THE SPECTRA OF TOEPLITZ OPERATORS WITH UNIMODULAR SYMBOLS

by TAKAHIKO NAKAZI*

(Received 9th January 1996)

Abstract

The spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator T_{ϕ} on the open unit dise D for a unimodular symbol ϕ is studied and many sufficient conditions for $\sigma\left(T_{\phi}\right) \subseteq \partial D$ or $\sigma\left(T_{\phi}\right)=\bar{D}$ are given. In particular if ϕ is a unimodular function in $H^{\infty}+C$, then $\sigma\left(T_{\phi}\right) \subseteq \partial D$ or $\sigma\left(T_{\phi}\right)=\tilde{D}$.

1991 Mathematics subject classification: Primary 47B35.

1. Introduction

Let L^{p} be the Lebesgue space on the unit circle ∂D and let H^{p} be the corresponding Hardy space for $0<p \leq \infty$. The Toeplitz operator T_{ϕ} with symbol ϕ in L^{∞} is the operator on H^{2} defined by $T_{\phi} x=P(\phi x)$ for x in H^{2}, where P is the orthogonal projection of L^{2} onto H^{2}.

In this paper we study the spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator T_{ϕ}. It is known that $\sigma\left(T_{\phi}\right)$ is always connected. This is a hard and deep result due to H . Widom (cf. [2, Corollary 7.46]). If ϕ is a continuous function on $\partial D, \sigma\left(T_{\phi}\right)$ consists of the range of ϕ together with those points not in the range of ϕ that have a nonzero index with respect to ϕ (cf. [2, Corollary 7.28]). If ϕ is a real-valued function in $L^{\infty}, \sigma\left(T_{\phi}\right)=$ [ess inf ϕ, ess sup ϕ] (cf. [2, Theorem 7.20]) and if ϕ is a function in $H^{\infty}, \sigma\left(T_{\phi}\right)=$ the closure of $\phi(D)$ (cf. [2, Theorem 7.21]). In particular, we are interested in the spectrum $\sigma\left(T_{\phi}\right)$ of a Toeplitz operator T_{ϕ} when ϕ is a unimodular function in L^{∞}. M. Lee and D. Sarason [6], and R. G. Douglas and D. Sarason [3] have considered $\sigma\left(T_{\phi}\right)$ when ϕ is a quotient of two inner functions. Under some conditions, they showed that $\sigma\left(T_{\phi}\right)=\bar{D}$ [6]. In this paper, we consider such a problem when ϕ is an arbitrary unimodular function. Theorem 1 in [6] is a corollary of (2) of Theorem 2 in this paper. For a real-valued function s in L^{∞}, \tilde{s} denotes the harmonic conjugate with $\tilde{s}(0)=0$. Our main tool is the following theorem [1].

Widom and Devinatz's Theorem. Let ϕ be a unimodular function in L^{∞}. Then the following (1)-(3) are equivalent.

[^0](1) T_{ϕ} is invertible.
(2) ϕ has the form: $\phi=e^{i t}$ where t is a real-valued function in L^{1} such that $\inf \left\{\|t-\tilde{s}-a\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $\left.a \in R\right\}<\pi / 2$.
(3) ϕ has the form: $\phi=g_{1} g_{2} /\left|g_{1} g_{2}\right|$ where both g_{1} and g_{1}^{-1} are in H^{∞}, and both g_{2} and g_{2}^{-1} are in $\bigcup_{p>1} H^{p}$ with Re g_{2} bounded away from 0 on ∂D.

In this paper, we give sufficient conditions for $\sigma\left(T_{\phi}\right) \subseteq \partial D$ or $\sigma\left(T_{\phi}\right)=\bar{D}$, using $\inf \|t-\tilde{s}-a\|_{\infty}$ in Section 1 and $g /|g|$ in Section 2. Throughout this paper, for a function space X on ∂D, we let $X_{R}=\{\operatorname{Ref} ; f \in X\}$, where Ref is a real part of $f . C$ denotes a set of continuous functions on ∂D and so C_{R} is a set of all real valued continuous functions on ∂D.

