THE SPECTRA OF TOEPLITZ OPERATORS WITH UNIMODULAR SYMBOLS

by TAKAHIKO NAKAZI*

(Received 9th January 1996)

The spectrum $\sigma(T_{\phi})$ of a Toeplitz operator T_{ϕ} on the open unit disc D for a unimodular symbol ϕ is studied and many sufficient conditions for $\sigma(T_{\phi}) \subseteq \partial D$ or $\sigma(T_{\phi}) = \overline{D}$ are given. In particular if ϕ is a unimodular function in $H^{\infty} + C$, then $\sigma(T_{\phi}) \subseteq \partial D$ or $\sigma(T_{\phi}) = \overline{D}$.

1991 Mathematics subject classification: Primary 47B35.

1. Introduction

Let L^p be the Lebesgue space on the unit circle ∂D and let H^p be the corresponding Hardy space for $0 . The Toeplitz operator <math>T_{\phi}$ with symbol ϕ in L^{∞} is the operator on H^2 defined by $T_{\phi}x = P(\phi x)$ for x in H^2 , where P is the orthogonal projection of L^2 onto H^2 .

In this paper we study the spectrum $\sigma(T_{\phi})$ of a Toeplitz operator T_{ϕ} . It is known that $\sigma(T_{\phi})$ is always connected. This is a hard and deep result due to H. Widom (cf. [2, Corollary 7.46]). If ϕ is a continuous function on ∂D , $\sigma(T_{\phi})$ consists of the range of ϕ together with those points not in the range of ϕ that have a nonzero index with respect to ϕ (cf. [2, Corollary 7.28]). If ϕ is a real-valued function in L^{∞} , $\sigma(T_{\phi}) = [\text{ess inf } \phi, \text{ess sup } \phi]$ (cf. [2, Theorem 7.20]) and if ϕ is a function in H^{∞} , $\sigma(T_{\phi}) = \text{the closure of } \phi(D)$ (cf. [2, Theorem 7.21]). In particular, we are interested in the spectrum $\sigma(T_{\phi})$ of a Toeplitz operator T_{ϕ} when ϕ is a unimodular function in L^{∞} . M. Lee and D. Sarason [6], and R. G. Douglas and D. Sarason [3] have considered $\sigma(T_{\phi})$ when ϕ is a quotient of two inner functions. Under some conditions, they showed that $\sigma(T_{\phi}) = \overline{D}$ [6]. In this paper, we consider such a problem when ϕ is an arbitrary unimodular function. Theorem 1 in [6] is a corollary of (2) of Theorem 2 in this paper. For a real-valued function s in L^{∞} , \overline{s} denotes the harmonic conjugate with $\overline{s}(0) = 0$. Our main tool is the following theorem [1].

Widom and Devinatz's Theorem. Let ϕ be a unimodular function in L^{∞} . Then the following (1)–(3) are equivalent.

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

TAKAHIKO NAKAZI

(1) T_{ϕ} is invertible.

(2) ϕ has the form: $\phi = e^{it}$ where t is a real-valued function in L^1 such that $\inf\{\|t - \tilde{s} - a\|_{\infty}; s \in L^{\infty}_R \text{ and } a \in R\} < \pi/2.$

(3) ϕ has the form: $\phi = g_1 g_2 / |g_1 g_2|$ where both g_1 and g_1^{-1} are in H^{∞} , and both g_2 and g_2^{-1} are in $\bigcup_{p>1} H^p$ with Re g_2 bounded away from 0 on ∂D .

In this paper, we give sufficient conditions for $\sigma(T_{\phi}) \subseteq \partial D$ or $\sigma(T_{\phi}) = \overline{D}$, using $\inf ||t - \overline{s} - a||_{\infty}$ in Section 1 and g/|g| in Section 2. Throughout this paper, for a function space X on ∂D , we let $X_R = \{Ref; f \in X\}$, where Ref is a real part of f. C denotes a set of continuous functions on ∂D and so C_R is a set of all real valued continuous functions on ∂D .

2. Sufficient conditions using $\inf ||t - \tilde{s} - a||_{\infty}$

Lemma 1. Let ϕ be unimodular in L^{∞} and $\lambda = a + ib$ in D. Then $\lambda \notin \sigma(T_{\phi})$ if and only if ϕ has the form $\phi = e^{it}$ where t is a real-valued function in L^1 such that

$$\inf\{\|t+v_{\lambda}-\tilde{s}-a\|_{\infty}; s\in L^{\infty}_{R} and a\in R\}<\pi/2$$

and $v_{\lambda} = \arctan \{(a \sin t - b \cos t)/(1 - (a \cos t + b \sin t))\}$.

