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ON SPANNING AND DOMINATING 
CIRCUITS IN GRAPHS 

BY 

L. LESNIAK-FOSTER AND JAMES E. WILLIAMSON 

ABSTRACT. A set E of edges of a graph G is said to be a 
dominating set of edges if every edge of G either belongs to E or is 
adjacent to an edge of E. If the subgraph (E) induced by E is a trail 
T, then T is called a dominating trail of G. Dominating circuits are 
defined analogously. A sufficient condition is given for a graph to 
possess a spanning (and thus dominating) circuit and a sufficient 
condition is given for a graph to possess a spanning (and thus 
dominating) trail between each pair of distinct vertices. The line 
graph L(G) of a graph G is defined to be that graph whose vertex 
set can be put in one-to-one correspondence with the edge set of G 
in such a way that two vertices of L(G) are adjacent if and only if 
the corresponding edges of G are adjacent. The existence of 
dominating trails and circuits is employed to present results on line 
graphs and second iterated line graphs, respectively. 

Introduction. A set U of vertices in a graph G is said to dominate the 
vertex set of G if every vertex of G either belongs to U or is adjacent to a 
vertex of U. Such a set U will be referred to as a dominating set of vertices. In a 
like manner, we define a set E of edges of G to be a dominating set of edges if 
every edge of G either belongs to E or is adjacent to an edge of E. 

The line graph L(G) of a graph G is that graph whose vertex set can be put 
in one-to-one correspondence with the edge set of G in such a way that two 
vertices of L(G) are adjacent if and only if the corresponding edges of G are 
adjacent. It follows readily that under the above correspondence, a dominating 
set of edges in G corresponds to a dominating set of vertices in L(G). 

It is convenient to give a few definitions at this point. Definitions of basic 
graph theory terms not given here are consistent with [1]. If u and v are (not 
necessarily distinct) vertices of a graph G, then a u-v walk in G is an 
alternating sequence of vertices and edges of G beginning with u, ending with 
v, and such that each edge is incident with the two vertices immediately 
preceding and succeeding it. A u — v walk is open if u ¥• v and closed if u = v. A 
u-v trail isa u - u walk in which no edge is repeated, and a u-v path is a 
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u — v walk in which no vertex is repeated. A non-trivial closed trail of G is 
called a circuit of G, and a cycle is a circuit in .which no vertices are repeated 
(except the first and last). A spanning walk in a graph G is a walk which 
contains all vertices of G. A spanning path (cycle) in a graph G is often 
referred to as a hamiltonian path (hamiltonian cycle) of G. A graph possessing 
a hamiltonian cycle is a hamiltonian graph. 

If E is a dominating set of edges of a graph G such that the subgraph (E) 
induced by E is a trail T, then T is called a dominating trail of G. A circuit 
which is a dominating trail of G is called a dominating circuit of G. 

It was shown by Harary and Nash-Williams [3] that the line graph L(G) of a 
connected graph G is hamiltonian if and only if either G has a dominating 
circuit or G is isomorphic to a complete bipartite graph K(l, n), for some 
n > 3 . A slight modification in the proof of this result yields the following 
analogous result for line graphs which possess hamiltonian paths. 

THEOREM 1. The line graph L(G) of a connected graph G contains a hamil
tonian path if and only if G has a dominating trail. 

Thus, the line graph L(G) of a connected graph G (which is not isomorphic 
to K(l, n)) containing a hamiltonian cycle (path) is equivalent to G containing 
a dominating circuit (trail). We now consider a special type of dominating 
circuit, namely a spanning circuit. 

In [4] Ore proved that if G is a graph of order p > 3 such that 
degG u + degG v > p for every pair u, v of non-adjacent vertices, then G con
tains a spanning cycle. In particular, such a graph contains a spanning (and thus 
dominating) circuit. In Theorem 2 we present an analogue to Ore's result for a 
graph to possess a spanning circuit. The following observation will be useful. If 
G is a graph of order p ^ 2 such that degG u + degG v > p -1 for every pair u, v 
of non-adjacent vertices, then the graph G* obtained from G by adding a new 
vertex w which is adjacent to every vertex of G satisfies the hypothesis of 
Ore's result. Clearly, then, this implies that G contains a spanning path. 

We use 8(G) to denote the minimum degree among the vertices of a graph 
G 

THEOREM 2. If G is a graph of order p > 6 with 8(G)>2 such that 
degG w + degG v>p — \ for every pair u, v of non-adjacent vertices, then G 
contains a spanning circuit. 