2. Sufficient conditions using inf $\|t-\tilde{s}-a\|_{\infty}$

Lemma 1. Let ϕ be unimodular in L^{∞} and $\lambda=a+i b$ in D. Then $\lambda \notin \sigma\left(T_{\phi}\right)$ if and only if ϕ has the form $\phi=e^{i t}$ where t is a real-valued function in L^{1} such that

$$
\inf \left\{\left\|t+v_{\lambda}-\tilde{s}-a\right\|_{\infty} ; s \in L_{R}^{\infty} \text { and } a \in R\right\}<\pi / 2
$$

and $v_{\lambda}=\arctan \{(a \sin t-b \cos t) /(1-(a \cos t+b \sin t))\}$.
Proof. We will first show the "if" part. There exists a function s_{λ} in L^{∞} such that $(1-\lambda \bar{\phi}) /|1-\lambda \bar{\phi}|=e^{i_{i}}$ and $\left\|s_{\lambda}\right\|_{\infty}<\pi / 2$ because $|\lambda|<1$. Then

$$
\frac{1-(a \cos t+b \sin t)}{|1-\lambda \bar{\phi}|}+i \frac{a \sin t-b \cos t}{|1-\lambda \bar{\phi}|}=\cos s_{\lambda}+i \sin s_{\lambda}
$$

Since $|a \cos t+b \sin t| \leq|\lambda|<1,\left\|v_{\lambda}\right\|_{\infty}<\pi / 2$. Hence $\left\|v_{\lambda}-s_{\lambda}\right\|_{\infty}<\pi$ and $\tan v_{\lambda}=\tan s_{\lambda}$ a.e. and so $v_{\lambda}=s_{\lambda}$ a.e.. Therefore

$$
\frac{\phi-\lambda}{|\phi-\lambda|}=\phi \frac{1-\lambda \bar{\phi}}{|1-\lambda \bar{\phi}|}=e^{i t} e^{i \nu_{\lambda}}
$$

and by Widom and Devinatz's Theorem in the Introduction $T_{\phi-\lambda}$ is invertible because $\inf \left\{\left\|t+v_{\lambda}-\tilde{s}-a\right\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $\left.a \in R\right\}<\pi / 2$. Conversely if $\lambda \notin \sigma\left(T_{\phi}\right)$, by Widom and Devinatz's Theorem there exists a real-valued function t_{λ} such that $(\phi-\lambda) /|\phi-\lambda|=e^{i t_{\lambda}}$ and $\inf \left\{\left\|t_{\lambda}-\tilde{s}-a\right\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $\left.a \in R\right\}<\pi / 2$. As in the proof of the "if" part, there exists s_{λ} such that $(1-\lambda \bar{\phi}) /|1-\lambda \bar{\phi}|=e^{i s_{\lambda}}$. Moreover $\phi=e^{i t}$ and $s_{\lambda}=v_{\lambda}$ if $t=t_{\lambda}-s_{\lambda}$. This implies the "only if" part.

Theorem 1. Let ϕ be a unimodular function in L^{∞}.
(1) If $\phi=e^{i t}$ and t is a real-valued function in L^{1} such that $\inf \left\{\|t-\tilde{s}-a\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $a \in R\}=0$, then $\sigma\left(T_{\phi}\right) \subseteq \partial D$.
(2) If $\inf \left\{\|t-\bar{s}-a\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $\left.a \in R\right\} \geq \pi$ for any $t \in L_{R}^{\prime}$ with $\phi=e^{i t}$, then $\sigma\left(T_{\phi}\right)=\bar{D}$.
(3) If $\sigma\left(T_{\phi}\right)=\bar{D}$, then $\inf \left\{\|t-a\|_{\infty} ; a \in R\right\} \geq \pi$ for any $t \in L_{R}^{\prime}$ with $\phi=e^{i t}$.