Proof. We will first show the "if" part. There exists a function s_{λ} in L^{∞} such that $(1 - \lambda \bar{\phi})/|1 - \lambda \bar{\phi}| = e^{is_{\lambda}}$ and $||s_{\lambda}||_{\infty} < \pi/2$ because $|\lambda| < 1$. Then

$$\frac{1-(a\cos t+b\sin t)}{|1-\lambda\bar{\phi}|}+i\frac{a\sin t-b\cos t}{|1-\lambda\bar{\phi}|}=\cos s_{\lambda}+i\sin s_{\lambda}.$$

Since $|a\cos t + b\sin t| \le |\lambda| < 1$, $||v_{\lambda}||_{\infty} < \pi/2$. Hence $||v_{\lambda} - s_{\lambda}||_{\infty} < \pi$ and $\tan v_{\lambda} = \tan s_{\lambda}$ *a.e.* and so $v_{\lambda} = s_{\lambda}$ *a.e.*. Therefore

$$rac{\phi-\lambda}{|\phi-\lambda|}=\phirac{1-\lambdaar{\phi}}{|1-\lambdaar{\phi}|}=e^{it}e^{iv_\lambda}$$

and by Widom and Devinatz's Theorem in the Introduction $T_{\phi-\lambda}$ is invertible because $\inf\{\|t+v_{\lambda}-\bar{s}-a\|_{\infty}; s \in L_{R}^{\infty} \text{ and } a \in R\} < \pi/2$. Conversely if $\lambda \notin \sigma(T_{\phi})$, by Widom and Devinatz's Theorem there exists a real-valued function t_{λ} such that $(\phi-\lambda)/|\phi-\lambda| = e^{it_{\lambda}}$ and $\inf\{\|t_{\lambda}-\bar{s}-a\|_{\infty}; s \in L_{R}^{\infty} \text{ and } a \in R\} < \pi/2$. As in the proof of the "if" part, there exists s_{λ} such that $(1-\lambda\bar{\phi})/|1-\lambda\bar{\phi}| = e^{is_{\lambda}}$. Moreover $\phi = e^{it}$ and $s_{\lambda} = v_{\lambda}$ if $t = t_{\lambda} - s_{\lambda}$. This implies the "only if" part.

Theorem 1. Let ϕ be a unimodular function in L^{∞} .

(1) If $\phi = e^{it}$ and t is a real-valued function in L^1 such that $\inf\{\|t - \tilde{s} - a\|_{\infty}; s \in L^{\infty}_R$ and $a \in R\} = 0$, then $\sigma(T_{\phi}) \subseteq \partial D$.

(2) If $\inf\{\|t-\tilde{s}-a\|_{\infty}$; $s \in L^{\infty}_{R}$ and $a \in R\} \ge \pi$ for any $t \in L^{1}_{R}$ with $\phi = e^{it}$, then $\sigma(T_{\phi}) = \bar{D}$.

(3) If $\sigma(T_{\phi}) = \overline{D}$, then $\inf\{\|t - a\|_{\infty}; a \in R\} \ge \pi$ for any $t \in L^{1}_{R}$ with $\phi = e^{it}$.

Proof. (1) If $\lambda = a + ib \in D$ and $v_{\lambda} = \arctan \{(a \sin t - b \cos t)/1 - (a \cos t + b \sin t)\}$, then $||v_{\lambda}||_{\infty} < \pi/2$ and hence $\inf\{||t + v_{\lambda} - \tilde{s} - a||_{\infty}; s \in L_{R}^{\infty} \text{ and } a \in R\} < \pi/2$ because $\inf\{||t - \tilde{s} - a||_{\infty}; s \in L_{R}^{\infty} \text{ and } a \in R\} = 0$. By Lemma 1, $\lambda \notin \sigma(T_{\phi})$ and hence $\sigma(T_{\phi}) \subseteq \partial D$.

(2) If $\lambda \in D$ and $\lambda \notin \sigma(T_{\phi})$, then by Lemma 1 $\inf\{\|t + v_{\lambda} - \tilde{s} - a\|_{\infty} ; s \in L_{R}^{\infty} \text{ and } a \in R\} < \pi/2$. Since $\|v_{\lambda}\|_{\infty} < \pi/2$, $\inf\{\|t - \tilde{s} - a\|_{\infty} ; s \in L_{R}^{\infty} \text{ and } a \in R\} < \pi$. This implies (2).

