two parameters. So there 
should be only a two-parameter collection of physical theories obtained 
from it. As we have just seen, the freedom to vary the scale of the 
renormalized field ljJ in the second form of Y, viz. (7.1.1b), does not 
introduce a third real parameter into the physics. 

Unfortunately, we appear to have introduced a large and indefinite 
number of parameters by having to choose one out of the infinitely many 
possible renormalization prescriptions. One might suppose that in different 
renormalization prescriptions, the singular behavior of m0 and g0 as d--+ 6 
could be different in such a way that one picks up different phases of the 
theory. In fact, this is not so. We will show that a change ofrenormalization 
prescription is one of the reparametrizations discussed in the previous 
subsection 7.1.1. This is the property we have defined as renormalization
group invariance. 

Even within a single renormalization prescription, we have introduced a 
third parameter, the unit of mass, J.l. Notice that the basic Lagrangian does 
not depend on J.l and g separately, but only on the combination J.t 3 -df2g; but 
notice also that this property is not true for, say, the renormalized Green's 
functions at one-loop order. However, a change of J.l is in effect a change in 
renormalization prescription. Indeed, we could include in our definition of 
the renormalization prescription the requirement that J.l and m have a fixed 
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ratio; we would still have two free parameters. A change in this ratio is then 
a change in renormalization prescription. Our proof of renormalization
group in variance will, in fact, only explicitly cover the case of a change in Jl.· 
The more general case will be essentially the same. 

We will prove that if we change Jl. to Jl.', then the physics is unchanged, 
provided that we choose suitable new values, g' and m', for the renormalized 
coupling and mass. That is, an S-matrix element S(g, m, Jl.) satisfies 

S(g, m, Jl.) = S(g', m',Jl.'). 

The bare mass and coupling m0 and g0 are similarly invariant. 
The new renormalized field ¢' with the new values (g', m', Jl.') of the 

parameters is not the same as with the old values but is related by 

¢'=(¢, 

where (is a finite function of g, m, Jl. and Jl.'. Hence the renormalized Green's 
functions satisfy 

GN(p,, ... ,pN;g,m,Jl.) = CNGN(p,, ... ,pN;g',m',Jl.') 

= CNG~. (7.1.9) 

It will be convenient, in our proof, to compute Green's functions of the 
original field¢, but with the new value Jl.' of the unit of mass. Now, in terms 
of the new field ¢', the Lagrangian is 

!f = Z' o¢' 2/2- m~2 ¢' 2/2- g~¢' 3 /6. (7.1.10) 

Here we write 

Z' = Z(g',m'/Jl.',d), (7.l.lla) 

(7.1.llb) 

(7.1.11c) 

These are the same functions of the new renormalized parameters m', g', and 
Jl.' as the original bare parameters were of the old renormalized parameters 
m, g, and Jl.· To get the Green's functions of the original field¢ but with the 
new value of the unit of mass, we substitute (¢ for ¢' to obtain 

!f = Z(g',m'!Jl.',d)( 2o¢ 2/2- m'i(g',m'/Jl.',d)C¢ 2 /2 

- gs(g',m',JJ.',d)e¢3 /6. 

7.1.3 Low-order examples 

(7.1.12) 

Let us remind ourselves how the changes in g and m are obtained at one
loop order. We must start at tree approximation, where we ignore all 
counterterms. In order that the two formulae (7.1.lb) and (7.1.12) for !f be 
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the same in tree approximation when we change p. top.', we must write 

g' = gnew = (p./p.')3-df2g, 

m'=m, 

( = 1. (All tree approximation.) (7.1.13) 

Note that at d = 6 we have g' = g to lowest order. We distinguish g' and 
gnew: gnew is defined to be exactly the value of g' in tree approximation. In 
higher-order calculations, g' gets corrections, but gnew will be defined to be 
(p./ p.')3 - d/2 g always. 

To treat higher-order corrections, we write the Lagrangian (7.1.12) as 

y = (ocj>)2 /2- m24>2 /2- Jl.d -df2[g(p./ p.')3 -d/2]4>3 /6 
+ (J'Z(oc/>)2 /2- (J'm24J2 12- (J'gc/> 3 /6. (7.1.14) 

Our strategy will be to express the counterterms in (7.1.14) as minimal 
subtraction counterterms plus some new finite pieces. The finite pieces will 
accomplish the change of parametrization. 

First we consider the one-loop graph for the self-energy, Fig. 3.1.1. The 
unrenormalized value is 

ig2r(2- d/2) J1 r = dx[m2-p2x(l-x)]d!2-2(4np.2)3-df2. 
1 128n3 0 

(7.1.15) 

This is invariant under the transformation (p., m, g)-...(p.', m, 
g(p./p.')3-df2). If we use unit of mass p., then the counterterm is 

C(r 1) = -pole (r 1) 

• 2 
-Ig ( 2 1 2) 

64n3(d - 6) m - 7>P • (7.1.16) 

Next we use p.' and gnew = (p./p.')3 -df2g instead of p. and g. The 
counterterm changes to 

• 2 

C'(r ) = - Ignew (m2 _ !p2) 
1 64n3(d- 6) 6 

-Ig 2 1 2 Jl. . 2 ( )6-d 
= 64n3(d- 6) (m - 7>P ) p.' · (7.1.17) 

Notice that we define C'(r 1) to be the negative of the pole part of r 1, 

with the d-dependence of gnew ignored. That is, we consider the function 
r 1 = r 1 (p, gnew• m, p.') and extract its pole at d = 6 with gnew fixed. This 
prescription ensures that we may later replace gnew by its value at d = 6 
without changing the renormalized value of the graph. 

Since both qr 1) and C'(r 1) cancel the divergence, their difference is 
finite. We may therefore obtain the same value for the graph plus 
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counterterm by letting the counterterm coefficients in (7.1.14), namely J'Z 
and J'm2 , each be a sum of two terms: 

(J'Z= g~ew + g~ew [(J-L'/J-L)6-d_1] 
384n3(d- 6) 384n3 d- 6 ' 

(7.1.18) 

(J' 2 = m gnew + m gnew \}-< J-l -2 2 2 2 ['"'/ )6-d 1] 
m 64n 3(d - 6) 64n 3 d - 6 · 

(7.1.19) 

The first term in each equation is the minimal subtraction counterterm for 
the new coupling, while the second term is finite as d ..... 6. Using the formula 
(7.1.12) for the Lagrangian, we may regroup these terms to give 

(7.1.20) 

(7.1.21) 

Hence we obtain the value of m': 

'2= 2{1+.3t_[1-(J-L/J-L')6-d]+O( 4)} 
m m 384n3 d - 6 g 

-> m2 [ 1 + 3~::3 In (Ji/ J-L') + O(g4 ) J as d ..... 6. (7.1.22) 

Also at d = 6 we have 

(7.1.23) 

We can apply the same procedure to the vertex graph, Fig. 3.6.1, whose 
value is the factor in curly brackets in (5.3.5). The counterterm (J' g is written 
as 

(7.1.24) 

(7.1.25) 
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It follows that 

g' = g(Jl/J1')3-d!2{1 + ~[1- (J1/J1')6-d] + O(g4)} 
256n3 d- 6 

[ 3g2 J 
-+ g 1 + --3 In (Jl/ 11') + O(g4 ) as d-+ 6. 

256n 
(7.1.26) 

Our strategy for understanding the effect of a change in renormalization 
prescription is to absorb the difference into a finite counterterm. The 
counterterm will itself generate divergent counterterms when we insert it 
into a bigger graph. Finally we reorganize the Lagrangian by putting all the 
finite counterterms into the basic Lagrangian. Then we see that the change 
in renormalization prescription is exactly compensated by a change in the 
parameters of the theory. 

What happens when we go to higher order? An example is given by the 
two-loop self-energy graph of Fig. 7.l.l(a). Graphs (b), (c), and (d) renormal
ize its subdivergences and its overall divergence. We write the renormalized 
graph with the original value of Jl as 

I.l(p,g,m,Jl) = I.a + 2I.b + I.d. {7.1.27) 

(We used the fact that I.b =I.e.) The unrenormalized graph is unchanged if 
we replace Jl by 11' and g by 9new· But the vertex counterterm is treated 
exactly as at (7.1.24), so that: 

I.b(p, g, m, Jl) = I.b(p, 9new• m, Jl') + [I.b(p, g, m, Jl)- I.b(p, 9new• m, Jl')]. 

(7.1.28) 

The first term contains the counterterm for one of the subgraphs, computed 
by minimal subtraction with unit of mass Jl'. The second term exactly 
compensates the difference. It has the counterterm replaced by the finite 

(a) (b) 

-o-
(d) 

(c) 

Fig. 7.1.1. Self-energy graph with counterterm graphs. 

https://doi.org/10.1017/9781009401807.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.007


176 Renormalization group 

part in (7.1.24), viz. 

(7.1.29) 

We now write 

:E 1 = :Ea(p, gnew• m, ~t') + 2:Eb(p, gnew• m, ~t') + :Eip, gnew• m, ~t') 

+ {2rl a~-d/2 + :Ed(p,g,m,J-t)- :Eip,gnew•m,J-t')}. (7.1.30) 
gnewl' 

Here we wrote out the ftrst three terms as the minimal renormalization of 
:E 1 with unit of mass ~t'· The remainder is finite, since :E 1 is ftnite. The term 
2r1agf(gnewJ-t' 3 -d12) is the one-loop self-energy graph with one of its 
couplings replaced by ag. It has a divergence which can be cancelled by a 
minimal counterterm: 

C = - ignewag ( 2 _ _!_ 2) 
64n3(d- 6) m 6P . (7.1.31) 

Hence the term in curly brackets is 

[ 2r1ag J , ,3_d12 + 2C + [:Ed(p,g, m,J-t)- :Ed(p, gnew• m,J-t)- 2C]. 
gnewl' 

(7.1.32) 

The second term is fmite, since there are no remaining divergences. It is of 
the form 

i(- am2 + aZp2), 

and so gives rise to another finite contribution to m' 2 and to (. 

7.2 Proof of RG invariance 

To show to all orders of perturbation theory that g', m' and (can be chosen 
so that (7.1.9) holds, we generalize from our treatment of the examples. We 
write 

eg'~t'3-d/2 = gJ-t3-dj2 + ag, 

e=t +ae, 
(2m'2 = m2 + am2. (7.2.1) 

The original version of the theory has counterterms computed with unit of 
mass J-t: 

!f' = !f' basic + !f' ct(J-t). (7.2.2) 

We now change to unit of mass ~t' and wish to show that identically the 
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same Green's functions and total Lagrangian are obtained if we make 
changes of the form (7.2.1). 

The Lagrangian is written in the form 

with the basic Lagrangian the same as before, but written as 

.P basiC= (o¢ )2 /2- m2¢2 /2- gnewJ.I.I3 -d/2¢3 /6. 

(7.2.3) 

(7.2.4) 

(As before, we define gnew = (JJ./JJ.')3 -d12g.) The term .Pc is a 'compensating 
Lagrangian' of the form 

(7.2.5) 

The counterterm Lagrangian 2~1 in (7.2.3) is computed using minimal 

subtraction with unit of mass JJ.'. 
We may later reorganize (7.2.3) so that the basic Lagrangian is taken as 

.P basic+ .Pc. We may drop the d-dependence of the finite counterterms !lg, 
!l,2, and !lm2 , since renormalized Green's functions are finite functions of 
renormalized quantities. Finally we may rescale the fields to give (7.1.10). 

But a proof is most easily given with the form (7.2.3). Each of the finite 
counterterms is computed as a sum of terms, one for each 1PI graph 
contributing to the relevant Green's function: 

!lg = L !lr(g), etc. (7.2.6) 
r 

Particular cases are given by the examples in Section 7.1. Thus 

/l y2=g~ew[(JJ.'/JJ.)6 -d_1] 
3 .1.1~ 384n3 d- 6 ' 

2- m2g~ew[(JJ.'/JJ.)6-d -1] 
!l3 .1.1m- 64n3 d-6 ' 

/l _ 13-d/2 g~ew [(JJ.'/JJ.)6 -d- 1] 
3.6.1g- J.l. 64n3 d- 6 , 

!l7.1.1 ('2P2 - m2) = - i[l:Ap, g, m, JJ.)- l:Ap, gnew• m, JJ.')- 2C], 

where the label on !l indicates the number of the figure depicting the basic 
graph. 

