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Abstract. We state certain product formulae for Jackson integrals associated with irreducible
reduced root systems. The Jackson integral is defined here as a sum over any full-rank sublattice
of the coweight lattice for the root system. In particular, a Weyl group symmetry classification
of the Jackson integrals is done when they have an expression of a product of the Jacobi elliptic
theta functions. Most of the product formulae investigated by Aomoto, Macdonald and Gustafson
appear in the list of classifications. A new product formula for an Fy root system is included in it.
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1. Introduction
There are a lot of generalizations of the Selberg integral

n
/ Hx?_l(l —x)! l_[ Ix; — ;1% dx; - - - dx,
[0,17"

i=1 1<i<j<n

_ ﬁl“(i“/ + DI+ (G — DB+ G — 1))
o I+ DI+ p+m+j—2))

J=1

which was proved by Selberg in 1944, and they have been studied in various way. One
of the extensions is the g-Selberg integral investigated by Andrews, Askey and many
others [As, E, H, Kad, Kan]. In [Aol], Aomoto extended the ¢-Selberg integral to a
sum which has the symmetry of a Weyl group of irreducible reduced root systems.
Using the Poincaré series for affine root systems, Macdonald [Ma3] showed the
relation between Aomoto’s sum and the g-Macdonald—Morris identity investigated
by Cherednik [C1] and others. The product formula (see Proposition 4.4) investi-
gated in [Aol, Itol, Ma3] was recently applied by van Diejen and Vinet [vDV]
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to an eigenvalue problem of the quantum Hamiltonian for the compactified
trigonometric Ruijsenaars—Schneider model.
On the other hand, the formula

i (1 — ag®)(b; q),(c; 9),(d; q),(e: q), < a’q >V
= (1 —a)aq/b; q),(aq/c; 9),(aq/d; 9),(aq/e; q), \bcde
_ 4/ 9)sc(ag; oc(aq/be; 9)oc(aq/bd; ¢)o
(4/b; 9)os(q/¢; Dos(q/d; D)oc(q/€; Do
(aq/be; q)s(aq/cd; q)s(aq/ce; 9)o(aq/de; @)oo(d; @)oo
(aq/b; @) no(aq/c; 9)os(aq/d; 9)oo(aq/e; 9)n(a?q/bede; @),

was proved by Bailey in 1936 and is called Bailey’s very-well-poised /4 summation
formula. This formula and the ¢-Selberg integral can be regarded as a g-series
of the hypergeometric type expressed as a product of g-gamma functions. Gustafson
[Gu4] established a multidimensional generalization of a ¢ summation formula
corresponding to semi-simple Lie algebras. By using Gustafson’s C,-type sum,
van Diejen [vD] proved a summation formula for his BC,-type sum, which includes
Aomoto’s B, and C,-type sums as special cases.

In this paper we define certain sums which have the symmetry of a Weyl group for
the irreducible reduced root system R. We call them Jackson integrals associated
with R. The main results of this paper are Theorems 4.5 and 4.10, which classify
them when they are expressed as a product of the Jacobi elliptic theta functions.
Aomoto’s sums and Gustafson’s B, and G,-type sums [Gul] are included in the
classification list in Theorem 4.5. One advantage of this list is to be able to find
a new product formula for Fy-type [[to3] which seems not to be known yet. The
sums not appearing in it are Gustafson’s 4,, C,, D,-type sums, and van Diejen’s
BC,-type sum. But these sums, except for Gustafson’s 4,-type sum, are included
in the classification list for the Jackson integral associated with a nonreduced root
system (BC,-type root system). (See the list for the BC,-type case in a sequel [[to4]
to this paper.) Thus, essentially the sum not belonging to our lists is Gustafson’s
Ap-type sum.

Throughout this paper, we use the notation

(@ qQ)o = [ [1 —ag) and (& ) = (& 9)ne(q/E: Doo(@: Do

i=0

2. Definition of Jackson Integral

Let R be an irreducible reduced root system, spanning a real vector space E of
dimension n, and let (-, -) be a positive definite scalar product on E under the Weyl
group W of R. We denote by R* the set of positive roots relative to a fixed basis
{o1, ..., 0,} of R. For each o € R, let ¥ = 2a/{x, ). Let P be the coweight lattice
{x € E; («, ) € Z for any o € R} and let Q be the coroot lattice of R defined by
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Q=7Zo{ +---+Zo, CP.Let L be any sublattice of P of rank n. We assume L is
W-stable, i.e. L =wL for we W. The scalar product (-, -) is uniquely extended
linearly to Ec = E ®g C >~ C". Let ¢ be a real number such that 0 < ¢ < 1. For
x € Ec, we define

Dr(by, -+, by, c1,- -+, €15 %)
= Dr({bi}, {¢j}; x)
_ 1—[ H q(1/27b,)(o¢,x) (q bt i Doo %
(qb,+ o,X) : q)oo

i=l o>0
o:short

1—c¢j+({a,x).
(1/2-e)lx) (4T Do
X 1_[ l—[ q ’ (q“/+<°"");q)oo )

j=1 >0
o:long

where s,/ € Z >, b;, ¢; € C and a > 0 means « € R". We denote by Ag(x) the Weyl
denominator as

Ar(x) = [ (g™ — 7).