Proof. (1) If $\lambda=a+i b \in D$ and $v_{\lambda}=\arctan \{(a \sin t-b \cos t) / 1-(a \cos t+b \sin t)\}$, then $\left\|v_{\lambda}\right\|_{\infty}<\pi / 2$ and hence $\inf \left\{\left\|t+v_{\lambda}-\tilde{s}-a\right\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $\left.a \in R\right\}<\pi / 2$ because $\inf \left\{\|t-\tilde{s}-a\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $\left.a \in R\right\}=0$. By Lemma $1, \lambda \notin \sigma\left(T_{\phi}\right)$ and hence $\sigma\left(T_{\phi}\right) \subseteq \partial D$.
(2) If $\lambda \in D$ and $\lambda \notin \sigma\left(T_{\phi}\right)$, then by Lemma $1 \inf \left\{\left\|t+v_{\lambda}-\tilde{s}-a\right\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $a \in R\}<\pi / 2$. Since $\left\|v_{\lambda}\right\|_{\infty}<\pi / 2, \inf \left\{\|t-\tilde{s}-a\|_{\infty} ; s \in L_{R}^{\infty}\right.$ and $\left.a \in R\right\}<\pi$. This implies (2).
(3) (3) is a result of a theorem of A. Brown and P. R. Halmos (cf. [2, Corollary 7.19]).

Corollary 1. Suppose $\phi=e^{i t}$ and t is a real-valued function which satisfies one of the following (i)-(iii), then $\sigma\left(T_{\phi}\right) \subseteq \partial D$.
(i) $t=\tilde{u}+v$ where $u \in L_{R}^{\infty}$ and $v \in C_{R}$.
(ii) $t=\tilde{u}+v$ where $u \in L_{R}^{\infty}$ and v is in the norm closure of H_{R}^{∞}.
(iii) $t=\tilde{u}+v$ where $u \in L_{R}^{\infty}$ and $v=s \circ q$ for $s \in C_{R}$ and an inner function q.

Proof. If $v \in C_{R}$, then v is in the norm closure of H_{R}^{∞} and so (i) is a result of (ii). If $v \in H_{R}^{\infty}$, then $v=\tilde{s}+a$ for $s \in H_{R}^{\infty}$ and $a \in R$, and hence a simple computation implies (ii). If s is a real-valued polynomial of z and \bar{z}, then $v=s \circ q$ belongs to H_{R}^{∞} for an inner function q. Thus (iii) is a result of (ii).

Corollary 2. Let Q_{j} be a non-constant inner function, $a_{j} \in D$ and $b_{j} \in D$ for $1 \leq j \leq \max (n, m)$. Suppose $\phi=\bar{q}_{1} q_{2}$ where $q_{1}=\prod_{j=1}^{n}\left(Q_{j}-a_{j}\right) /\left(1-\bar{a}_{j} Q_{j}\right)$ and $q_{2}=$ $\prod_{j=1}^{m}\left(Q_{j}-b_{j}\right) /\left(1-\bar{b}_{j} Q_{j}\right)$. Then $\sigma\left(T_{\phi}\right) \subseteq \partial D$ if and only if $n=m$.

Proof. If $n=m$, put $u=2 \sum_{j=1}^{n} \log \left|\left(1-\bar{a}_{j} Q_{j}\right) /\left(1-\bar{b}_{j} Q_{j}\right)\right|$, then $u \in L_{R}^{\infty} \quad$ and $\phi=\bar{q}_{1} q_{2}=\alpha e^{\text {tī }}$ for some constant α. (1) of Theorem 1 implies the corollary. Suppose $\sigma\left(T_{\phi}\right) \subseteq \partial D$. If $n>m$, then $\phi=\bar{q}_{1} q_{2}=\phi_{1} \phi_{2}$ where $\phi_{1}=\prod_{j=m+1}^{n}\left(1-\bar{a}_{j} Q_{j} / Q_{j}-a_{j}\right)$, $\phi_{2}=\alpha e^{i i}, \quad \alpha$ is a constant and $u=2 \sum_{j=1}^{m} \log \left|\left(1-\bar{a}_{j} Q_{j}\right) /\left(1-\bar{b}_{j} Q_{j}\right)\right|$. Therefore $T_{\phi}=T_{\phi_{1}} T_{\phi_{2}}$, and both T_{ϕ} and $T_{\phi_{2}}$ are invertible. This contradicts the fact that $T_{\phi_{1}}$ is not invertible.