The general proof is by induction on the size of a graph. Consider a 
graph G contributing to some Green's function. Using the basic interaction 
- gJJ.3 -df2¢ 3 /6 we renormalize it with unit of mass J.l. using the method of 
Section 5.11. The renormalized value of G is then 

R(G) = G + L Cy(G). (7.2. 7) 
y£ G 
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Here the sum is over subgraphs of G that consist of one or more disjoint 1 PI 
graphs, and Cy(G)denotes the replacement of each of these 1PI graphs by a 
counterterm with unit of mass p.. Similarly we can renormalize G with a 
different unit of mass p.' but with the same basic interaction 
- gnewf1.'3 -df2cp3 /6 to get 

R'(G) = G + I C~(G). (7.2.8) 
ys;;G 

Here, we use the prime to denote use of the unit of mass p.' instead of p.. 

We will now derive a series of new basic graphs containing finite 
counterterms. These counterterms will be used to generate the compensat
ing Lagrangian .ft'c in (7.2.3). The new graphs will need renormalization, 
and we will arrange them so that when they are added to R '(G), we get back 
the original value R(G). The aim will be to have a finite counterterm L\1 for 
every 1PI graph y that is a vertex or self-energy graph. We will arrange the 
L\y's so that 

R(G) = R'[G + L Lly(G) + Ll(G)J. 
yo;G 

(7.2.9) 

Here the sum over y is over products of 1PI graphs. The overall counterterm 
for a graph is computed using minimal subtraction, but with the d
dependence of gnew and of the finite counterterms L\1 ignored (see our 
remarks below (7.1.17)). That is, the counterterms in R' are a series of poles 
at d = 6 with their coeffici-ents being power series in gnew· In the case of a 
verteX'Subgraph, there is also the usual factor p.'3 -d/ 2• The finite subtraction 
Ll( G) for the complete graph in (7.2.9) is only non -zero if G is a 1 PI vertex or 
a self-energy graph. 

We will prove the following relation between counterterms for a 1PI 
graph 

C(y) = c'(y + I a.s<y>) + L\(y). 
d 'I y 

(7.2.10) 

The above equations (7.29) and (7.2.10) are trivially true for tree graphs, 
where no counterterms are needed, for we can set L\(tree graph)= 0. So let 
us assume they are true for all graphs smaller than a given graph G, with all 
the L\y's finite. There are two cases: (a) G is not overall divergent; then we 
must prove (7.2.9) with no counterterm L\(G). (b) G is 1PI and overall 
divergent; then we use (7.2.10) withy replaced by G to define L\(G). We must 
prove d(G) finite and prove (7.2.9). We must also prove L\(G) is polynomial 
in the external momenta of G, with degree equal to the degree of divergence 
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of G; we will assume inductively that this is true with G replaced by any 
smaller graph. 

Consider the terms in (7.2.7). For each we identify a contribution in 
(7.2.9). The term G is the same as Gin R 1(G). Next let y be a 1PI subgraph of 
G (G itself being excluded). Decompose CY(G) by (7.2.10): 

(1) The C'(y) term occurs in R 1(G) as C~(G). 
(2) The term Ll(y) occurs as Lly(G). 

(3) The term C~(Llb(y)) occurs as a counterterm in the renormalization 
RI(LliG)). 

If G is not overall divergent, these exhaust all of the terms in R( G) and on 
the right-hand side of(7.2.9). But if G is 1PI and overall divergent then there 
remains C(G) in (7.2.7) and the terms 

c~[G + I iliG)J + il(G) 
b¥'G 

in (7.2.9). We are therefore forced to define Ll(G) by (7.2.10), and it remains to 
prove Ll(G) finite. This is now easy, since 

R(G),R 1(G), and R~[ I Lld(G)J 
b¥'G 

(7.2.11) 

are all finite, while we have 

R 1(Ll(G)) = Ll(G). 

Moreover all the terms in (7.2.10), except possibly il(G), are ordinary 
minimal-subtraction counterterms. So they are polynomial in the external 

momenta of G, with degree equal to the degree of divergence of G. So Ll(G) is 
polynomial, of the same degree. (Note that the replacement of a subgraph y 
by Lly does not change the overall degree of divergence of any graph r 
satisfying y ~ r ~G. This is because of our inductive assumption on the 
polynomial degree of Lly.) 

The theorem is also true if R and R I stand not for renormalization with 
different units of mass, but for any two renormalization prescriptions. It is 
important that the d-dependence of Lly is taken outside of the extraction of 
pole parts when computing a counterterm like Cr(Lly). This can be seen 
from the example of Fig. 7.1.1, at (7.1.31). The primed counterterms must be 

a particular function of g new• J1.1' ml' and d. The fact that g I itself is a function 
of other variables is ignored. 

Equation (7.2.10) expresses the counterterm C(y) for a graph y (with unit 

of mass Jl.) in terms of renormalization counterterms with unit of mass J1. 1 

and a finite counterterm Ll(y). We can use the finite counterterms to generate 
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the compensating Lagrangian ff c in (7.2.3), and the primed counterterms to 
generate ff~1 • It should be evident that the new Lagrangian is the same as 
the original one (with unit of mass Jl), considered as a function of <P and o</J. 
If we set <Po= Z 112 </J, with Z = Z(g, m, Jl), then we can deduce that the bare 
parameters m0 and g0 are renormalization-group invariant: 

m0 (g, m, Jl) = m0 (g', m', Jl'), 

9o(g, m, Jl) = 9o(g', m', Jl'). (7.2.12) 

7.3 Renormalization-group equation 

We saw in Sections 7.1 and 7.2 that a change in the unit of mass J1 

accompanied by suitable changes in coupling and mass does not change the 
theory, while the Green's functions satisfy 

(7.3.1) 

We wish to compute g', m' 2 and (as functions of g, m2, Jl, and Jl'. If the ratio 
Jll 11' is large, it is not sufficient to use lowest-order perturbation theory, 
since, for example, in (7.1.26) the coefficient of g 2 may be large. 

An important device is to consider a large change in J1 as being made up 
of a sequence of very small changes, so that g', m' 2 , and (are obtained as 
solutions of differential equations. This is the subject to which we now turn. 

The consequence of our work in Sections 7.1 and 7.2 is that for a given 
physical theory, we have for each value of J1 a definite value of the coupling 
g(Jl) and mass m(Jl). These are called the effective (or running) coupling and 
mass. We will derive differential equations for g(Jl) and m(Jl). 

The easiest way to derive the results is to look at the Green's functions 
and the Lagrangian expressed in terms of the bare field </J 0 • The important 
point is that the Green's functions of <Po are invariant under our change of 
parametrization (Jl, g, m)-+ (Jl', g', m'). (This is because the mass and coup
ling in the bare Lagrangian are invariant.) 

7.3.1 Renormalization-group coefficients 

Physical quantities like the S-matrix are invariant under the change of 
variable (Jl, g(Jl), m(JL))-+ (Jl', g(Jl'), m(Jl')). This in variance is conveniently 
expressed by considering a small change in Jl, accompanied by the 
corresponding changes in g and m. We write the result as 

J1dS/dJ1 = 0. 

The total derivative with respect to J1 can be written as 

J1d/dJ1 = JLoloJl + {3ojog- Ymm 2o/om2 • 

(7.3.2) 

(7.3.3) 
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7.3 Renormalization-group equation 181 

On the right-hand side the partial derivatives with respect to Jl, g or mare 
taken with the other two fixed, and the coefficients p and Ym give the 
variations of g(Jl) and m2(J1) when J1 is varied. The sign of the m2ofom2 term is 
the usual convention (Weinberg (1973)). We have 

p = j1dg(J1)/dJ1, 

Ym =- m- 2J1dm 2(J1)/dJ1. 

(7.3.4a) 

(7.3.4b) 

The coefficients p and Ym are called renormalization-group coefficients. 
As we will see they are easy to calculate in terms of the counterterms, as 
functions of g, m, Jl, and d. If we use minimal subtraction, they have no mass 
dependence. This means that (7.3.4) can be readily solved as differential 
equations for g(Jl) and m(Jl.). Indeed this is the easiest way in practice to 
compute the effective coupling and mass. 

To compute p and Ym it is convenient to consider the Lagrangian 
expressed in terms of the bare field ¢ 0 - see (7.l.la). We saw in Section 7.2 

that m~ and g0 are renormalization-group in variant: 

j1dg0 /dJ1 = 0, 

J1dm~/dJ1 = 0. 

(7.3.5) 

Suppose we have computed g0 and m0 to some order in g. Then (7.3.5) can 
be solved to give P and Ym· 

An example of such a calculation comes from our results on ¢ 3 theory, 
where 

- 3-d/2 [1 3g2 0( 4>] 
go - J1 g + 256n3(d - 6) + g ' 

(7.3.6) 

Thus 

so 

(7.3.7) 
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Similarly 

0 = JL dm~ 
djL 

Renormalization group 

=- m2ym[l + O(g2)] + m2f3(g)[ ;g + O(g3)], 
l92n (d- 6) 

so that 

(7.3.8) 

Observe that the (d/2- 3)g term in f3 is important in these derivations, even 
though the term disappears at d = 6. Observe also that, even though the 
coefficients in g0 and m0 diverge at d = 6, it is crucial to expand strictly in 
powers of g. A phenomenon true to all orders is that f3 and Ym are 
independent of m and JL, provided that we renormalize by minimal 
subtraction. 

The general calculation of f3 and y m can be organized with the aid of (7 .1.4) 

for the counterterms. Since we use minimal subtraction, the m- and JL

dependence of the bare parameters is simple: 

Then 

go= JL3 -d/29o(g,d), 

lir fl(g, d)= (d/2- 3)g0 :; , 

olnZm 
Ym(g) = fJ(g, d)---a;}. 

(7.3.9) 

(7.3.10) 

The expressions (7.3.9) are to be expanded in powers of g with the aid of 
(7.1.4). Now 

zm = (l + bm2/m2)Z- 1 

[ b (g)- c (g) 0 J = I + 1 1 + htgher poles , 
6-d 

(7.3.11) 

where we have picked out the sir:gle poles in the series expansion of the 
counterterms (7.1.4). (These are all that will be relevant.) Then (7.3.10) 
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7.3 Renorma/ization-group equation 183 

becomes 

[ a (g) -lgc (g) . J 
(

d ) g + 1 
6 _ 2d 1 + htgher poles 

f3(g,d) = 2-3 [ ' 3 ' 3 ( ) J 
1 + a1(g)-2gc1(g)-2c 1 g +higher poles 

6-d 

= (d/2- 3)g + -!( 1- g :g)[igc1(g)- a1(g)] +poles (that cancel) 

= (d/2- 3)g + Jj(g), (7.3.12a) 

_ a [b (g)- c (g) . J 
Ym(g) = [(d/2- 3)g+ f3(g)] og 1 

6 _ / + htgher poles 

= ig :ic1(g)- h1(g)]. (7.3.12b) 

These manipulations are made by expanding in powers of g. 

In the last line of each of (7.3.12) we have used the fact that although pole 
terms are in principle present, they must cancel in order that f3 and Ym be 
finite as d--> 6. Notice that f3 and Ym are independent of m and Jl., and that the 
only d-dependence is the (d/2 - 3)g term in /3. Only the single-pole terms are 
needed for the calculation. There is a series of relations between these and 
the higher poles that ensures that the poles cancel in (7.3.12); we will 
investigate these later. 

7.3.2 RG equation 

The RG coefficients f3 and Ym are computed from two out of three 
combinations of the counterterms. The differential equat;ons (7.3.4) then 
enable g' and m' in (7.3.1) to be computed. To complete the calculation we 
need(. This is related to the wave-function renormalization. It is easiest to 
obtain by observing that the bare Green's functions G~l = zN12 GN are 
renormalization-group invariant, so that 

J1. :Jl. GN = J1. :Jl. (G~lz-N;z) 
N d 

= -2J1.dJ1.(1nZ)GN. (7.3.13) 

Let us define the finite coefficient 

(7.3.14) 
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184 Renormalization group 

then GN satisfies the following renormalization group equation (e.g. 
Weinberg (1973)): 

[Jl :Jl + ~ y JGN = [Jl :Jl + p :g- Ymm 2 0!2 + ~ Y JGN = 0. (7.3.15) 

In the minimal subtraction scheme for 4J 3 we find 

y = [(d/2- 3)g + p(g)] :g[ ~~g~ +higher poles J 
I d 

= -zgdgcl(g) 

g2 4 

= 384n3 + O(g ). 