Proof. If G is hamiltonian, then G contains a spanning circuit. We therefore 
assume that G is not hamiltonian. By the observation above, G contains a 
spanning path P which we denote by 

P:uu u2,..., up, 

where uteV(G), l < i < p , and UiUi+1eE(G), l < i < p - l . Since G is not 

https://doi.org/10.4153/CMB-1977-034-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-034-8


1977] CIRCUITS IN GRAPHS 217 

hamiltonian, uxup£E(G). Hence, degG ux + degG up>p-l. Now, if 
u^eEiG), 2<i<p, then Ui_}up^E(G); for otherwise, G contains 
the hamiltonian cycle u\, u2,..., w,-i, up, wp_i,..., uh U\. Thus degGwp ^ 
(p -1) - degG Wi or, equivalently, degG "i + degG up < p - 1 . Therefore 
degGw1 + degGMp = p - l and, since UiUp£E(G), there is a vertex w in the set 
{"2, w3 , . . . , Mp-i} which is adjacent to both Mi and MP. It suffices to show there 
exists such a vertex in the set {u3,..., up-2} for then ul9 u2,..., up, w, ux is a 
spanning circuit of G. 

Suppose this is not the case. We consider the following two possible (and 
exhaustive) cases. 

(1) Precisely one of UiWp_i, upu2 is an edge of G. 
(2) Both Miwp_i and upu2 are edges of G. 

Case 1. Suppose upu2eE(G) and WiWp_i^E(G). Since G is not hamilto
nian, WiW3£E(G).By assumption, degGMi>2. Let k be the minimum integer 
>4 such that WiUkeE(G). Then k < p - l and WiWk_iéE(G). Since G is not 
hamiltonian, upwk_ié£(G). Hence if C/ = {MJ:3< i < p - 1 and 
MiMiGE(G)}U{Mk_i}, degGWi = |l/ | and up is adjacent to no vertex in U. 
Therefore up is adjacent to at most (p-3)-\U\ vertices in the set 
{ w3, u4,..., wp-i} which implies that degG up < (p - 2) -11/| . But then 
degG Wi + degGup<|C/| + (p -2 - | l / | ) = p - 2 which is a contradiction. In an 
analogous manner, if WiWp_ieE(G) and upu2eE(G) we are led to the same 
contradiction. Therefore the first case cannot occur. 

Case 2. Suppose WiWp_i, upu2eE(G). Let S = {Wj:3<i<p-2 and 
MxMiGECG)} and T = {Ui:3<i<p-2 and Up^eECG)}. Then |S| + |T| = p - 5 , 
S H T= 0 , and there is exactly one vertex w, in {w3,..., wp_2} that is in neither 
S nor T. Also, since G is not hamiltonian, there is no value of i e {2 , . . . , p — 2} 
such that upUieE(G) and WiWi+ie E(G). It follows easily that 

(i) / = 3, S = {u4,...,wp-2}and T = 0 
(ii) j = p~2, S = 0 and T = {w3,... , p -3} or 

(iii) 3 < / < p - 2 , S = {i«f+i,..., up-2} and T = {w3,..., Wj-i}. In case (i), G 
has the hamiltonian cycle ul9 wp_i, up, u2, w3 , . . . , wp_2, Mi, which is impossible. 
Similarly, case (ii) cannot occur. Thus 3 < / < p - 2 and p>7 . 

Since degG Mi + degG up = p - l , either degG Wi<(p-l)/2 or degGWp< 
(p-l) /2 . Therefore, because u, is adjacent to neither Mi or wp, degGu,^ 
(p - l ) / 2>3 . So Uj must be adjacent to some uk, where 2 < k < / - 2 or 
/ + 2 < k < p - l . This, however, gives rise to at least one of the two following 
hamiltonian cycles of G: ub uk, uk-u . . . , uu uj+1, uj+2,..., up, uk+i, 
uk+2,..., Uj or My, wk, uk+u ...,up, Uj-U Uj-2,..., Mi, uk_i, uk_2 , . . . , u;. There
fore, the second case cannot occur. 
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The graph G of order p > 6 composed of two disjoint complete subgraphs Kn 

and Kp-n, 3 < n < p - 3 , and an edge joining vertices of the two subgraphs has 
no spanning circuit. Thus we cannot replace the condition "degG u + d e g G i ; > 
p — 1 " by "degG w + d e g G u > p - 2 " in Theorem 2, even in the case of con
nected graphs. 