(3) (3) is a result of a theorem of A. Brown and P. R. Halmos (cf. [2, Corollary 7.19]).

Corollary 1. Suppose $\phi = e^{it}$ and t is a real-valued function which satisfies one of the following (i)–(iii), then $\sigma(T_{\phi}) \subseteq \partial D$.

(i) $t = \tilde{u} + v$ where $u \in L_R^{\infty}$ and $v \in C_R$.

- (ii) $t = \tilde{u} + v$ where $u \in L^{\infty}_{R}$ and v is in the norm closure of H^{∞}_{R} .
- (iii) $t = \tilde{u} + v$ where $u \in L_R^{\infty}$ and $v = s \circ q$ for $s \in C_R$ and an inner function q.

Proof. If $v \in C_R$, then v is in the norm closure of H_R^{∞} and so (i) is a result of (ii). If $v \in H_R^{\infty}$, then $v = \tilde{s} + a$ for $s \in H_R^{\infty}$ and $a \in R$, and hence a simple computation implies (ii). If s is a real-valued polynomial of z and \tilde{z} , then $v = s \circ q$ belongs to H_R^{∞} for an inner function q. Thus (iii) is a result of (ii).

Corollary 2. Let Q_j be a non-constant inner function, $a_j \in D$ and $b_j \in D$ for $1 \leq j \leq \max(n, m)$. Suppose $\phi = \bar{q}_1 q_2$ where $q_1 = \prod_{j=1}^n (Q_j - a_j)/(1 - \bar{a}_j Q_j)$ and $q_2 = \prod_{j=1}^m (Q_j - b_j)/(1 - \bar{b}_j Q_j)$. Then $\sigma(T_{\phi}) \subseteq \partial D$ if and only if n = m.

Proof. If n = m, put $u = 2 \sum_{j=1}^{n} \log |(1 - \bar{a}_j Q_j)/(1 - \bar{b}_j Q_j)|$, then $u \in L_R^{\infty}$ and $\phi = \bar{q}_1 q_2 = \alpha e^{i\bar{u}}$ for some constant α . (1) of Theorem 1 implies the corollary. Suppose $\sigma(T_{\phi}) \subseteq \partial D$. If n > m, then $\phi = \bar{q}_1 q_2 = \phi_1 \phi_2$ where $\phi_1 = \prod_{j=m+1}^{n} (1 - \bar{a}_j Q_j/Q_j - a_j)$, $\phi_2 = \alpha e^{i\bar{u}}$, α is a constant and $u = 2 \sum_{j=1}^{m} \log |(1 - \bar{a}_j Q_j)/(1 - \bar{b}_j Q_j)|$. Therefore $T_{\phi} = T_{\phi_1} T_{\phi_2}$, and both T_{ϕ} and T_{ϕ_2} are invertible. This contradicts the fact that T_{ϕ_1} is not invertible.

TAKAHIKO NAKAZI

3. Sufficient conditions using g/|g| for g in H^p

Theorem 2. Let ϕ be a unimodular function in L^{∞} .

- (1) If $\phi = g/|g|$ where both g and g^{-1} are in H^{∞} , then $\sigma(T_{\phi}) \subseteq \partial D$.
- (2) If $\phi \neq g/|g|$ for any g in $\bigcup_{p>1/2} H^p$ whose inverse is in $\bigcup_{p>1/2} H^p$, then $\sigma(T_{\phi}) = \overline{D}$.

Proof. (1) This is a corollary of (1) of Corollary 1. But we will give another proof. If $\phi = g/|g|$ where both g and g^{-1} are in H^{∞} , put $h = g^{1/2}$, then $\phi = h/\bar{h}$ and both h and h^{-1} are in H^{∞} . For any $\lambda \in D$, $\phi - \lambda = (1/\bar{h})(1 - \lambda \bar{h}/h)h$ and hence

$$T_{\phi-\lambda} = T_{(1/\bar{h})} T_{(1-\lambda\bar{h}/h)} T_h.$$

This implies that $T_{\phi-\lambda}$ is invertible by Widom and Devinatz's Theorem.