7.3.3 Solution 

(7.3.16) 

We wish to solve the RG equations to find g(Jl'), m(Jl') and ((Jl',Jl) in (7.3.1), 
given that g{Jl) = g and m(Jl) = m. The RG equation tells us that 

d 1 d 
Jl' dJl,In ( = N Jl' dJl,In [ GN(Jl')/GN(Jl)] 

= - h[g(ji')]. (7.3.17) 

So we must solve this equation together with (7.3.4) for g and m. The 
boundary conditions are 

(7.3.18) 

(7.3.19) 

https://doi.org/10.1017/9781009401807.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.007
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Approximations can be made by taking a finite number of terms in the 
perturbation series for /3, Ym andy. For example: 

256n3 Jg(~t') dg 
In(Jt'!Jl) =- - 3- 3 [1 + O(g2)] 

9(/l) g 

= 12~n3 [ g(~')2 - g(~)2 J + 0 [In ( ~~;) l (7.3.20) 

This is accurate if g(Jl') and g(Jl) are small. Notice that g(Jl')---'> 0 as 
Jl'---'> oo. This is the property called asymptotic freedom. It is determined by 
the negative sign of the first term in f3 at d = 6. 

The full solution to the RG equation is 

GN(x;g, m, Jl) = exp [- ~ J:d: y(g(Jl)) ]GN(x;g(Jl'), m(Jl'),Jl'). (7.3.21) 

7.4 Large-momentum behavior of Green's functions 

The most important application of the renormalization group is to 
compute large-momentum behavior. In this section we treat the simplest 
case, that of a Green's function GN(p1, ... , PN) all of whose external 
momenta are made large. (Notice that we have used our standard notation, 
where the tilde indicates Fourier transformation into momentum space.) 

Let us suppose initially that all the Lorentz invariants formed from 
the momenta are non-zero. Then we scale all the momenta by a factor 1c 
P;---'> KP;, and let K get large. Thus all the Lorentz invariants P;' pi are scaled 
by a factor K 2 and become large. Under these conditions, Weinberg's 
theorem tells us that at least in a renormalizable theory all internal lines of 
graphs for GN carry large momenta, and that graphs for GN have the 
asymptotic behavior 

Kdim (;(logarithms of K). (7.4.1) 

Since all propagator denominators are large, we should be able to neglect 
masses and make only an error a power of K smaller than the leading 
behavior (7.4.1). 

For example consider the propagator in ¢ 3 theory at d = 6. The tree 
graph goes like i/p2 at large p 2, while the one-loop correction is 

i g 2 
{' J' [-p2x(l-x)J p 2 128n3 t;(Y - 1) + 

0 
dx x(l - x) In 4nJl2 

(7.4.2) 

(We used (3.6.10) for the self-energy graph to derive this equation.) 
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186 Renormalization group 

Now there is a term proportional to In ( - p2 I J1. 2 )/ p2 that gets large 
relative to the tree graph if p 2 is large enough. Thus the perturbation series 
has large coefficients and is not directly useful. However we may use the 
renormalization group to set J1. 2 = O(p2 ). This makes the coefficient small 
again. So we use the following strategy to compute GN(Kp) at large K: 

(1) Set JJ.' = KJJ., and use the solution of the RG equation to write 

GN(Kp,g, m,JJ.) = ((KJJ., JJ.)-NGN(Kp, g(KJJ.), m(KJJ.), KJJ.). (7.4.3) 

(2) Neglect m (if m(KJJ.) does not get too large). Then use dimensional 
analysis to give 

GN(Kp, g, m, JJ.)"' C N(;N(Kp, g(KJJ.), 0, KJJ.) 

= ,clim(G•l((Kj)., JJ.)- N(;N(p, g(KJJ.), 0, JJ.). (7.4.4) 

(3) Large K-dependent coefficients, as in (7.4.2), are now removed, so if g(KJJ.) 

is small, a low-order calculation suffices. 

This procedure makes it evident that the coupling that is relevant is the 
effective coupling at the scale of the momenta involved. 

It should be noted that we have related the large-momentum behavior of 
GN to the finite-momentum behavior of the zero-mass theory. It is therefore 
crucial that the zero-mass limit exists. However this limit does not always 
exist: if we use mass-shell or zero-momentum subtractions, then we see 
from, for example, (3.4. 7), that the same self-energy as considered in (7.4.2) 
diverges as m--+ 0. Now Weinberg's theorem tells us that, in the dominant 
momentum region for a graph without counterterms, all lines are far off
shell; hence masses can be neglected. So the problem must be that with 
mass-shell or zero-momentum renormalization prescriptions, the counter
terms diverge as m--+ 0. This is easily checked from our explicit calculations 
(see (5.10.2)). 

We can now see the practical importance of the theorem whose proof was 
summarized at the end of Section 5.8, that the counterterms may be chosen 

polynomial in masses. It ensures that the zero-mass limit may be taken 
directly and used to compute large momentum behavior. The minimal 
subtraction scheme is one way of ensuring that counterterms are poly
nomial in mass. 

If one uses, say, zero-momentum subtractions, large-momentum be
havior may be computed by changing renormalization prescription to, say, 
minimal subtraction. Another approach is to observe that the logarithms of 
p 2 break a possible symmetry of the theory under scaling transformations. 
The consequences of this point of view were worked out by Callan (1970) 

https://doi.org/10.1017/9781009401807.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.007


7.5 Varieties of high- and low-energy behavior 187 

and Symanzik (1970b). They derived the Ward identity for scaling 
transformations. It is called the Callan-Symanzik equation and looks 
similar to the RG equation. This equation may also be used to discuss high
energy behavior. 

7.4.1 Generalizations 

The behavior of GN when all momenta are scaled by a large factor K is not 
normally experimentally relevant, for all the external momenta are then far 
off-shell. In coordinate space the corresponding region is the short-distance 
limit of GN(x1, ... xN), where every xi-xk is made small: xi-xk~ 
(xi- xk)/K. 

This means that we should be able to use RG methods to discuss the 
renormalization of the theory, for renormalization is a purely short
distance phenomenon. We will work out the details in Section 7.10. On the 
other hand, physical experiments involve long distances. To get results for 
high-energy experiments we need the so-called factorization theorems. The 
simplest of these is the operator-product expansion which we will treat in 
Chapter 10. These theorems typically give a cross-section as a product of a 
factor which can be computed by pure short-distance methods and of 
simple factors related to wave-functions of the incoming and/or outgoing 
particles. 

We could also useR G methods to discuss the infra-red limit K ~ 0. This is 
only useful if masses can be neglected. Certainly this is true in a purely 
massless theory, as we will see in Section 7.5.4, and then IR behavior is 
computable if and only if the theory is not asymptotically free. But in a 
massive theory, it is not useful to take f1 much less than a typical mass, for 
one obtains logarithms of m/ f.l, and these prevent a simple use of 
perturbative methods when f1 ~ m. 

7.5 Varieties of high- and low-energy behavior 

7.5.1 Asymptotic freedom 

In solving the RG equation to obtain high-energy behavior, we find two 
cases according to whether p is positive or negative. In this section we 
discuss the asymptotically free case, when p is negative. Suppose the 
effective coupling g(J1) is small for one value of f.l, so that p is well 
approximated by its first term. Then the evolution equation (7.3.4a) shows 
that g becomes even smaller at larger values of f1 and in fact goes to zero as 
f1 ~ oo. Thus perturbation theory is reliable for computing high-energy 
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behavior. From (7.3.7) we see that ¢ 3 in six dimensions is asymptotically 
free. 

It is instructive to compute the behavior of g from the first two terms in {3. 
Let us define 

{3 = - A1g3- A2gs + O(g7). 

We have the equation for the evolution of the effective coupling: 

dg 
J1 dJ1 = {J(g ). 

(7.5.1) 

(7.5.2) 

Equations of the same form as (7.5.1) and (7.5.2) hold in any renormalizable 
theory, for example in QCD, though A 1 and A 2 are not necessarily positive 
in the general case. 

The solution of (7.5.2) is 

In J1 =constant+ dg' I {J(g') f9(1l) 

=constant + dg' --,-3 + +, + O(g') , JY(Ill [ -1 A J 
A 1g A 1g 

1 A 
=constant+ 2 + -4In [g(J1)] + O(g2). 

2A 1g(J1) A 1 
(7.5.3) 

The constant can be computed from a knowledge of g(J1) at one value of Jl· It 
is conventional (Buras, Floratos, Ross & Sachrajda (1977)) to write the 
constant in the form In A+ -!A 2 A ! 2 ln(A 1), where A is a parameter with the 
dimensions of mass. Then 

(7.5.4) 

(7.5.5) 

A specification of g(J1) at one value of J1 is exactly equivalent to a 
specification of A. The precise choice of the scale of A is that in (7.5.5) the 
omitted terms are of the order shown rather than of order 1/ln2 (J1/ A). The 
expansion (7.5.5) is much used in QCD. A higher-order calculation of g can 
be made from the following form of the solution 

2 2 1 A2 [ 2] 
ln(Jl /A ) = A

1
g(Jlf + Ai In A 1 g(J1) 

2 d ' -- -----2-f9<1ll [ 1 1 A J 
+ o g {J(g') + A1g'3 Aig' . 

(7.5.6) 
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It is necessary to go to two-loop order to obtain both the terms on the right 
of (7.5.6) that diverge as g-+0. 

The values of m(JL) and ' may be similarly calculated. For example, if 

y = Ctg2 + ... , (7.5.7) 
then 

(7.5.8) 

7.5.2 Maximum accuracy in an asymptotically free theory 

The results above enable calculations of Green's functions to be made at 
high energy. By taking more and more terms in the series, we may improve 
the predictions. However, in general, perturbation series are asymptotic, 
not convergent. A trivial example is the ordinary integral 

I(g,m) = m(2n)- 1'2 J:oo dzexp(- m2 z2/2- gz4 /4!) 

This can be considered to be a functional integral in Euclidean ¢ 4 field 
theory at zero space-time dimension with the normalization chosen to give 
I = 1 when g = 0. The perturbation expansion is 

oo Joo ( _ gz4)N 1 I "'m(2n)- 112 L dz exp( - m2 z2 /2) --1- - 1 
N=O - 00 4. N. 

= f (-g)N7t-1/2r(2N+1/2) 
N=O 6m4 r(N + 1) 

= L 4 IN. 
oo ( g )N 

N=O m 
(7.5.9) 

Now 

IN= NN( ~e2r(nN)- 112 [1 + 0(1/N)], as N-+ oo, (7.5.10) 

so the series is divergent. The divergence is associated with the fact that the 
defining integral diverges if g is negative, so that I is not analytic at g = 0. 
The corresponding property of ¢ 4 theory is that the Hamiltonian is 
unbounded below (i.e., the vacuum does not exist) if g is negative. 
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What we can say is that we can approximate I by truncating the series: 

Nm 

I= L (g/m4tiN+O[(g/m4t+l]. (7.5.11) 
N=O 

The error is estimated by the first term omitted, i.e., 

0[1 Nm+ I (gjm4)N"' +I]. 

These results are standard in the theory of asymptotic expansions for simple 
integrals. All experience, together with rigorous theorems for quantum 
mechanics and super-renormalizable field theories (Glimm & Jaffe (1981) 
and references therein), indicate that this behavior is typical for functional 
integrals in a non-trivial dimension (i.e., d > 0). 

Next, let us suppose we wish to compute some quantity in an 
asymptotically free theory by truncating its perturbation expansion 

N. 

L g(J1)2N IN. 
N=O 

We assume that the quantity depends on some momentum p, and that we 
set the unit of mass 11 to be of order p. A case would be the propagator with 
f.1 = O(lpj). Suppose that the coefficients in the expansion behave like 

IN"' NNbN Nad[1 + 0(1/N)], (7.5.12) 

for large N. What is the best accuracy with which we can calculate the 
quantity? This is given by the minimum error, i.e., the minimum of I Ng 2N as 
N varies. The result is that the minimum possible error in a perturbative 
calculation is of order 

constant I PI- ZA,Jeb(ln IP I )a. 

This means that beyond a certain level, power-law corrections to the 
asymptotic behavior computed in perturbation theory are meaningless 
since they are smaller than the irreducible error in using perturbation 
theory. Power-law corrections are those that are a power of p 2 smaller than 
the leading term. 

7.5.3 Fixed point theories 

In four dimensions, the only theories that are asymptotically free are non
abelian gauge theories with a small enough number of matter fields- see 
Coleman & Gross (1973) and Gross (1976). Other theories, like </> 4 and 
QED, have an effective coupling that increases with energy. Thus, in such 
theories it is impossible to compute the true high-energy behavior by 
perturbation theory. (Note however that the coupling in QED is rx/n 
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{J(g) 

g* 

Fig. 7.5.1. {J(g) in a non-asymptotically free theory with a fixed point at g = g*. 