3. Sufficient conditions using $g /|g|$ for g in H^{p}

Theorem 2. Let ϕ be a unimodular function in L^{∞}.
(1) If $\phi=g /|g|$ where both g and g^{-1} are in H^{∞}, then $\sigma\left(T_{\phi}\right) \subseteq \partial D$.
(2) If $\phi \neq g /|g|$ for any g in $\bigcup_{p>1 / 2} H^{p}$ whose inverse is in $\bigcup_{p>1 / 2} H^{p}$, then $\sigma\left(T_{\phi}\right)=\bar{D}$.

Proof. (1) This is a corollary of (1) of Corollary 1. But we will give another proof. If $\phi=g /|g|$ where both g and g^{-1} are in H^{∞}, put $h=g^{1 / 2}$, then $\phi=h / \bar{h}$ and both h and h^{-1} are in H^{∞}. For any $\lambda \in D, \phi-\lambda=(1 / \bar{h})(1-\lambda \bar{h} / h) h$ and hence

$$
T_{\phi-\lambda}=T_{(1 / h)} T_{(1-\lambda \hbar / h)} T_{h} .
$$

This implies that $T_{\phi-\lambda}$ is invertible by Widom and Devinatz's Theorem.
(2) For any $\lambda \in D, 1-\lambda \bar{\phi}=\phi_{0} \ell$ where $\left|\phi_{0}\right|=1$ a.e., and both ℓ and ℓ^{-1} are in H^{∞}. Hence

$$
\phi-\lambda=\phi(1-\lambda \bar{\phi})=\phi \phi_{0} \ell \text { and } \bar{\phi}_{0}-\ell=\lambda \bar{\phi}_{0} \bar{\phi} .
$$

Since $\left\|\bar{\phi}_{0}-\ell\right\|_{\infty}=|\lambda|<1$, by Widom and Devinatz's Theorem $T_{\bar{\phi}_{0}}$ is invertible and $\bar{\phi}_{0}=h /|h|$ for some $h \in H^{a}$ and $a>1$. If $T_{\phi-\lambda}$ is invertible, then $T_{\phi \phi_{0}}$ is invertible and hence $\phi \phi_{0}=k /|k|$ for some $k \in H^{b}$ and $b>1$. Therefore $\phi=\bar{\phi}_{0} \phi \phi_{0} \stackrel{\phi_{0}}{=} h k /|h k|$ and both $h k$ and ($h k)^{-1}$ belong to H^{p} for some $p>1 / 2$. This implies (2).

Corollary 3. If $\phi=g /|g|$ where $g \in \bigcap_{p<\infty} H^{p}$ and $g^{-1} \notin \bigcap_{p>1 / 2} H^{p}$, then $\sigma\left(T_{\phi}\right)=\bar{D}$.
Proof. If $\phi=h /|h|$ for some h in $\bigcap_{p>1 / 2} H^{p}$ whose inverse is in $\bigcap_{p>1 / 2} H^{p}$, then $\phi=|k| / k$ with $k=1 / h$. Hence $k g$ is non-negative a.e. on ∂D and $k g \in H^{1 / 2}$. By [7], $g=c h$ for some positive constant c and $g^{-1} \in \bigcap_{p>1 / 2} H^{p}$. Now (2) of Theorem 2 implies the corollary.

Corollary 4. Let Q_{j} be a non-constant inner function, $a_{j} \in D$ and $b_{j} \in D$ for $1 \leq j \leq \max (n, m)$. Suppose $\phi=\bar{q}_{1} q_{2}$ where $q_{1}=\prod_{j=1}^{n}\left(Q_{j}-a_{j}\right) /\left(1-\bar{a}_{j} Q_{j}\right)$ and $q_{2}=$ $\prod_{j=1}^{m}\left(Q_{j}-b_{j}\right) /\left(1-\bar{b}_{j} Q_{j}\right)$. Then $\sigma\left(T_{\phi}\right)=\bar{D}$ if and only if $n \neq m$.