(2) For any $\lambda \in D$, $1 - \lambda \bar{\phi} = \phi_0 \ell$ where $|\phi_0| = 1$ a.e., and both ℓ and ℓ^{-1} are in H^{∞} . Hence

$$\phi - \lambda = \phi(1 - \lambda \overline{\phi}) = \phi \phi_0 \ell$$
 and $\overline{\phi}_0 - \ell = \lambda \overline{\phi}_0 \overline{\phi}$.

Since $\|\bar{\phi}_0 - \ell\|_{\infty} = |\lambda| < 1$, by Widom and Devinatz's Theorem $T_{\bar{\phi}_0}$ is invertible and $\bar{\phi}_0 = h/|h|$ for some $h \in H^a$ and a > 1. If $T_{\phi-\lambda}$ is invertible, then $T_{\phi\phi_0}$ is invertible and hence $\phi\phi_0 = k/|k|$ for some $k \in H^b$ and b > 1. Therefore $\phi = \bar{\phi}_0 \phi\phi_0 = hk/|hk|$ and both hk and $(hk)^{-1}$ belong to H^p for some p > 1/2. This implies (2).

Corollary 3. If $\phi = g/|g|$ where $g \in \bigcap_{p < \infty} H^p$ and $g^{-1} \notin \bigcap_{p > 1/2} H^p$, then $\sigma(T_{\phi}) = \overline{D}$.

Proof. If $\phi = h/|h|$ for some h in $\bigcap_{p>1/2} H^p$ whose inverse is in $\bigcap_{p>1/2} H^p$, then $\phi = |k|/k$ with k = 1/h. Hence kg is non-negative *a.e.* on ∂D and $kg \in H^{1/2}$. By [7], g = ch for some positive constant c and $g^{-1} \in \bigcap_{p>1/2} H^p$. Now (2) of Theorem 2 implies the corollary.

Corollary 4. Let Q_j be a non-constant inner function, $a_j \in D$ and $b_j \in D$ for $1 \leq j \leq \max(n, m)$. Suppose $\phi = \bar{q}_1 q_2$ where $q_1 = \prod_{j=1}^n (Q_j - a_j)/(1 - \bar{a}_j Q_j)$ and $q_2 = \prod_{j=1}^n (Q_j - b_j)/(1 - \bar{b}_j Q_j)$. Then $\sigma(T_{\phi}) = \bar{D}$ if and only if $n \neq m$.

Proof. By Corollary 2, it is enough to show the "if" part. If n > m, then by the proof of Corollary 2 $\phi = \phi_2 \phi_2$ and so $\phi = \phi_1(g/|g|)$ where both g and g^{-1} are in H^{∞} , and ϕ_1 is a non-constant inner function. If $\phi = h/|h|$ for some h in $\bigcap_{p>1/2} H^p$ whose inverse is in $\bigcap_{p>1/2} H^p$, $\phi_1 g h^{-1}$ is a non-negative function in $H^{1/2}$. By [7], this contradicts that ϕ_1 is non-constant. Thus (2) of Theorem 2 implies that $\sigma(T_{\phi}) = \overline{D}$. When n < m, by a similar method we can show that $\sigma(T_{\phi}) = \overline{D}$.

Now using (2) of Theorem 2, we will give a proof of Theorem 1 in [6]. For each

inner function q, sing q denotes the subset of ∂D on which q can not be analytically extended.

Corollary 5 ([6]). If $\phi = \bar{q}_1 q_2$ where q_1 and q_2 are inner functions with sing $q_1 \neq sing q_2$, then $\sigma(T_{\phi}) = \bar{D}$.

Proof. By (2) of Theorem 2, it is enough to show that $\phi = \bar{q}_1 q_2 \neq g/|g|$ for any gin $\bigcap_{p>1/2} H^p$ whose inverse is in $\bigcap_{p>1/2} H^p$. We may assume that $\operatorname{sing} q_1 \neq z_0 \in \operatorname{sing} q_2$. There exists a constant $\lambda \in D$ such that $q = (q_2 - \lambda)/(1 - \bar{\lambda}q_2)$ is a Blaschke product with sing $q = \operatorname{sing} q_2$ by [5, p. 176]. Then $\bar{q}_1 q_2 = \bar{q}_1 q k/|k|$ where $k = (1 - \bar{\lambda}q_2)^2$. Since both k and k^{-1} are in H^∞ , we may assume that q_2 is a Blaschke product. If $\bar{q}_1 q_2 = f/|f|$ $q_1 \bar{q}_2 = g/|g|$ where fg = 1 a.e., $f \in H^{1/2}$ and $g \in H^{1/2}$, then $\bar{q}_1 q_2 g \ge 0$ a.e. and $\bar{q}_2 q_1 f \ge 0$ a.e.. Since $\bar{q}_1 q_2 g \ge 0$ a.e., $g \in H^{1/2}$ and $z_0 \notin \operatorname{sing} q_1$, by [4] there exists an open arc J such that $z_0 \in J$ and $q_2 g$ can be continued analytically from D across J. The zeros of q_2 cannot cluster at any point of J. This contradicts that $z_0 \in \operatorname{sing} q_2$. Thus $\bar{q}_1 q_2$ satisfies the condition of (2) of Theorem 2, and hence $\sigma(T_{\phi}) = \bar{D}$.