"'1/430. This is very small, so the non-perturbative region in QED does 
not occur until very many orders of magnitude beyond experimentally 
accessible energies.) 

An interesting possibility is that p(g) has the form shown in Fig. 7.5.1, 
with a zero at g = g*. Then g(Jl) approaches the 'fixed point' g* as Jl-> oo. At 
large momentum Green's functions behave like 

GN(Kp 1 , ••• , KpN, g, m, J1) "'const J(limG.+Ny(g*J/2GN(p 1, ••• , pN, g*, 0, Jl). 
(7.5.13) 

This behavior is as if ¢ had an extra term y(g*)/2 in its dimension. 
Consequently, the function y(g)/2 is called the anomalous dimension of the 
field ¢. 

7.5.4 Low-energy behavior of massless theory 

If m = 0, then the renormalization group can be used to compute infra-red 
behavior. The calculability is the opposite of that for the UV behavior. 
Consider first an asymptotically free theory. There, the effective coupling 
g(J1) goes to zero when J1 goes to infinity, so that short-distance behavior is 
computable perturbatively, as we saw in Section 7.5.1. But, when J1 is small, 
g(Jl) is large, so the infra-red behavior cannot be computed reliably by 
perturbation theory. (This is the case for strong interactions, according to 
QCD.) 

Let us now consider a non-asymptotically free theory. For large Jl, the 
effective coupling is large, so the short-distance behavior is not per
turbatively computable. (For example, a perturbative calculation in low 
order of the position of the fixed point, g*, in Fig. 7.5.1 and of the value of 
p(g*) is subject to large errors from higher-order uncalculated corrections.) 
But when J1 goes to zero, so does the effective coupling. We are assuming the 
absence of a mass term for the field, so there are no large logarithms of m/ J1 
as J1 goes to zero. Hence, we can compute IR behavior in such a theory, just 
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as we computed UV behavior in an asymptotically free theory. We will now 
do this. 

Now, for almost any graph there are large logarithms of p2 I J1. 2 as p2 ..... 0 
in a massless theory,just as in the ultra-violet. In the case of the propagator, 
these logarithms mean that the propagator's singularity is not a pole, at 
least order-by-order. 

To investigate this singularity let us again write 

(7.5.14) 

using the same notation as before, but now with A 1 < 0. We assume that g is 
below the first non-zero fixed point g*, if there is one. The propagator is 

Jg(KIJ) 

G2(~<:p;g(J-L),J1.) = K- 2 G2 (p;g(KJ1.),JJ.)exp dgy(g)jp(g) 
g(IJ) 

= i/(~<: 2 p2 )[1 + O(g(KJJ.)2)]exp{- Jdg(CdA 1g)[I + O(g2)]} 

"' i/(~<: 2 p2 ) ·constant· [ln(l/K) Y ,;2 A,, (7.5.15) 

asK -+0. Hence if C 1 is non-zero, then p2 G2 (p) does not have a finite non
zero limit asp -+0; the singularity of G2 (p2 ) at p2 = 0 does not correspond 
to a simple single-particle pole. The massless particle that gives rise to the 
singularity cannot be treated as an ordinary particle, because its long-range 
interactions are too strong. Positivity of the metric of the state vectors 
constrains C 1 to be positive, and we assumed a theory with A 1 negative, so 
K 2 times the right-hand side of (7.5.15) goes to zero. (The positivity 
argument is the one given in the textbooks (e.g., Bjorken & Drell (1966)) 
that the residue of the pole in a propagator is less than unity if the 
propagator is of the canonical field. Application of this argument in the 
theory with an ultra-violet cut-off shows that the divergence of the self
energy must be such that C 1 is positive.) 

Notice that if C 1 = 0, then the propagator does have a finite residue at 
p=O: 

_Q 
Fig. 7.5.2. Lowest-order self-energy 

graph in ¢ 4 theory. 

(7.5.16) 

Fig. 7.5.3. Lowest-order self-energy 
graph that contributes to the 

anomalous dimension in ¢ 4 theory. 
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Observe that only the first term in y is relevant to the finiteness of the limit, 
and that the limit does not exist order-by-order. A case where C 1 = 0 is the 
r/J4 theory, because the one-loop graph Fig. 7.5.2 is independent of p. The 
two-loop graph Fig. 7.5.3 provides the lowest-order term in the anomalous 
dimension. 

7.6 Leading logarithms, etc. 

7.6.1 Renormalization-group logarithms 

We saw in Section 7.4 how to compute the large momentum behavior 
of a Green's function by approximating it by a Green's function with 
m = 0. Then we used the renormalization group to reorganize the 
perturbation series into a form with small coefficients. It is of interest to 
examine how the complete result can be obtained by a systematic 
resummation of the perturbation expansion. 

For concreteness, let us examine the propagator G2(p,g, /1) in massless r/1 3 

theory in six dimensions. We write its perturbation expansion as 
00 

Gz=(ijp2) I g2nTn(-p2/!12), (7 .6.1) 
n=O 

where the lowest coefficient is T0 = 1. We will prove that each Tn is a 
polynomial in In 11 (and hence in In (- p2/J1 2 )) of degree at most n, with n 

being the number of loops. To do this we will regard the RG equation 
(7.3.15) not as an equation to give the variation of G2 when 11 is changed 
with g set equal to the effective coupling g(/1) (thus keeping the theory fixed), 
but as an equation for the 11-dependence of G2 with g fixed. Picking out the 
order g2 n term gives 

a {[ a]n-1 } -Tn = - y(g)- p(g)- I Tn,g2n' 
a In 11 ag n' = 0 coefficient or 9'·. 

(7.6.2) 

Since yis O(g2 ) and pis O(g3 ), this equation determines Tn in terms of lower
order T/s: 

Tn =constant 

+ { I - [y(g) + p(g)}__]gzn·fl"ll d!nJl'Tn,(- pz/11'2)} . 
n' < n Og 0 coeffic1ent of g2". 

(7.6.3) 

Iteration of this procedure another n - 1 times gives Tn in terms of T0 and n 
constants of integration. Evidently Tn is a polynomial of degree n in In 11 as 
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claimed: 
n 

Tn= L Tn,n-t[In(-p2/.U2)Jl. (7.6.4) 
l=O 

All but the constant term are determined in terms of lower-order 
coefficients. 

A convenient way of organizing the series is to define for each term 

L= -number of logarithms+ number of powers of g2 = - 1 + n. (7.6.5) 

This is non-negative. The sum of the terms with L = 0 (viz., 
Tno [In (- p2 / ,u2)]n) gives what is called the leading logarithm approxi
mation to G2 • Application of .uo/o.u, f3ojog or y to G2 (with one-loop values 
for f3 and y) increases L by 1. All the non-leading logarithms give even 
higher values of L. So the leading logarithm series exactly satisfies the one
loop approximation to the RG equation. Hence we may sum the leading 
logarithm series by solving this approximation to the RG equation 

Gz(P2 ;g,,u)L=o = {exp[fJ-pzd~' y(g(,u'))]G2(p2 ;g( J- p2), J- p2)} 
~ .U L=O 

= [1 + A1gz1n(- p2/.uz)y';2A,i/p2. (7.6.6) 

Here we used the same notation as in Section 7.5.1. This equation 
reproduces the approximation derived at (7.5.8). 

Another way of treating both the leading and non-leading logarithms is 
to use the RG equation (7.6.2) to give a recursion relation for the Tn.L's: 

n-1 
L 2(L-n)Tn,L[In(-p2/.u2)]n-L-1 

L=O 
n- 1 

=[2A1(n-1)-C1] L Tn-1,L[In(-p2/.u2)]n-1-L 
L=O 

n-2 
+[2A2(n-2)-C2] L Tn-2,L[In(-p2/.u2)]n-2-L+ .. ·, 

L=O (7.6.7) 

where y = C1g2 + C2 g4 + .. ·,and f3 =- A 1g3 - A 2 g5 + .... 
The leading logarithm part of this equation is 

- 2nTn,o = [2A 1(n- 1)- C 1] Tn- 1,o· (7.6.8) 

This equation determines the leading logarithm series in terms of T00 = 1, 
and of A 1 and C 1 ; this series sums to (7.6.6). 

Equation (7.6.7) also determines the non-leading logarithms. For 
example the next-to-leading terms are 

- 2(n- 1)Tn, 1 = [2A 1 (n- 1)- C1] Tn- 1,1 + [2A 2(n- 2)- C2] Tn_ 2,0. 
(7.6.9) 
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n-L=#logs 

n= #loops 

Fig. 7.6.1. Illustrating the leading logarithms and non-leading logarithms of a 
Green's function. 

Again a convergent series results. Its sum is equally accurate as the result 
of using the two-loop approximation to p and y in the solution (7.3.21). 
There J.l is set equal to (- p2 ) 1' 2 and we take the one-loop approximation to 
G2(p;g( J- p2 ), m = 0, J- p2 ), i.e., (i/p2 ) (1 + g2 T11 ). 

The series for larger L may be similarly determined. In Fig. 7.6.1 we 
illustrate the structure of the calculations. The diagonal lines are lines of 
constant L, and the recursion relation (7.6. 7) determines a coefficient Tn,L in 
terms of lower-order terms on its diagonal and on the higher diagonals. 

Suppose we have computed perturbation theory to n- 1 loops for G2 

and wish to compute the n-loop term. In this term the coefficients of all but 
ln(- p2/J.l2) and the constant are fixed by the lower-order calculations. 
Thus the new information is in the nth order coefficient en for y and in the 
terms with one and no logarithms, i.e., in Tn,n- 1 and Tn,n· The (ln)0 term in 
(7.6.7) is 

n-1 
- 2Tn,n-1 = -en+ L [2An- jj- en- j] Tjj' 

j= 1 

(7.6.10) 

This shows that knowing the coefficient, Tn,n- 1 , of the singly logarithmic 
term in Tn is equivalent to knowing the n-loop coefficient en in y(g). 

Exactly the same procedure may be applied to any Green's function GN. 
The only difference is that there are several external momenta. It is enough 
to consider the connected graphs. Let us write 

oo n 

GN(connected) = (p2)dim(GJ/2 gN- 2 L L G~~Vnn-L(- P2 I J.l2)g2n, 
n=O L=O 

(7.6.11) 

where pis one of the external momenta and we have factored out gN- 2 , 

which is the power of g appearing in the tree approximation. The 
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coefficients G<:,L are now functions of the dimensionless ratios of the 
Lorentz invariants formed from the external momenta. 

The leading logarithm series and all the non-leading series are con
vergent, so they can be summed. The n! behavior of large orders only 
appears when we consider the single log and constant terms, and thus in the 
sum over L. 

7.6.2 Non-renormalization-group logarithms 

In all of the above cases there was one logarithm of the large momentum per 
loop. There are more complicated situations where not all invariants get 
large. A simple standard example is the form-factor of the electron in QED 
with a massive photon (Fig. 7.6.2). Here q2 = (p 1 - p2 ) 2 gets large but Pi 
and p~ are fixed. It turns out (Sudakov (1956), Jackiw (1968)) that there are 
two logarithms per loop. These must be in the coefficients G~~l in (7.6.11), 
since the power of the logarithms is too high for them to be the explicit 
logarithms in (7.6.11). 

Fig. 7.6.2. The electron's form factor in QED. 

One would like to find the large-momentum behavior in such situations. 
A much-used technique is to sum the leading logarithms, which are often 
relatively easy to compute. For the on-shell form-factor this gives a 
convergent series which sums to (Jackiw (1968)) 

F-exp[ -(e2/16n2 )ln2 q2]. (7.6.12) 

(See also Mueller (1981). For the simple cases that we considered earlier, 
with all momenta large, the leading logarithm approximation is justified by 
renormalization-group methods, as we have seen. For cases like the present 
one of the form-factor, it may be a bad approximation (Collins & Soper 
(1981, 1982b)). Howe,·er methods are available to obtain large-momentum 
behavior in some of these situations. See Mueller (1979, 1981) and Collins 
(1980) for the electron form-factor and Collins & Soper (1981) for cases in 
strong interactions. 