Proof. By Corollary 2, it is enough to show the "if" part. If $n>m$, then by the proof of Corollary $2 \phi=\phi_{2} \phi_{2}$ and so $\phi=\phi_{1}(g /|g|)$ where both g and g^{-1} are in H^{∞}, and ϕ_{1} is a non-constant inner function. If $\phi=h /|h|$ for some h in $\bigcap_{p>1 / 2} H^{p}$ whose inverse is in $\bigcap_{p>1 / 2} H^{p}, \phi_{1} g h^{-1}$ is a non-negative function in $H^{1 / 2}$. By [7], this contradicts that ϕ_{1} is non-constant. Thus (2) of Theorem 2 implies that $\sigma\left(T_{\phi}\right)=\bar{D}$. When $n<m$, by a similar method we can show that $\sigma\left(T_{\phi}\right)=\bar{D}$.

Now using (2) of Theorem 2, we will give a proof of Theorem 1 in [6]. For each
inner function q, sing q denotes the subset of ∂D on which q can not be analytically extended.

Corollary 5 ([6]). If $\phi=\bar{q}_{1} q_{2}$ where q_{1} and q_{2} are inner functions with sing $q_{1} \neq$ sing q_{2}, then $\sigma\left(T_{\phi}\right)=\bar{D}$.

Proof. By (2) of Theorem 2, it is enough to show that $\phi=\bar{q}_{1} q_{2} \neq g /|g|$ for any g in $\bigcap_{p>1 / 2} H^{p}$ whose inverse is in $\bigcap_{p>1 / 2} H^{p}$. We may assume that sing $q_{1} \ngtr z_{0} \in \operatorname{sing} q_{2}$. There exists a constant $\lambda \in D$ such that $q=\left(q_{2}-\lambda\right) /\left(1-\bar{\lambda} q_{2}\right)$ is a Blaschke product with sing $q=\operatorname{sing} q_{2}$ by [5, p. 176]. Then $\bar{q}_{1} q_{2}=\bar{q}_{1} q k /|k|$ where $k=\left(1-\bar{\lambda} q_{2}\right)^{2}$. Since both k and k^{-1} are in H^{∞}, we may assume that q_{2} is a Blaschke product. If $\bar{q}_{1} q_{2}=f /|f|$ $q_{1} \bar{q}_{2}=g /|g|$ where $f g=1$ a.e., $f \in H^{1 / 2}$ and $g \in H^{1 / 2}$, then $\bar{q}_{1} q_{2} g \geq 0$ a.e. and $\bar{q}_{2} q_{1} f \geq 0$ a.e.. Since $\bar{q}_{1} q_{2} g \geq 0$ a.e., $g \in H^{1 / 2}$ and $z_{0} \notin \operatorname{sing} q_{1}$, by [4] there exists an open arc J such that $z_{0} \in J$ and $q_{2} g$ can be continued analytically from D across J. The zeros of q_{2} cannot cluster at any point of J. This contradicts that $z_{0} \in \operatorname{sing} q_{2}$. Thus $\bar{q}_{1} q_{2}$ satisfies the condition of (2) of Theorem 2, and hence $\sigma\left(T_{\phi}\right)=\bar{D}$.

Corollary 6. Let q_{1} and q_{2} be inner functions, and χ_{E} be a characteristic function of a measurable set E in ∂D. If $\phi=\bar{q}_{1} q_{2}\left(2 \chi_{E}-1\right)$ and there exists an open arc J in E such that (sing $\left.q_{2}\right) \cap J \neq \emptyset$ and (sing $\left.q_{1}\right) \cap J=\emptyset$, or (sing $\left.q_{1}\right) \cap J \neq \emptyset$ and (sing $\left.q_{2}\right) \cap J=\emptyset$, then $\sigma\left(T_{\phi}\right)=\bar{D}$.