Corollary 6. Let q_1 and q_2 be inner functions, and χ_E be a characteristic function of a measurable set E in ∂D . If $\phi = \bar{q}_1 q_2 (2\chi_E - 1)$ and there exists an open arc J in E such that $(\operatorname{sing} q_2) \cap J \neq \emptyset$ and $(\operatorname{sing} q_1) \cap J = \emptyset$, or $(\operatorname{sing} q_1) \cap J \neq \emptyset$ and $(\operatorname{sing} q_2) \cap J = \emptyset$, then $\sigma(T_{\phi}) = \bar{D}$.

Proof. As in Corollary 5, we may assume that q_2 is a Blaschke product. If $\phi = \bar{q}_1 q_2 (2\chi_E - 1) = f/|f| = |g|/g$ where fg = 1 a.e., $f \in H^{1/2}$ and $g \in H^{1/2}$, then $\bar{q}_1 q_2 (2\chi_E - 1)g \ge 0$ a.e. and $\bar{q}_2 q_1 (2\chi_E - 1)f \ge 0$ a.e.. If there exists an open arc J in E such that $(\operatorname{sing} q_2) \cap J \neq \emptyset$ and $(\operatorname{sing} q_1) \cap J = \emptyset$, then

$$\bar{q}_1 q_2 (2\chi_E - 1)g = \bar{q}_1 q_2 g \ge 0 \ a.e. \text{ on } J.$$

Now as in Corollary 5, we can get a contradiction and hence $\sigma(T_{\phi}) = \tilde{D}$.

Let $q_a = \exp\{-a(1+z)/(1-z)\}$ for a > 0 and suppose b is a Blaschke product with sing $b = \{1\}$. Put $\phi_a = \bar{q}_a b$. Theorem 4 in [6] shows that if ϕ_a belongs to $H^{\infty} + C$ for all a > 0, then $\sigma(T_{\phi_a}) = \bar{D}$. This is a corollary of Corollary 7.

Corollary 7. If ϕ_a belongs to $H^{\infty} + C$ for some a > 0, then $\sigma(T_{\phi_c}) = \overline{D}$ for 0 < c < a. If T_{ϕ_a} is invertible or $\sigma(T_{\phi_a}) \subseteq \partial D$, then $\sigma(T_{\phi_c}) = \overline{D}$ for arbitrary c > 0 with $c \neq a$.

Proof. By Theorem 2 in [8], $\phi_a = qe^{i(u+\bar{v})}$ where q is inner, and u and v are in C_R . For 0 < c < a, $\phi_c = q_{a-c}qe^{i(u+\bar{v})}$ and so by (2) of Theorem 2 $\sigma(T_{\phi_c}) = \bar{D}$. For if $q_{a-c}qe^{i(u+\bar{v})} = g/|g|$ for some g in $\bigcup_{p>1/2} H^p$ with $h = g^{-1} \in \bigcup_{p>1/2} H^p$, then $hq_{a-c}qe^{i(u+\bar{v})} \ge 0$ *a.e.* and so $hkq_{a-c}q \ge 0$ a.e. where $k = e^{-\bar{u}+v+i(u+\bar{v})}$. Since both k and k^{-1} belong to $\bigcap_{p<\infty} H^p$, $hkq_{a-c}q$ is a non-negative function in $H^{1/2}$ and so by [7], $hkq_{a-c}q$ is constant.