7.6.3 Landau ghost 

The leading logarithmic approximation (7.6.6) for the propagator has a 
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singularity when 

(7.6.13) 

This singularity, if present in the true propagator, would signal a state of 
this value of mass squared. Since the residue has the opposite sign to that for 
a normal propagator pole, this would be a state with unphysical properties. 
It is called the Landau ghost (Landau & Pomeranchuk (1955)). In a non
asymptotically free theory like QED, it occurs at very large energies and in 
an asymptotically free theory like QCD, it occurs at low energies. In either 
case it occurs where perturbation theory is inapplicable and so where the 
leading logarithmic approximation is a bad approximation. 

7.7 Other theories 

We restricted our attention in deriving the renormalization group equation 
to a theory with one field, one coupling, and one mass parameter. However 
we may treat, by exactly the same method, a theory with several fields 
¢ 1, ... ,¢A (each may be Bose or Fermi), several couplings g1, ••. ,g8 , and 
several masses. A change in the unit of mass f.! is compensated by a change in 
each of the parameters and in the scale of the fields. The main problem is a 
proliferation of indices. It is easiest to treat couplings and masses on the 
same footing. So we have a collection g 1, ... , 9c of renormalized parameters, 
with C being the total number of couplings and masses. Then we must write 

d 
f.! df.!gj(J.t) =Pig), (7.7.1) 

each function pi being, a priori, a function of all the parameters. For the case 
of a theory with a single coupling, and a single mass, would have (gpg2 ) = 
(g,m 2 ), and /31 = f3(g) and /3 2 =- Ym(g)m 2 . 

Given a function f of the renormalized parameters and of f.!, we have 

d ( a a ) 
J.tdf.!f(g,J.t)= f.!af.! + ~ 13ja9j f. (7.7.2) 

The RG coefficients can be determined by noting that the bare couplings 

g i(O) are invariant: 

d 
f.! df.! g j(O)(g, f.!, d) = Q. (7. 7.3) 

These form C equations for C unknowns. 
The RG equations for Green's functions are complicated by the 

possibility that fields of the same quantum numbers may mix under 
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renormalization. Writing 

Renormalization group 

¢(O)i = IJij(g,d)¢j, 
j 

we find, for example, that 'kinetic energy' terms in fe are of the form 

i I o¢fo)i = -i I o¢ j0¢IL (;j(il = -i I o¢ j0¢Izjl· 
i j,l i j,l 

Hence, we have a matrix counterterm for the field-strength renormalization 

Z;j(g,d)= L,li,lj=((T()ij• (7. 7.4) 
I 

where T denotes transpose. (Note that (has a different meaning here than in 
Sections 7.1 and 7.2.) 

If we define a matrix anomalous dimension by 

d 1'\' 
JJ.-d ¢; = - 2 L., yij¢ i' 

fJ. j 

(7.7.5) 

then in variance of the bare fields gives 

(7. 7.6a) 

i.e., 

or 

JJ. ddJJ. z =i{Z, y}. (7.7.6b) 

If Z is diagonal (as is the case in most theories we consider): Z;i = ()ijZi, then 

(7.7.6) reduces to an anomalous dimension for each field 

d-+.- 1 JJ. dJJ. '1-';- -zY;¢;, (7.7.7) 

d 
JJ.d!J.ln Z; = Y;· 

In the case of a diagonal Z, the renormalization group equation for an N
point Green's function is 

JJ.:JJ. GN = [JJ. :JJ. + J1 Pig) a~JGN 
N 

= - L h;.(g)GN. (7.7.8) 
a=1 
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Here }'i. is the anomalous dimension function for the IJCth external field of 
GN. If the renormalization matrix Z is not diagonal, then we have a similar, 
but more complicated, set of equations for the Green's functions. 

The equations for the evolution of the couplings are coupled, so their 
solution is in general complicated. Considerable simplification can be 
achieved by using our knowledge of the dependence of the counterterms on 
massive couplings. Let the couplings g1, ... , gA be dimensionless and let the 
corresponding bare couplings be 

/1(4 -d)p;g(O)Jg,d), 

where the g(Oii depend only on the renormalized dimensionless couplings 
and on the UV cut-off. For the sake of definiteness, we assume that the 
physical dimension of space-time in the theory is d = 4. The wave-function 
renormalizations Zi also only depend on the dimensionless couplings and 
on d. Let the other parameters (masses and super-renormalizable coup
lings) be denoted by fs, and let the dimension of fs be (4- d)rs + CJ5 • If fs is 
the mass of a fermion, then CJ5 = 1, rs = 0. If it is a boson mass squared, then 
CJs = 2 and rs = 0, while for a super-renormalizable coupling rs =f 0 and 
CJ5 > 0. Then (by Section 5.8) the bare quantity corresponding to fs has the 
form 

f - '\' (4-d)r,XF ( d) 
(O)s - f._, f1 sX g, · (7.7.9) 

Here X is any product of the dimensional couplings with dimension (at 
d = 4) equal to the dimension CJ5 of fs· 

Requiring invariance of the bare couplings gives 

A a 
o = (4- d)pig(Oii + I fJj-8 g(O)i' 

j= I gj 

(7.7.10a) 

(7. 7.1 Ob) 

(7.7.10c) 

There is then a triangular structure to the evolution equation: the evolution 
of a coupling depends only on couplings of the same and lower dimensions. 
In these equations, the index j runs over the values 1 to A, i.e., over those 
values that correspond to the dimensionless couplings, while the indices s 
and t run over the labels for the dimensionful couplings. 
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If we use minimal subtraction, the calculation of the coefficients is rather 
easy. Let G;(g), Z;(g), and F.x(g) be the coefficients of single poles in g<Oli' Z; 
and F.x· Then we have 

f3j(g,d) = (d- 4)pjgj +Pig), 

f3.(g,f,d) =(d- 4)~:J. + P.(g,f), 

7.8 Other renormalization prescriptions 

(7.7.11) 

It was only for the sake of simplicity that we restricted our attention to the 
minimal subtraction procedure. The proof in Section 7.2 in fact shows that 
any change in renormalization prescription can be compensated by a 
change in renormalized parameters and a change in the scale of the 
renormalized field. Let us examine what happens in more general schemes. 
It is sufficient to restrict our attention to a theory with a single coupling and 
mass, like ¢> 3 theory in six dimensions. 

If we choose a renormalization scheme with an extra mass fl, which might 
be a renormalization point, then renormalization-group coefficients can 
still be defined and computed by (7.3.4), (7.3.5), and (7.3.14). What we lose in 
general are : 

(1) the simple formulae (7.3.12), 
(2) the lack of dependence of {3, Ym and y on the masses. 

In order to discuss UV limits, it is sensible to choose a scheme in which the 
limit m ~ 0 exists. This means that {3, Ym' y are finite, order-by-order, as 
m~o. 

Now, different renormalization schemes are related by finite renormali
zations of the parameters. So we may relate the RGcoefficients in different 
schemes by looking at the theory in the physical space-time dimension and 
then computing f1dfdf1 in one scheme in terms of f1dldf1 in another scheme 
with the aid of the chain rule. 

Suppose we have a second scheme in which the new mass, coupling and 
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field arc m', g' and¢': 

g' = g'(g, m2 /J-1.2), } 
m'2 = m2zm(g, m2 /J-1.2), 

¢' = </J((g, m2 /J-1.2). 

Then the Green's functions in the new scheme are 

G~(p; g', m'2, J-1.) = CN GN(p; g, m2, J-1.). 

The renormalization-group coefficients in the new scheme are: 

201 

(7.8.1) 

(7.8.2) 

' ' ,z' 2 d ' ( a c 2 a ) '( 2/ 2) (7 8 3) f3(g,m IJ-1. )=f-l.df-l.g = f-laf-1. +f3ag -ymm am2 g g,m f-1., .. 

Y' (g' m'z;"z) = - ~_<!_m,z 
m ' r - m'2 dJ-1. 

=(m-(J-1.-~ +/3~ -}'mm2 ;:,? z)ln[zm(g,m2/J-1.2 )]. (7.8.4) 
CJ-1. cg (m 

Our definition of the total derivative d/dJ-1. is as the derivative with respect to 
J-1. when the bare coupling g0 and bare mass m0 are held fixed. Therefore, it is 
the same in both schemes. Notice that there are two steps in computing /3' or 
y~: First, compute the right-hand side expressed in terms of g, m, and J-1.; 
second, change variables to the new coupling and mass. 

The anomalous dimension of¢' is obtained as 

2 d 
y'(g',m' 2 /J-1. 2)= --J-1.-lnG~ 

N dJ-1. 

d 
= -2J-1.-ln(+y 

df-1. 

= y- 2 w!!_ + /3-- y m2- ln((g, m2ff-1. 2). ( ~ a a ) 
af-1. ag m am2 (7.8.5) 

A considerable simplification occurs in relating mass-independent 
schemes. Then g', ( and zm are functions of g alone, so that the 

renormalization-group coefficients in the new scheme satisfy 

a 
f3'(g') = f3(g) cl'(g), 

Y~(g') = 'Ym- f3 :gIn zm(g), 

}"(g') = }'- 2f3;-g1n((g). 

(7.8.6) 
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In this case, let g', zm and ( have perturbation expansions 

g' = g + alg3 + a2gs + ... '} 
zm = 1 + blg2 + b2g4 + ... ' 

( = 1 + clg2 + c2g4 + ... , 
(7.8.7) 

and let the expansions of {3, Ym• and y be 

{3(g) = -Alg3-A2gs-A3g7_ ... } 

Ym(g) = B1g2 + B2g4 + ... , 
y(g) = Clg2 + C2g4 + .. . 

(7.8.8) 

The expansions of {3', y~, and y' are written similarly with all quantities 
primed. Then we can express them in terms of g by using (7.8.7). For 
example: 

fJ'(g'(g)) = -A ;g\l + alg2 + a2g4 + ... )3 -A ;gs(l + alg2 + .. Y- A~g 7 + ... 
=- A;g 3 - g 5(A; + 3a 1A;)- g 1(A~ + 5A;a 1 + 3A;a2 + 3A;ai) + · ··. 

(7.8.9) 

This must agree with the perturbation expansion of the right-hand side of 
(7.8.6) 

{3og'jog= -A 1g3-g\A2 +3a1A 1)-g7(A 3 +3A2a1 +5A 1a2)+···. 

(7.8.10) 

From these equations we see that the first two coefficients in {3 do not 
change when the renormalization prescription is changed, i.e., 
A 1 =A~. A 2 =A~. By generalizing the above equations to all orders we also 
see that, by adjusting the terms in the expansion of g'(g), we may choose the 
terms beyond the second in {3' to be whatever we want. In similar fashion we 
see that only the O(g2 ) terms in Ym and y are invariant. 

Note that if the one-loop term in y or Ym is zero then the whole of y (or Ym 
respectively) may be made zero by a choice of renormalization prescription. 
This privilege does not extend to {3: if the first non-vanishing term in {3 is at 
n-loop order (n > 1) then that term is RG invariant (but not the (n + 1)-loop 
term). 

In a theory with more than one dimensionless coupling we may try to 
apply the same methods. This is left as an exercise. It will be found that only 
the first term in each {3 is now invariant, except in the case that the one-loop 
{3-function does not mix the different couplings. 

The invariance of these coefficients only applies within mass
independent renormalization prescriptions. If one were to use, say, on-shell 
subtractions, then the parameter Jl would not appear, so all derivatives with 
respect to Jl are zero. Then we have {3 = y = Ym = 0. (The asymptotic 
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behavior that we extract by varying J1. can no longer be computed by 
renormalization-group methods, if we stay within this renormalization 
prescription. In this case the Callan-Symanzik equation must be used 
instead- see Callan (1970) and Symanzik (1970b).) 

7.9 Dimensional transmutation 

Consider a renormalizable field theory with one dimensionless coupling g 
and no masses. A physically important case is QCD with several flavors of 
massless quark; with two or three flavors this is an approximation to actual 
strong interactions. 

Since the basic theory has no masses we must use a renormalization 
prescription with an arbitrary renormalization mass Jl.· Although the theory 
apparently has two parameters, g and Jl., we saw that this is not so: a change 
in J1. can be compensated by a change in g. In fact, as Coleman & Weinberg 
(1973) pointed out, the theory really has no parameters at all. The point is 
simple but somewhat elusive, so we explain it at length. 