Proof. As in Corollary 5, we may assume that q_{2} is a Blaschke product. If $\phi=\bar{q}_{1} q_{2}\left(2 \chi_{E}-1\right)=f /|f|=|g| / g$ where $f g=1$ a.e., $f \in H^{1 / 2}$ and $g \in H^{1 / 2}$, then $\bar{q}_{1} q_{2}\left(2 \chi_{E}-1\right) g \geq 0$ a.e. and $\bar{q}_{2} q_{1}\left(2 \chi_{E}-1\right) f \geq 0$ a.e.. If there exists an open arc J in E such that (sing $\left.q_{2}\right) \cap J \neq \emptyset$ and (sing $\left.q_{1}\right) \cap J=\emptyset$, then

$$
\bar{q}_{1} q_{2}\left(2 \chi_{E}-1\right) g=\bar{q}_{1} q_{2} g \geq 0 \text { a.e. on } J .
$$

Now as in Corollary 5, we can get a contradiction and hence $\sigma\left(T_{\phi}\right)=\bar{D}$.
Let $q_{a}=\exp \{-a(1+z) /(1-z)\}$ for $a>0$ and suppose b is a Blaschke product with sing $b=\{1\}$. Put $\phi_{a}=\bar{q}_{a} b$. Theorem 4 in [6] shows that if ϕ_{a} belongs to $H^{\infty}+C$ for all $a>0$, then $\sigma\left(T_{\phi_{g}}\right)=\bar{D}$. This is a corollary of Corollary 7.

Corollary 7. If ϕ_{a} belongs to $H^{\infty}+C$ for some $a>0$, then $\sigma\left(T_{\phi_{c}}\right)=\bar{D}$ for $0<c<a$. If $T_{\phi_{\boldsymbol{e}}}$ is invertible or $\sigma\left(T_{\phi_{\boldsymbol{c}}}\right) \subseteq \partial D$, then $\sigma\left(T_{\phi_{c}}\right)=\bar{D}$ for arbitrary $c>0$ with $c \neq a$.

Proof. By Theorem 2 in [8], $\phi_{a}=q e^{\&(u+\theta)}$ where q is inner, and u and v are in C_{R}. For $0<c<a, \phi_{c}=q_{a-c} q e^{((x+\sigma)}$ and so by (2) of Theorem $2 \sigma\left(T_{\phi_{c}}\right)=\bar{D}$. For if $q_{a-c} q e^{(u+\bar{v})}=g /|g|$ for some g in $\bigcup_{p>1 / 2} H^{p}$ with $h=g^{-1} \in \bigcup_{p>1 / 2} H^{p}$, then $h q_{a-c} q e^{i(u+\bar{\sigma})} \geq 0$ a.e. and so $h k q_{a-c} q \geq 0$ a.e. where $k=e^{-\bar{u}+0+(u+\dot{)}}$. Since both k and k^{-1} belong to $\bigcap_{p<\infty} H^{p}, h k q_{a-c} q$ is a non-negative function in $H^{1 / 2}$ and so by [7], $h k q_{a-c} q$ is constant.

This contradicts the fact that $q_{a-c} q$ is not constant. Therefore (2) of Theorem 2 shows that $\sigma\left(T_{\phi_{c}}\right)=\bar{D}$ for $0<c<a$. If $T_{\phi_{a}}$ is invertible, it is known that q is constant. In fact, we can show it as in the above proof. If q is constant, then for $c>0$ with $c \neq a$

$$
\phi_{c}=\bar{q}_{c} b=q_{a-c} \bar{q}_{a} b=q_{a-c} e^{i(u+\bar{v})} .
$$

By the first part of this theorem, we may assume that $c>a$. However, in this case we can show it as in case $0<c<a$.