TAKAHIKO NAKAZI

This contradicts the fact that $q_{a-c}q$ is not constant. Therefore (2) of Theorem 2 shows that $\sigma(T_{\phi_c}) = \overline{D}$ for 0 < c < a. If T_{ϕ_a} is invertible, it is known that q is constant. In fact, we can show it as in the above proof. If q is constant, then for c > 0 with $c \neq a$

$$\phi_c = \bar{q}_c b = q_{a-c} \bar{q}_a b = q_{a-c} e^{i(u+\bar{v})}.$$

By the first part of this theorem, we may assume that c > a. However, in this case we can show it as in case 0 < c < a.

4. Remark

If $\sigma(T_{\phi}) \subseteq \partial D$, then $\sigma(T_{\phi}) = J$ for some closed arc J in ∂D because $\sigma(T_{\phi})$ is connected by a theorem of H. Widom (cf. [2, Corollary 7.46]). Then, if the essential range $R(\phi)$ of ϕ is disconnected, by a theorem of A. Brown and P. R. Halmos (cf. [2, Corollary 7.19]), then $\sigma(T_{\phi}) \not\subseteq \partial D$. Hence if $\sigma(T_{\phi}) \subseteq \partial D$, $R(\phi)$ is connected and so $R(\phi) = J = \sigma(T_{\phi})$ by the theorem of A. Brown and P. R. Halmos. If $\phi = \alpha e^{it}$, $\inf\{\|t - \tilde{s}\|_{\infty}; s \in L_R^{\infty}\} = 0$ and $R(\phi) = \partial D$, then $\sigma(T_{\phi}) = \partial D$ by (1) of Theorem 1. For a unimodular function ϕ in C, by Theorem 1 it is easy to see that $\sigma(T_{\phi}) \subseteq \partial D$ if and only if $\phi = e^{iv}$ for some $v \in C_R$. For a unimodular function ϕ in $H^{\infty} + C$, by [8, Theorem 2] and Theorem 1 it is easy to see that $\sigma(T_{\phi}) \subseteq \partial D$ or $\sigma(T_{\phi}) = \overline{D}$ for a unimodular function ϕ in $H^{\infty} + C$.

In Corollary 3, we can not change the condition: $g^{-1} \notin \bigcup_{p>1/2} H^p$ to $g^{-1} \notin \bigcup_{p>1} H^p$ even if $g \in H^\infty$. For example, put g = 1 + z then $\sigma(T_\phi) \neq \overline{D}$. If $\phi = (1+q)^{\alpha}/|1+q|^{\alpha}$ where q is a non-constant inner function and $2 \leq \alpha < \infty$, then by Corollary 3 $\sigma(T_\phi) = \overline{D}$ because $(1+q)^{\alpha} \in H^\infty$ and $(1+q)^{-\alpha} \notin \bigcup_{p>1/2} H^p$. We can show a more general theorem than Corollary 6, that is, for a symbol $\phi = \overline{q}_1 q_2 \phi_0$ where ϕ_0 is a unimodular step function. Let ϕ be an arbitrary unimodular function in L^∞ , then by [8] $\phi = \overline{q}_1 q_2 e^{i(u+\overline{v})}$ where both q_1 and q_2 are Blaschke products and $u, v \in C_R$. If sing $q_1 \neq$ sing q_2 , then by the proof of Corollary 5 it is easy to see that $\phi \neq g/|g|$ for any g in $\bigcap_{p>1/2} H^p$ whose inverse is in $\bigcap_{p>1/2} H^p$. Thus by Theorem 2 $\sigma(T_\phi) = \overline{D}$.

REFERENCES

1. A. DEVINATZ, Toeplitz operator on H^2 spaces, Trans. Amer. Math. Soc. 112 (1964), 304–317.

2. R. G. DOUGLAS, Banach algebra techniques in operator theory (Academic Press, New York, 1972).

3. R. G. DOUGLAS and D. E. SARASON, A class of Toeplitz operators, Indiana U. Math. J. 20 (1971), 891-895.

138

4. T. W. GAMELIN, J. B. GARNETT, L. A. RUBEL and A. L. SHIELDS, On badly approximable functions, J. Approx. Theory 17 (1976), 280-296.

5. K. HOFFMAN, Banach spaces of analytic functions (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

6. M. LEE and D. E. SARASON, The spectra of some Toeplitz operators, J. Math. Anal. Appl. 33 (1971), 529-543.

7. J. NEUWIRTH and D. J. NEWMAN, Positive $H^{1/2}$ functions are constant, *Proc. Amer. Math.* Soc. 18 (1967), 958.

8. T. H. WOLFF, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321-328.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE HOKKAIDO UNIVERSITY SAPPORO 060 JAPAN