A physically measurable quantity must be renormalization-group 
invariant. For example, let M(g,Jl.) be a particle mass. By dimensional 
analysis, it is J1. times a function of g alone. So 

d i) 
0=J1.-M=M+f3-M. 

dJ1. og 
(7.9.1) 

Hence 

[ Jg dg' J M = wconstant·exp - --
f3(g') 

_ { _1 __ A 2 -Jg ,[Aig'3 +f3(g')(A 1 -A 2g' 2)]} 
-Jl.Cexp -2A z Azln(g) dg Az '3/3( ') 

lg 1 0 lg g 

(7.9.2) 

Here Cis a constant and we have written f3(g) = -A 1g3 - A 2g5 + · · ·, as 
usual. 

Note that the Green's functions are not renormalization-group in
variant: to measure a Green's function, one must define the field operators. 
This definition has an arbitrariness, which is the freedom to vary its scale. 

The formula (7.9.2) has a number of consequences: 

( 1) Non -zero particle masses cannot be computed in ordinary perturbation 
theory (in a theory with no mass in the Lagrangian). For to avoid large 
logarithms one must set J1. to be of order M, where M is the particle mass 
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being computed. Then (7.9.2) tells us that 9(M) is not a free parameter; it 
is a number of order unity. 

(2) In a non-asymptotically free theory (A 1 < 0), suppose we have a small 
value for 9(J.L). Then J.l ~ M, where M is the value of the mass of any given 
massive particle. Perturbation theory is therefore only useful for 
Green's functions when the external momenta are much below the 
threshold for producing any of the massive particles. 

(3) In an asymptotically free theory (A 1 > 0), we have J.l ~ M whenever 9(J.L) 
is small. Perturbation theory is useful in such a theory only when 
momenta are much bigger than particle masses. 

(4) Since the 9-dependence of (7.9.2) is universal, i.e., the same for all 
particles, ratios of particle masses are pure numbers independent of 9 

and J.l.· 

Let us emphasize once more that these results are true when there are no 
explicit mass terms in the Lagrangian. 

The observation of Coleman & Weinberg(l973)comes from asking what 
can be measured in the theory. Suppose we start with J.l = J.1. 1 and 9 = 91 and 
ask how the theory changes when we work with the theory with a different 
value of 9, 9 = 92. (We suppose 91 and 92 are between 9 = 0 and 9 = 9*, the 
first fixed point of p.) Each version of the theory has an effective coupling 
satisfying 

9vers i(J.I.i) = 9!• 9vers2(J.I.i) = 92· 

Now evolve 9(J.L) in the second version to the value of J.l where 

9vers 2{J.t2) = 9 I· 

Then the second version of the theory is just the first version with all 
momenta scaled by a factor J.L 2 / J.1. 1• For example let a be a cross-section 
depending on momenta p1 , ••• , PN· Then RG in variance and dimensional 
analysis give us 

a(pl, · · · ,pN; 92, J.l.1) = a(pl, · · · ,pN;9i,J.I2) 

(
11 )dima (" 11 ) - r-2 r"i r"i • 

- - a -pl, ... ,-pN,9i•J.Ii · 
J.li J.l2 J.l2 

(7.9.3) 

The last factor is the cross-section in version 1 of the theory, with its 
momenta scaled. 

We see that changing the dimensionless coupling in a massless theory 
does not basically change the theory, but only its mass scale. This is called 
dimensional transmutation. 

There are many ways of specifying the scale of the theory: in QCD one 
might give the proton mass. For perturbative purposes it is better to use 
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something that can be directly used in perturbation theory, for example the 
value of J1. at which g(J.l) has some given value (e.g., 0.1) in one's chosen 
renormalization prescription. One standard way is to notice that for large Jl., 
g(JJ.) has its asymptotic behavior given by 

g2(J.l)= 1 _ A2 ln(ln(J1.2/J1.~)) +constant 
A 1 ln(J1.2/J1.~) A~ ln 2(J1.2/J1.~) ln2 {J1./J1.0 ) 

+ o[ln2 (In (J.l/ Jl.o))J 
In 3 (J.l/ Jl.o) . (7.9.4) 

Here Jl.o is a reference value of Jl.· If Jl.o is changed then the series is 
reorganized; only the first two terms are unchanged. As is conventional 
(Buras, Floratos, Ross & Sachrajda (1977)), we define the scale A of strong 
interactions as the value of Jl.o for which the 1jln2(J1. 2/J1.~) term is zero. This 
gives (7.5.5). 

If we change from, say, minimal subtraction to momentum-space 
subtraction, then the theory is unchanged provided the coupling is 
adjusted. This may be done in perturbation theory. For example, we might 
find that g in the MS scheme and in the momentum-space subtraction 
scheme are related by 

(7.9.5) 

Now let gMS be given by (7.5.5) with A= AMs• and let gmom be given by (7.5.5) 
with A= Amom· (We already know that A1 and A 2 are the same in both 
schemes.) Substituting these expansions into (7.5.5) and requiring con
sistency gives 

(7.9.6) 

Notice that both A1 and a 1 are obtained from one-loop calculations and 
that there are no higher-order corrections whatever (Celmaster & 
Gonsalves (1979)). 

An amusing consequence is obtained by substituting (7.5.5) for g in 
(7.9.2). Since M is independent of J1. we may let J1.--+ oo. The higher-order 
terms all go away and leave 

M = CA(Al)A,/2A:. (7.9.7) 

This equation is not very useful for performing perturbative calculations. 
If the theory is a complete theory of physics, then measurements of u and 

the p's in (7.9.3) will be in terms of a standard of mass. This we may take to 
be the mass M of some particle (say, the proton). Let us now change the 
theory by changing the coupling from g1 to g2 ,just as we did earlier. Then 
the standard of mass is multiplied by J1. 2/ J1. 1 • So if we do experiments in 
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version 2 with numerical values of momenta equal to those in version 1, the 
momenta are actually increased by a factor f.1zlf.1 1 . Therefore, (7.9.3) tells us 
that CJ gets multiplied by a factor (J.1 2/J.1 1)dimu. But its unit of measurement 
increases by the same factor, so the numerical value is unchanged. In this 
sense massless theories with different values of the coupling (or different 
values of A) are indistinguishable. This is perhaps the most important result 
of Coleman & Weinberg (1973). 

However, there are many experiments that claim to measure A. There are 
even some that give (without qualification) a single measured value of g. 

How can this be? The second problem is easy to dispose of. What is being 
measured is the effective coupling gin some renormalization scheme with 11 

set to a value of the order of the energy of the experiment (typically in e + e-
annihilation). Strictly one should specify not only the value of g but also the 
scheme and the value of 11· Now the experiments are at around 10 to 
30 Ge V, and A is at most a few 100 MeV. The variation of g over this range 
and the variations between the usual renormalization schemes are often no 
more than the size of experimental errors. So it is possible to talk loosely. 

However, we just asserted that massless QCD with different values of A is 
the same theory. The sense of a measurement of A is that we measure the 
numerical value of the ratio of A (defined by (7.5.5)) to a standard of mass. 
For the purposes of the argument, we may regard the standard as being that 
the nucleon mass is 939 MeV. In terms of dimensionless quantities the 
measurement is of the constant C in (7.9. 7) when M is the nucleon mass. (In 
the MS scheme, we find that Cis between about 5 and 20.) The non-zero 
masses of the quarks make a relatively small perturbation of the above 
argument. 

Notice that if we play God and double the size of A, then the size of the 
standard mass also doubles, so that numerical results of experiments are 
unchanged. 

In QED the situation is different. The electron has a mass, and its 
Coulomb field is classical at large distances. A mass-shell renormalization 
scheme is natural. Since there is a very important mass-scale, an unqualified 
statement of a measurement of the QED coupling, viz., e = (4n/137)112 , 

makes good sense. QED with a different value of e is a different theory, 
unlike QCD in the absence of quark masses. 

7.10 Choice of cut-off procedure 

It is very convenient to use dimensional continuation as an ultra-violet cut
off in perturbation theory. However, there is no known construction of a 
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complete theory in an arbitrary complex dimension, so one must beware of 
assigning too much physical significance to use of dimensional con
tinuation. This is especially true when we use minimal subtraction, which is 
a procedure that exploits the form of the cut-off dependence of the theory. 
However, the renormalized theory with the cut-off removed does not 
depend on the form of the cut-off. We saw this in our one-loop calculations. 
In general the fact is easiest to see by using BPHZ renormalization, in which 
an integrand is constructed that gives a manifestly convergent integral. The 
only freedom left is a change of renormalization prescription, otherwise 
known as a change of parametrization. 

In this section we will examine the renormalization-group properties 
when a different UV cut-offis used. For definiteness we cut off the theory by 
using a lattice, with spacing a. We consider any theory with a single 
dimensionless coupling g and a single mass m. It is, of course, possible to 
generalize to any cut-off procedure and to any theory. In general we will 
need a renormalization mass fJ., in order that we can take the massless limit. 
The bare coupling g 0 , bare mass m0 , and the field-strength renormalization 
Z are written as functions of the finite parameters g, m and fJ., and of the cut
off a. Then the renormalized Green's functions are written in terms of the 
bare Green's functions 

GN(x1, ... , xN ;g, m, fJ.,a) = Z -N12 (g, m, fJ., a)G~l(xp ... , xN; g0, m0, a), (7.10.1) 

and for them the limit a--> 0 exists. 
The renormalization-group structure is essentially unchanged. Let us 

again choose a mass-independent renormalization prescription, so that g0 , 

Z, and m0 have the forms: 

go = go(g, tJ.a), } 

Z = Z(g,tJ.a), 

m~ = m2 Zm(g,tJ.a) + a- 2 Y(g,fJ.a). 

(7.10.2) 

The massless theory has m = 0, and, as before, g0 and Z are independent of 
mass. But now the cut-off parameter is dimensional, so g0 and Z have 
explicit dependence on f.1. as shown. But the dimension of g 0 is fixed at zero, 
so the d-dependent power of f.1. is not used. 

The m2-dependence of the bare mass squared is again linear. But it is no 
longer true that m0 = 0 when m = 0. In the case of dimensional reg
ularization the only remaining dimensional parameter is fJ., and it is not 
possible (Collins (1974)) to generate by minimal subtraction a counterterm 
f.1. 2 Y(g,d). But with a lattice cut-offa term a- 2 Yis both possible and needed, 
as we will now verify by computing a low-order graph. 
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7.10.1 Example: </J 4 self-energy 

The simplest example that shows the existence ofthe Y-term in (7.10.2) is the 
self-energy graph of Fig. 7.10.1-, not in the </J 3 theory that we have been 
using, but in the <jl 4 theory in four space-time dimensions (with m = 0). The 
Lagrangian is (2.3.1). With dimensional regularization the value of the 
graph is 

0 
Fig. 7.10.1. Lowest-order self-energy graph in ¢ 4 theory. 

but with a lattice cut-off we find 

-ig0(327t4)- 1J d 3kdc.oD(c.o,k;a). (7.10.3) 
lk"l <lt/G 

Here the Euclidean lattice propagator is 1/(c.o2 + k2 ) if co and lkl are much 
smaller than 1/a. For general values of k", it is 

a2 / { 4 ,.tt sin2 (k"a/2) }. 

which is positive definite, so that the integral (7.10.3) is non-zero and 
diverges to a number of order 1/a2 as a-+ 0. 

A similar divergence occurs in the self-energy of a scalar field in any 
theory. 

7.10.2 RG coefficients 

We now continue our general discussion of the renormalization group 
when a lattice cut-off is used. As in the treatment using dimensional 
regularization we define a renormalization-group operator 

(7.10.4) 

We have changed our notation slightly, and used an overbar to indicate 
renormalization-group coefficients in the cut-off theory. These coef
ficients P and Ym have finite limits, f3(g) and Ym(g), as a-+0. In our later work 
it will be rather important to distinguish the coefficients before and after the 
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cut-off is removed. The coefficients can be computed from 

d d 2 

J.l dJ.lgo = 0 = J.l djJ. mo, 

with (7.10.4) used for J.ld/dJ.l. We also have the anomalous dimension 
y = J.ld In Z/dJ.l, just as with dimensional regularization. This all results in 

0 
p = - (JJ.a)~go(g, J.la) 

a 
aggo(g,jla} 

[ 0 _a] 
Ym = J.la O{JJ.a) + P ag In Zm(g, J.la), (7.10.5) 

y= [J.la a(!a) + p :g]InZ(g,J.la). 