4. Remark

If $\sigma\left(T_{\phi}\right) \subseteq \partial D$, then $\sigma\left(T_{\phi}\right)=J$ for some closed arc J in ∂D because $\sigma\left(T_{\phi}\right)$ is connected by a theorem of H. Widom (cf. [2, Corollary 7.46]). Then, if the essential range $R(\phi)$ of ϕ is disconnected, by a theorem of A. Brown and P. R. Halmos (cf. [2, Corollary 7.19]), then $\sigma\left(T_{\phi}\right) \nsubseteq \partial D$. Hence if $\sigma\left(T_{\phi}\right) \subseteq \partial D, R(\phi)$ is connected and so $R(\phi)=J=\sigma\left(T_{\phi}\right)$ by the theorem of A. Brown and P. R. Halmos. If $\phi=\alpha e^{i t}$, $\inf \left\{\|t-\tilde{s}\|_{\infty} ; s \in L_{R}^{\infty}\right\}=0$ and $R(\phi)=\partial D$, then $\sigma\left(T_{\phi}\right)=\partial D$ by (1) of Theorem 1. For a unimodular function ϕ in C, by Theorem 1 it is easy to see that $\sigma\left(T_{\phi}\right) \subseteq \partial D$ if and only if $\phi=e^{i v}$ for some $v \in C_{R}$. For a unimodular function ϕ in $H^{\infty}+C$, by [8, Theorem 2] and Theorem 1 it is easy to see that $\sigma\left(T_{\phi}\right) \subseteq \partial D$ if and only if $\phi=e^{i(\bar{a}+v)}$ for some $u, v \in C_{R}$. In fact, by [8, Theorem 2], Theorems 1 and $2, \sigma\left(T_{\phi}\right) \subseteq \partial D$ or $\sigma\left(T_{\phi}\right)=\bar{D}$ for a unimodular function ϕ in $H^{\infty}+C$.

In Corollary 3, we can not change the condition: $g^{-1} \notin \bigcup_{p>1 / 2} H^{p}$ to $g^{-1} \notin \bigcup_{p>1} H^{p}$ even if $g \in H^{\infty}$. For example, put $g=1+z$ then $\sigma\left(T_{\phi}\right) \neq \bar{D}$. If $\phi=(1+q)^{\alpha} /|1+q|^{\alpha}$ where q is a non-constant inner function and $2 \leq \alpha<\infty$, then by Corollary 3 $\sigma\left(T_{\phi}\right)=\bar{D}$ because $(1+q)^{\alpha} \in H^{\infty}$ and $(1+q)^{-\alpha} \notin \bigcup_{p>1 / 2} H^{p}$. We can show a more general theorem than Corollary 6, that is, for a symbol $\phi=\bar{q}_{1} q_{2} \phi_{0}$ where ϕ_{0} is a unimodular step function. Let ϕ be an arbitrary unimodular function in L^{∞}, then by [8] $\phi=\bar{q}_{1} q_{2} e^{i(u+\bar{v})}$ where both q_{1} and q_{2} are Blaschke products and $u, v \in C_{R}$. If $\operatorname{sing} q_{1} \neq$ sing q_{2}, then by the proof of Corollary 5 it is easy to see that $\phi \neq g /|g|$ for any g in $\bigcap_{p>1 / 2} H^{p}$ whose inverse is in $\bigcap_{p>1 / 2} H^{p}$. Thus by Theorem $2 \sigma\left(T_{\phi}\right)=\bar{D}$.

REFERENCES

1. A. Devinatz, Toeplitz operator on \boldsymbol{H}^{2} spaces, Trans. Amer. Math. Soc. 112 (1964), 304317.
2. R. G. Douglas, Banach algebra techniques in operator theory (Academic Press, New York, 1972).
3. R. G. Douglas and D. E. Sarason, A class of Toeplitz operators, Indiana U. Math. J. 20 (1971), 891-895.
4. T. W. Gamelin, J. B. Garnett, L. A. Rubel and A. L. Shields, On badly approximable functions, J. Approx. Theory 17 (1976), 280-296.
5. K. Hoffman, Banach spaces of analytic functions (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).
6. M. Lee and D. E. Sarason, The spectra of some Toeplitz operators, J. Math. Anal. Appl. 33 (1971), 529-543.
7. J. Neuwirth and D. J. Newman, Positive $H^{1 / 2}$ functions are constant, Proc. Amer. Math. Soc. 18 (1967), 958.
8. T. H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321-328.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060
Japan

[^0]: * This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