As observed previously, if the sum of the degrees of each pair of non-adja
cent vertices of a graph having order p is at least p - 1 , then there is a spanning 
path in the graph. It can be verified that if G is a connected graph of order 
p > 5 such that degG u + d e g G i ; > p - 2 for every pair u, v of non-adjacent 
vertices, then G contains a spanning trail. However, no example is known to 
show that this result cannot be improved. 

A graph which satisfies Ore's condition for a spanning cycle also contains 
numerous spanning trails, as we now verify. 

THEOREM 3. Let G be a, graph of order p > 5 such that degG u + degG v^p for 
every pair u, v of non-adjacent vertices. Then each pair of distinct vertices is 
joined by a spanning trail 

Proof. By Ore's result, G is hamiltonian. Let C:vu v2,...,vp, vx be a 
hamiltonian cycle of G and let vh VjG V(G) where i<j. If vtVjeE(C), then vt 

and Vj are clearly joined by a spanning trail in G. If vtVj e E(G)-E(C), then vh 

Vi+u • • • > vi9 Vj is a spanning vt — v, trail in G. 
Assume that ViVjfÉE(G). Thus degG vt + degG v} >p and there exist distinct 

vertices vk, v€ e V(G)-{vh v,} with vtvk, vtv^ VjVk, v{v€ € E(G). If either of vk or 
iV is not one of vt-u vi+1, Vj-U vj+1, then C together with the path vh vk, vh or 
C together with the path vh v€, vf produces a spanning Vt — Vj trail in G. If 
{vk,v€}^{Vi-u Vi+i, Vj-u vj+1}, we note that since p > 5 we cannot have 
i + 1 = j -1 and / + 1 = i -1 (modulo p). 

Thus we must have one of the following: 

(a) VtVj-ieE(G) and u ^ - i é E ^ C ) , 
(b) ViVj+1eE(G) and ViVj+1éE(C), 
(c) VjVt-ieE(G) and i ^ - i é E ( C ) , 
(d) VjVi+1eE(G) and VjVi+1eE(C), 

yielding one of the following spanning vt — v, trails in G : 

(a) vi9 Vj-u Vj-2,..., Vj 

(b) Vh Vj + U Vj+2, • • • , Vj 

(C) Vi9 Vi + U Vi+2, . . . , Vi-l9 Vj 

(d) Vi9 Vi-U Vt-2, • . . , Vi + U Vj. 

This completes the proof. 
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The bound given in Theorem 3 is sharp, even among graphs with minimum 
degree at least two. For example, let G be the graph of order p > 5 consisting 
of the complete graph Kp_2, two additional adjacent vertices w and z, and the 
edges xw and yz, where x and y are distinct vertices of Kp-2. In G, we have 
degG u + d e g G i ; > : p - l for every pair u, v of non-adjacent vertices. However, 
G contains no spanning x — z trail. 

We have already noted the strong relationship which exists between 
dominating trails and circuits in a graph G and the hamiltonian properties of 
L(G). This relationship allows one to investigate the hamiltonian properties of 
the iterated line graph L(L(G)) of a graph G. For example, the existence of 
dominating circuits in the line graph of a graph G was used by Chartrand and 
Wall in [2] to prove that if G is a connected graph for which 8(G) ^ 3 , then 
L(L(G)) is hamiltonian. Now, suppose G is a connected graph with at least 
four edges in which every vertex of degree two is adjacent to an end vertex. If 
we let S be the set of all end vertices of G which are adjacent to some vertex 
of degree two and let G' denote the graph G—S, then G' has at least three 
edges and degG ' w¥=- 2, for each w e V(G'). Using an almost identical technique 
to that employed in the proof of the aforementioned result of Chartrand and 
Wall, we can show that L(G') contains a spanning circuit C. Since C is also a 
dominating circuit of L(G), we conclude that L(L(G)) is hamiltonian. This 
result is stated below. 

THEOREM 4. Let G be a connected graph with at least four edges. If every 
vertex of degree two is adjacent to an end vertex, then L(G) contains a 
dominating circuit and thus L(L(G)) is hamiltonian. 

L ( G ) : 

Figure 1 

The graph G of Figure 1 illustrates that if a graph fails to satisfy the 
condition of Theorem 4 involving vertices of degree two, then the second 
iterated line graph need not be hamiltonian. We observe that L(G) contains no 
dominating circuit and so, by the aforementioned result of Harary and Nash-
Williams, L(L(G)) is not hamiltonian. 
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