In addition there is the constraint 

d _2 _ 1 [ a a J 
0 = J.l dJ.l (a Y)- a2 J.la a(JJ.a) + P ag Y(g, JJ.a). (7.10.6) 

The information on the divergences is all contained in the finite functions 
p, Ym andy. If desired, we can use minimal subtraction with the form 

g0 = g + g3 G11 ln (aJ.l) + g5 [G22 ln2 (aJ.l) + G21 ln(aJ.l)] + · · ·, 

so that p = - g3 G11 - g5G21 - · · · is a function of g alone. In order that 
P be finite as a--+ 0 all the logarithms of aJ.l must cancel in p. This implies 
a set of relations for the counterterms, the first of which is 2G22 = 

3Gi 1• An analogous set of relations occurs when we use dimensional 
regularization, as can be seen from (7.3.12). These we will discuss further in 
Section 7.11. Note that for minimal subtraction with the lattice cut-off we 
have P = p, Ym = Ym• etc. 

7.10.3 Computation of g0 and Z; asymptotically free case 

If we were to compute the exact theory, rather than a perturbative 
approximation, we would need to know how g0(g, J.la) depends on a as a--+ 0 
with g and J.l fixed. A low-order calculation is not sufficient, for g0 has large 
logarithms in its perturbative expansion. Provided the theory is asymptoti
cally free. we can remedy this by using the renormalization group to 
improve the calculation, just as we did for the large-momentum behavior of 
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Green's functions. The starting point is the equation 

d a -a 
p-d go= p-0 go+ /3-0 go= 0, 

f.1 !l g 
(7.10.7) 

which is in effect the renormalization-group equation for g0 . We may solve 
it just as for the Green's functions. 

Ultimately, we will let a approach zero while holding g and p fixed. But 
first let us keep a non-zero. Then we can define an effective coupling g(p) by 

(7.1 0.8a) 

with the boundary condition 

g(p) =g. (7.10.8b) 

We will also need the effective coupling at a= 0. For the moment, let us 
denote it by the symbol g(Jl.'). It satisfies 

p'dg(Jl.')/dJi.' = f3@J1.')) = P@Jl.');p'a = 0), 

g(Jl.) =g. 

Implicitly there is dependence of g on J1. and g, and of g on p, g and a: 

g = g(Ji.'; Ji., g), g = g(Jl.'; fl, a, g). 

Of course, g(Jl. ')---> g(Jl.') as a ---> 0. 
We can solve the renormalization-group equation (7.10.7) for g0 to find 

go = g0 (g, ap) = g0 (g(lja), 1 ). 

Now, when a is small, it might appear that we can replace g(lja) by g(lja), 
and that g0 is well approximated by the first term in its perturbation 
expansion (since g(l/a) is small). That is, 

g0 = g(l/a) +negligible error. 

These suppositions are actually false, for two reasons. First, p(g, aJi.) 
in general depends on aJl., so we cannot just replace gat J1. = lja by g(l/a) 
computed in the a= 0 theory. Secondly, we cannot simply drop the higher
order terms in g0 , since the dependence of renormalized Green's functions 
on g 0 is singular. Thus small errors in g0 may give rise to large errors in a 
Green's function computed as a function of bare quantities. 

To derive the correct formula we must examine the a-dependence of p 
more closely. So we write the perturbation expansion of g0 in the form: 

g0 = g + g3 [ G 11 ln (aJl.) + G 10 + G 1 (aJl.)] 

+ g5 [G22 ln2 (aJ1.) + G21 ln (ap) + G20 + G2(aJ1.)] + · · ·. (7.10.9) 
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Here we have not specified the renormalization prescription, so in addition 
to the logarithms we need finite functions G1(aJ.l), etc. We have explicit 
constant terms Gio• so we define Gi(aJ.l) to be zero at aJ.l·= 0. Once 
divergences and subdivergences have been subtracted from Feynman 
graphs, the remainders converge with power-law convergence in momen
tum. This is a consequence of our treatment of Weinberg's theorem, and is 
further treated in Weinberg (1960). Therefore we can say 

GJaJ.l) = O((aJ.l)c') 

as UJ.l-> 0, for some positive number ci. In general, Gi equals UJ.l times 

logarithms of UJ.l, so we can safely set ci = 1/2. 
First we compute the ,8-function: 

_ a ;ag 0 
P= -lla11 9o ag 

{ g3 [ Gil+ a~G, J + g5 [ 2G22 ln(aJ.l) + G21 + ain~aJ.l) (;2 J + · · ·} 

{1 + 3g2 [G 11 ln(aJ.l) + G10 + G1 ] + ···} 

3[ a - J =- g Gil+ J.lU a(J.la) G1 

5 {G 3G G a [- 3-2 -- g 21- 10 ll + aln(J.la) G2 -zG 1 - 3G 11 G1 ln(aJ.l) 

- 3GIOG,]} + ·· ·. (7.10.10) 

The relation 2G22 = 3Gf 1 must hold in order that Pis finite as a->0. The 

limit a->0 gives 

p(g)=jj(g,O)= -g3 Gil -g5(G 21 -3G, 0 Gil)+ ···, (7.10.11) 

so that with our usual notation A 1 = G11 and A 2 = G21 - 3Gil GIO" Since 
G 1 (aJ.l) and G 2 (aJ.l) go to zero like a power of aJ.l (times logarithms) when UJ.l 
-> 0, their logarithmic derivatives a11aG ja(aJ.l) also go to zero like a power. 

The first step in our calculation of g0 is to observe that the RG in variance 

of g0 implies that 

9o(g, J.lU) = g0 (g(J.l'), 11' a) 

= g0 (g(1/a), 1). (7.10.12) 

The next step is to examine the size of the error that is made in replacing 
g(1/a) by the effective coupling g(l/a) in the a= 0 theory. Finally, we will 
find the accuracy to which g0 (g(1/a), 1) must be computed in order to obtain 
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the correct renormalized Green's functions at a= 0. 
The difference between the two effective couplings g(l/a) and g(l/a) will 

turn out to be of order g(lja) 3 when a is small. So let us define the fractional 
error g2 A by 

g(Jl.' ;Jl., a, g)= g(Jl.' ;Jl., g) [1 + g(Jl.' ;J1., g)2 A(Jl.' ;Jl., a, g)]. (7.1 0.13) 

We will now show that A is finite when 11-' = 1/a and a ..... 0. 
From (7.10.13) and the definitions of fj and f3 we find that 

11-' 0:, A(Jl.') = g- 3 [fj( (1 + g2 A)g, 11-' a)- (1 + 3g2 A)/3@] 

= - Jl.' a o(:' a) G I + O(g 2 (J1.' a) 1!2) + O(g4 A). (7.10.14) 

Now g2(J1.'),.,.,1/A 1 ln(J1.'/A) as Jl.'->co, so this equation tells us that 
A(Jl.', Jl., a, g) is finite when a ..... 0 and J1..::; 11-'.::; 1/a. In fact it implies that 

A(Jl.') =- G1(aJ1.') + 0(1/ln(1/a)). (7.1 0.15) 

We now compute g0 . It is convenient to write a formula for its square: 

g0 (g,Jl.a)2 = g0 (g(1ja), 1)2 

= {g(1/a)(1 + g2 A)+ g3 (1 + g2 A)3 [ G10 + G1 (1)] + O(g 5 ) F 
1 A2ln[ln(1/a2A2)] 

[A 1 ln(1/a2A2)] [Ailn2(1ja2A2)] 

2GIO { 2[ J 3 } + [ 2 2 2 2 ] + 0 In In (1/a) /In (1/a) . 
A 1 ln (1/a A ) 

(7.10.16) 

Here we used the formula for g(Jl.) in terms of J1. and A- (7.5.5). The formula 
for g0 in terms of 1/a and A is the same as (7.5.5) except for an additional 
1jln2 term. Observe that it was essential to keep the a-dependence in 
"{3(g,aJ1.); the - G1 (1) term in (7.10.15) canceled the G1(1) in the two-loop 
coefficient in g0 . 

Finally we express (7.10.16) in terms of g, a and 11-: 

2 1 A2ln(ln(1/a2J1.2)) 
go(g,aJl.) = A1 ln(1/a2J1.2) AiJn2(1/a2J1.2) 

+ AiJn2(~/a2J1.2)[2GIO- :2- ~:In(A,g2)-2A,f(g)J 
+ O{ln2[ln(1/aJ1.)]/ln3 (1/aJ1.)}, (7.10.17) 

where 

(7.10.18) 
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Similar formulae hold for Z, for Z,., and for Y. Thus 

z = [A 1g2Jn(1ja2Jl2)]-C!i2A 1 X 

x exp {f9 dg'[y(g') + ~]}{ 1 + o[ln(ln(aJl)) ]}· 
o p(g') A 1 g' In (aJl) 

213 

(7.10.19) 

7.10.4 Accuracy needed for g0 

Let us now suppose we compute the renormalized Green's functions: 

GN(XI, ... , XN ;g, m, jl;a) = z-N!ZG(O)N(XI, .•. , XN ;go, mo ;a). (7.10.20) 

We must now let a approach zero, and ask how accurately we need to 
compute g0 and Z. In (7.10.17) and (7.10.19) we gave formulae for g0 and Z, 
with explicit estimates for the errors coming from uncalculated corrections. 
These equations tell us the value of g0(g, aJl) when we let a--+ 0 while keeping 
g and Jl fixed. Since the bare Green's functions have singular dependence on 
g0 , the uncalculated corrections might affect the values of the renormalized 
Green's functions. In fact these terms do not affect the renormalized Green's 
functions in the continuum limit, as we will now show. 

The key observation is that the renormalized Green's functions are finite 
functions of the renormalized parameters. Thus we do not need to hold the 
renormalized coupling and mass fixed while taking the continuum limit 
a --+0. We may in fact let them vary continuously, provided only that their 
values at a= 0 are the same as before. Now examine (7.10.17). It is evident 
that we may absorb the whole of the correction term into just such a 
variation of g. In fact the necessary change in g is of order 
ln2 (ln(1/a))/ln (1/a) as a--+ 0. So we may choose the bare coupling to be 

1 A 2ln [in (1/a2 Jl 2 )] 
g~=-----;:----c:-

A 1 ln (1/a2 Jl 2 ) A i ln 2 (1/a2 Jl2 ) 

1 [ 1 A 2 2 J + Ailn2(1/a2Jl2) 2Gto- gz -~In(A!g)- 2Atf(g) . 

(7.10.21a) 

Hence in (7.10.16), we can also drop the O{ln 2 [ln(1/a2)]/ln 3(1/a)} terms. 
So we have the following formula for g0 in terms of a A alone: 
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In the case of the wave-function renormalization Z, the uncalculated 
corrections can be absorbed into a factor (N multiplying the Green's 
function GN. This factor must approach unity in the continuum limit. Hence 
we may use 

Z = A 1 g2 ln - 2--2 exp dg' !__jl_ + - 1- , [ ( 1 )]-C,;2A, {fg [ ( ') C ]} 
a M 0 f3(g') A 1g' 

(7.10.22) 

where M is an arbitrary mass that is irrelevant when a~ 0. Notice that for 
the coupling we had a form (7.1 0.21 b) that had dependence on A, but not on 
11 or on g. This was because g0 is renormalization-group invariant: we may 
take 11 arbitrarily large without affecting g0 , provided that we also set g 

equal to the effective coupling at 11· When 11 is very big, g is very small, and 
the higher-order corrections contained in f(g) go to zero. But Z is not 
invariant; it must depend on g. What we can say is that any dependence on a 
of the form 

Z =finite· [ln(1/a)] -c,; 2 A' 

will produce finite Green's functions. 
Notice that if the one-loop divergence in Z vanishes, then we may let Z be 

finite: 

Z = exp[J: dg'y(g')/f3(g') J 
There will in general be divergences in the self-energy graphs in higher 
orders. What we have proved is that they must sum to something finite. 

In the case of g0 , any a-dependence of the form 

g'i = 1/A 1 ln(1/a2)- A2 ln [ln(1/a)]/[Ailn2(1/a2)] + finite/ln 2a 

will give finite renormalized Green's functions. Only knowledge of A 2 and 
A 1 is necessary for this. They are obtained from one- and two-loop 
calculations. The coefficient of the 1jln2a determines the value of g. 

The formula (7.10.21 b) shows the fundamental significance of the A
parameter. In a renormalizable field theory, there are divergences, so one 
cannot simply specify a single number as the bare coupling constant. 
Rather, one must construct the theory as the continuum limit of some 
lattice theory, with g0 depending on the lattice spacing, a. Equation 
(7.10.21 b) gives g0 as a definite numerical function of a. 

Unfortunately, there is a certain arbitrariness in precisely how one 
constructs a lattice approximation to a continuum theory. This arbitrari
ness is physically irrelevant (although some particular approximation may 
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be superior when it is used for a numerical calculation). So (7.10.21b) is also 
important because it expresses the bare coupling in terms of quantities (A, 
A 1 , and A 2), which have direct meaning in the continuum theory, and in 
terms of one number G10, which depends on the lattice approximation, but 
which can actually be computed analytically (Hasenfratz & Hasenfratz 
(1980) ). The result of such a lattice calculation is normally given as the ratio 
of a A lattice to the value of A in some standard continuum renormalization 
scheme. The definition of A1auice is the value for which 

g~ = 1/[ A 1 ln(1/a2 Afauice)J 

- A2 ln [ln(1/a2 Afattice) ]/[A f ln2 (1/a2 A~uice)J (7.10.23) 

gives the same continuum limit as (7.10.21). It is easily checked that this is 

(7.10.24) 

Despite the fundamental significance of A, there is a convention 
dependence in its definition. In specifying a theory by its value of A, one 
must specify these conventions. This is analogous in its effect to the need for 
specifying a system of units in electromagnetism. The main convention is 
that of the renormalization prescription. The other convention is the one 
implicit in the choice of the constant in (7.5.3). It is sensible to follow the 
usual convention, to avoid confusion. 

We have seen that higher-order corrections (beyond two loops) do not 
enter into our formula for g0 in terms of A. This is in contrast to (7.10.21a), 
which expresses g0 in terms of g and J.l· So it is sensible to treat A as a 
fundamental parameter of the theory- say in strong interactions. But 
practical considerations intervene if one tries to measure A. A typical 
measurement consists of measuring a quantity for which a useful per
turbation expansion exists (for example, a jet cross-section in e + - e
annihilation). The experiment therefore measures the effective coupling g(Jl) 
at some value of Jl which is of the order of the energy of the experiment. 
There are errors in this measurement caused by uncalculated higher-order 
terms in the theoretical calculation ofthe cross-section, not to mention non
perturbative corrections. We can then deduce A from (7.5.6), with further 
errors due to corrections in p. 

Since g is more directly related to the size of the cross-section, it is 
perhaps correct to argue that experiments should quote their results as a 
value of g. But to give the value of A is equally valid. However, a small 
fractional error in g corresponds to a much larger fractional error in A. This 
can be seen from (7.5.6). If we change g and A while holding Jl fixed, then 

JdA/AJ = Jdg/gJ[2A 1g2J- 1 [1 + O(g2)]. 
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If one could do a real calculation of the mass of, say, the proton in QCD, 
then it is the error in the value of A that would determine the error in the 
mass. As we saw in Section 7.9, when we discussed dimensional transmu
tation, the mass is proportional to A. 

7.10.5 m~ 

Unfortunately m3 has a 1/a2 term, but the variation of m0 with m2 depends 
on a [ln(1/a)]-b111 A' term. So we need the coefficient of 1ja2 to very high 
accuracy. Any slight error (say of order 1/a) will be equivalent to making the 
renormalized mass diverge like 1/a as a-+ 0. The resulting need to be very 
accurate in m0 leads many people to consider scalar . field theories 
unnatural. 

In the case of fermion theories there is a symmetry under tjJ-+ y5 t/J when 
m = 0, so the Y term is absent and we have 

m0 = mZm ~ m·constant [ln(1/a)] -Btf2 A•. 

7.10.6 Non-asymptotically free case 

The values of g0 , etc., as a-+ 0 are not perturbatively computable unless the 
theory is asymptotically free. However, if we suppose that {J in a non
asymptotically free theory has a fixed point, then we may write 

g0 (g, aJ.L) = g0 (g(1ja), 1) 

-+ g0 (g*, 1) as a -+0. (7.10.25) 

Note that g0 (g(1ja), 1) is a finite function of g, so the limit exists. However 
the same value is obtained for g0 at a = 0 for any value of g(J.L). So the way in 
which the limit is approached determines the value of g. 

An example is easily constructed. Suppose we have a theory In which 

(7.10.26) 
and 

go(g, 1) =g. (7.10.27) 

Then the effective coupling has the form 

g = [arctan(1/ln(A/J.L)}] 1i 2. 

There is a fixed point g* = n112• We therefore find that the bare coupling as 
a-+0 must be 

g0 (g, aJ.L) = [arctan (1/ln (aA))] 112 

= nt;2- 2ntt21~ (1/aA) + 0(1jln2(aA)). (7.10.28) 
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It is necessary to know how g0 (g,aJ1.) approaches its limit g0(g*, I) in order 
to determine the value of A. 

7.11 Computing renormalization factors using dimensional regularization 

In the previous section, Section 7.10, we computed how the bare coupling g0 

should behave as a function of the lattice spacing a. In this section we 
present the corresponding argument using dimensional continuation as the 
cut-off. We do this by treating the defining equation (7.3.10) of p as a 
differential equation to compute g0 • Our argument will be valid in any 
asymptotically free theory, like 4J 3 theory in six dimensions or QCD in four 
dimensions. If we let d0 be the physical space-time dimension, then we 
regularize by going to a lower dimension d = d0 - e. 

First we compute the relations between lower and higher poles in the 
renormalization. Now we write 

g0 =Jl"12 [g+ J
1 
dig)e-i]. (7.11.1) 

and we have the definition of {3: 

(7.11.2) 

Let us expand (7.11.2) in powers of e. The terms proportional toe and e0 give 
us: 

P =- eg/2 + p(g) =- eg/2 + i(g8j8g -1)d 1(g). 

We have changed notation from our original definitions to correspond to 
the definitions that we used in Section 7.10 for the lattice cut-off. There we 
defined Pto be RGcoefficient in the cut-off theory, while we defined pas the 
limit of P as the cut-off is removed. 

Now, the coefficient of the pole e-i in (7.11.2) is 

!(1- g8/8g)dj+ 1 (g)+ p(g)8d}8g = 0. (7.11.3) 

This is a differential equation which, when solv~ using the boundary 
condition d iO) = 0, gives all the higher coefficients dig) in terms of the 
single pole d 1 (g). 

Similar relations ('t Hooft (1973)) hold for all renormalization counter
terms. The structure is similar to the leading logarithm expansion. They 
show that in each order of perturbation theory the only new information in 
the counterterm in a given order of perturbation theory is in the single pole. 

A convenient way of solving these relations is to work out the solution of 
the differential equation (7.11.2). This gives 

1n[g0(g,Jl,d)Jl-•12 ] = J: dg'[g' _ 2~(g')/e- ;, J + lng, (7.11.4) 
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i.e., 

= ef2 x {fg d ,2f3(y') I } 
Yo J.1 ye p o y y'2£ [I- 2f3(y')/(y'8)] . 

(7.11.5) 

The boundary condition y0 jy----+ J.1'12 as y----+ 0 has been used. 
We now ask how y0 must behave as£= d0 - d----+ 0, withy (and JJ) fixed. If 

the theory is not asymptotically free (so that in f3(y) = -A 1g 3 + · · ·, A 1 is 
negative), then the integrand has a pole at 

g' 2 = - (d 0 - d)/2A 1 + O(d- d0 ) 2 . 

The solution (7.11.4) only unambiguously exists if y 2 is less than this value, 
which is zero when d = d0 . To get to the d = d0 theory withy non-zero we 
must continue y0 so that the integration avoids the pole. The result is that y0 

has an imaginary part. This, among other things, suggests that the theory is 
unphysical (see Wilson (1973), Gross (1976) ). Recently, evidence has 
accumulated that the lattice ¢ 4 theory does not have a non-trivial 
continuum limit- see Symanzik (1982) for a review. 

If the theory is asymptotically free then we may continue (7.11.4) to 
d = d0 , i.e., £ = 0. The integrand becomes singular when 8 = 0, and we 
examine the singularity by expanding in powers of y': 

-~J:dy'{[ -8y'/21+f3(y')] -[ -8y'/21-Aty'3] 

A 2 g's } 
[- 8y'/2- Aly'3]2 

-~J: dy'{[- 8y'j21- Aty'3] + [- ~>y'~z~':tY-3]2 + 8~' }· (7.11.6) 

In the first integral we may set 8 = 0 and have errors that are o(1). So 

lny = l.Jn (-e ) 
o 2 2AI 

+- lnJJ--- --In -- +---f(y) +o(8) e [ 1 A 2 (2A 1y 2
) A 2 J 

2 2A 1y2 2Ai e 2Ai ' 
(7.11.7) 

wheref(y) is defined by (7.10.18). Thus 

(7.11.8) 
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7.12 Renormalization group for composite operators 

We have seen how a change in renormalization prescription for the 
interactions of a theory can be compensated by a change in the values of the 
renormalized parameters. The same property holds for the composite 
operators we defined in Chapter 6. 

For example, consider the renormalized [ c/> 2] operator in c/> 3 theory at 
d = 6. In Section 6.2 we calculated it in the one-loop approximation: 

( 0 IT c/>(x)c/>(y)[ c/> 2](z)/2IO) = 

=tree graph+ {one-loop graph+ counterterm graphs} + · · · (7.12.1) 

A change in renormalization prescription amounts to a finite change in the 
counterterm graphs. Since the counterterms are of the form 

·H c/>2] = ic/>2 + j;c5Zac/> 2 + c5Zbm2 c/> + c5Z, D c/> + higher order, (7.12.2) 

we have 
(7.12.3) 

Here a, b, and care finite quantities of the same order in the coupling as the 
one-loop counterterms. The equation (7.12.3) is, so far, only derived at the 
one-loop order - so the finite counterterms are to be used with their 
operators inserted in tree graphs. 

Let us examine the situation we expect to all orders. We will use minimal 
subtraction. Then the renormalization in the notation of (6.2.12) is 

-j;[ c/>2] = -j;zaz-1 c/>~ + J.Ld/2-3 zbz-lt2m2c/>o + J.Ldt2- 3 z,z-1!2 0 cPo· 

(7.12.4) 

Now the bare field is independent of J.L, so we may write 

J.L :J.L H c/>2] = zaz- 1 5;c/>~J.L :J.L ln(Za/Z) 

+ J.Ld/2- 3 zbz-112m2cl>oJ.L :J.L ln(l/2-3 zbz-1!2m2) 

+ dt2-3z z-112 0 -~, ~ln(J.Ldt2-3z 2 -112) 
J.L c 'f'oJ.LdJ.L c 

d 
= t[c/>2]J.L dj.t ln(Za/Z) 

d 
+ J.Ldt2- 3 zbm2c/>J.L dJ.L ln(J.Ld/2- 3 zbzlt2 z; 1m2) 

d 
+ J.Ldt2-3 ZeD cPJ.L dJ.L ln(li2-3 zczlt2z; 1), (7.12.5) 

https://doi.org/10.1017/9781009401807.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.007


220 Renormalization group 

which has the form 

d 
.U d)[ c/>2] = Yai[ c/>2] + ybm2 .Ud/2- 3 c/> + Yc.Ud/2- 3 0 cf>. (7.12.6) 

We can formulate this as a matrix equation: 

(
H 4>2]) (z"z- 1m2 zbz- 112 ,udf2-3 zcz-t;2 ,udf2- 3) ( i4>~ ) _ 

<I>= 4> = 0 z- t;2 0 4>o = M<l>o, 
04> 0 0 z- 112 Cc/>0 

(7.12.7) 

(7.12.8) 

The coefficients Ya• Yb· and Yc are finite at d = 6. From our calculations in 
Section 6.2, we have 

(7.12.9) 

(7.12.10) 

Observe that Ya• Yb• and Yc are all independent of .u and m. This follows from 
the same arguments that we used to prove the same property for Ym and y. 

From the RG equation (7.12.7) we prove renormalization-group equa
tions for Green's functions of the composite operators. For example: 

(.ua: +P:g -ymm2 a!2 )<O/Tcf>(x)cf>(y)i[cf>2 (z)]/O) 

= (Ya- y)(O/ T c/>c/>t[c/>2]/0) 

+ (ybm 2 + y, 0)( 0/ T cf>(x)cf>(y)cf>(z) /0 ), (7.12.11) 

where we have used ,udcf>/d,u = - ycf>/2, and we have set d = 6, thus 
eliminating the ,ud12 - 3 factors. 
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We must prove (7.12.8) both to all orders for the [ ¢ 2 ] operator and in its 
generalizations to deal with any operators. Since bare operators are 
automatically RG invariant, the only question is whether the anomalous 
dimensions are finite. This is handled by a simple generalization of the proof 
given in Section 7.2 for the ordinary Green's functions. We will not spell out 
the details -for that is just a mathematical exercise. 
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