>0

For w € W, we define wF(x) := F(w™'x) for a function F(x) of x € Ec. The function
Dr({bi}, {cj}; x) is quasi-symmetric with respect to W:

wdr({bi}, {¢j}; x) = Un(x)  Pr({bi}, (¢} x),  we W, (D

where U, (x) is a pseudo-constant, i.e. an invariant under the shift x — x + y for
y € P, as

S(qb i+{o,x) . q)
(2b;—1){o,x)
Uw(x) 1_[ 1_[ q 9(6]1 b+ (o, x) - q)

i=1 sc>0
wla<0
o short
9( ¢j+(o,x) . )
xl_[ H Qe—1)a,x) V4 4 )
=1 220 Y(g' ot )
wla<0
o:long

The Weyl denominator Ag(x) changes by the action of W as
WAR(x) = sgnw Ar(x). (2)
For z € Ec, we define the Jackson integral associated with R as

Tr(bih, (e} Ly 2) =) @r({bi}, {¢j}; 2 + 1) Ar(z + 2)- 3)

J€L

By definition, the Jackson integral Jr({5;}, {c;}; L; z) is obviously invariant under the
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shift z — z+ y for y € L:
Jr({bi} Aciks Ly z + 1) = Jr({bi}, {¢j}s Ls 2). C))

Remark. If all roots in R have the same length, we regard the roots as all short, so
that

- (1/2—bi)a,x) (g0 g) o
Dr({bi}; x) = 1_[ Hq R M

i=1 o>0
LEMMA 2.1. The following holds for we W:
wJr({bi}, (¢} Ly 2) = sgnw - Uw(2)  Jr({bi}, {¢j}: L; 2).
Proof. From Definition (3), we have

wJr({bi}, {¢j}; L; z) = Z Dr({bi}, {ejs whz + ) Ar(w™'z + ), (5)
yeL

and, since L is W-stable, we have
wJr({bi}, {¢j}; L; 2)
= > wdr({bi}. {¢;}: 2+ wy) wAR(z + wy)

1eL

= Z w®r({bi}, {¢;}; z + ) wAr(z + ).
y€L

Hence, from (1) and (2), we have Lemma 2.1. O

3. Examples

In this section, in our setting, we state some sums which are already known. Let
{e1,..., e, be the standard basis of R" satisfying (g,¢) =9; for all

i,j=1,...,n, where d; is the Kronecker delta.
3.1. A4,-type
Basis: o) = ¢ — &, o) =& —&3,...,0; = & — &utl,

Positive roots: & —¢ =), ., (1 <i<j<n+]l),
Coweight lattice: P =Zy, +Zy, +Zys+ -+ Zy,, (%, 1) = 0j.
Coroot lattice: Q = Zoy + Zop + Zos + - - - + Za,,

((oc,-, aj)):j:] -
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Sum Type
Ja,(b1; P; 2) Aomoto’s 4,-type [Itol, p. 132]
Ja,(b1; Q5 2)
3.2. B,-type
Basis: oy = &1 — &, o) =& — &3, ..., 0—1 = Ey_1 — Ens Oy = &,

Positive short roots: ¢ (1 < i< n),
Positive long roots: ¢; £¢ (1 <i<j<n),
Coweight lattice:

P=Ze +Zer+e)+--+Ze+e+- - +é&)
=Ze+2Zey +7ée3+ -+ Zey,.

Sum Type

Jg, (b1, c1; Pyz)  Aomoto’s B,-type [Aol, Itol]
JB"({b,-}%zl’l; P; z) Gustafson’s B,-type [Gul]

3.3. C,-type

Basis: o = &1 — &, g =& —&3,...,0—1 = En—1 — En, Oy = 28,
Positive short roots: ¢; ¢ (1 <i<j<n),

Positive long roots: 2¢; (1 < i< n),

Coweight lattice:

P=Ze +Zer+e)+-+Ze e+ + et
+Z(e+eat+et+- )2
=Zey+Zex+ -+ Loy + L) + e+ 63+ +80)/2,

Coroot lattice:

O=7Z(e1 — &)+ 2Ly —e3)+ -+ ZL(ey_1 — &) + ZLe,
=7Z¢ +2e, +72e3 + -+ Ze,.

Sum Type

Je, (b1, c1; P;z)  Aomoto’s C,-type [Aol, p. 122 (3.5)]
Je, (b, c1; Q5 2)

34. D,-type

Basis: o) =& — &, 0 =& —€3,... Oy_] = &1 — &n, Oy = En_1 + &n,
Positive roots: ¢; ¢ (1 <i<j<n),
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Coweight lattice:

P=Ze +Z(e1+e)+ - +Zer+e+ - +ea)t
+Z(er + et e+ e —e)/2+
+ZE + e+ e+ e +60)/2
=Ze+Zer+ -+ Ze 1 +ZL(er + 2+ +0)/2,

Coroot lattice:

Q = Z(gl - 82) + Z(82 - 83) +---+ Z(gn—l - 811) + Z(En—l + 811)-

Sum Type
Jp,(b1; P; z) Aomoto’s D,-type [Aol, p. 122 (3.6)]
Jp,(b1; Qs 2)

3.5 G,-type

Basis: o) = ¢ — &, op = —2¢ + & + &3,

Positive short roots: oy, oy + ap, 2001 + 0,
Positive long roots: oy, 3a1 + on, 30 + 20,
Coweight lattice: P = Q =Zy; +Zy,, (o, y;) = 0y

Sum Type

Jo, (b1, c1; P; 2) Amomoto’s G,-type [Itol, p.152]
JGZ({bi};‘:l; P; z) Gustafson’s G-type [Gul, p. 103 (8.12), Ito2]

3.6 Fy-type

Since the root systems F4 and F,” are isomorphic with orthogonal transformation
[Gal, p. 806], we take a basis of F;'.

Basis: o) =& — &3, 0p = &3 — &4, 03 = 284, 04 = & — & — &3 — &4,

Positive short roots: & +¢ (1 <i<j<4),

Positive long roots: 2¢; (1 <i<4), g1 L& +ée3+ ey,

Coweight lattice:

P = Q = Z(82 —83)+Z(83 —84)+Z84 +Z(81 — & — &3 —84)/2
=7Zé& +Zery +Zes+ Z(e) + ¢ + 63+ e4)/2.

Sum Type

JE (b1, c1; Pyz)  Aomoto’s Fy-type [Aol]
Je (b)Y s Piz)  [Ito3]
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4. Product Formula

In this section, we discuss the sum Jr({b;}, {c;}; L; z) which can be expressed as a
product of the Jacobi elliptic theta function 3(&; q). The theta function 3(&; q)
has a quasi-periodic property such as 3(¢¢; ¢) = —3(&; ¢)/E. By using this property,
for y € L, we have
Y(g =t g)
:(_1)(%1 (=)o) —Hon 1)~ %Z)(oc.z)lg(qc”r(a,z};q), (6)

which is used in the succeeding discussion.

LEMMA 4.1. For a € RT, if («,z) =0, then Jr({b;}, {c;}; Ly z+ ) = 0 for all y € L.
Proof. First we consider Jr({b;}, {¢;j}; L; z) = 0 if («, z) = 0. We denote by w, the
orthogonal reflection with respect to the hyperplane H, perpendicular to o € R, i.e.

o, x)
o, o)

We denote by S, the set {f € R|f > 0 and w,(f) < 0}. For simplicity, we abbreviate
Jr({b:i}, {c;j}; Ly z) and Dr({b;}, {c;}; x) by Jr(L;z) and Pg(x) respectively. If
(o, z) = 0, we have

g2 8(g“t™?; q)
g(qlchr(x,z); q)
because of the property 3(&; q) = Hg/&; q). Since z € H,, it follows that
<Woc(ﬁ)v Z) = (ﬁ7 Z) fOr ﬁ € Rv (8)
so that, for f € R, we have
Qe—=1)(p '9(6](+(ﬂ Q) q(2c—l)(—wu([f),z> Ygtm D2, g)
9(q1 c+H(p q) S(qlfcdr(fwz(ﬁ),z); q)

because 3(&; q) = Hq/&; q). If f € S, then —w,(f) € S,. When (a, z) = 0, using the
relations (7) and (9) for the definition of U,,(z), we have

Wy(x) i=x—2 o forxe Ec, and H,:={xe€ Ec|{x, x) =0}

=1 (N

=1 ©)

Uy, (2) = 1. (10)
By using (10), Lemma 2.1, and sgn w, = —1, we have
wyJr(L; z) = —JR(L; 2). (11)

On the other hand, for € R, by Equation (8), we have

(Bowoz + ) = wWu(B), 2) + (B, ) = (B.2) + (B. ) = (B, 2+ %),
so that

DOrwyz+y) = DPr(z+y) and  Ar(w,z + x) = Ar(z + ). (12)
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By Equations (12) and (5), we have

waJR(L; 2) = JR(L; 2). (13)
Hence, from (11) and (13), it follows that

Jr(L;z) = 0.

By using (4), it is clear that Jgr(L; z+ y) = 0 for y € L. OJ

LEMMA 4.2. Assume that L=P or Q. For o€ R", if (a,z)=0, then
Jr({bi}, {cj}; Ly z+ ) =0 for all y € P.

Proof. If L = P, it is straightforward from Lemma 4.1. We assume that L = Q.
From Lemma 2.1, it follows that

WO(JR(Q; zZ+ X)
= —Uy(z+DJr(Q; 2+ 1) = = Uy, (2)Jr(Q: 2 + 7). (14)

If (o, z) =0, by using (10) and (14), we have
wor(Q: 2+ 1) = —Jr(Q5 2+ ). (15)
On the other hand, since w,(y) € y + Q for o € R, we have

Jr(Q; z+wy(0) =Jr(Q;z+y) forall yeP,

so that,

woR(Q; z + 1) = JR(Q; waz + wa(1)) = JR(Q; Woz + 7). (16)
If (o, z) =0, from (12) and (16), we have

walR(Q5 2 4 1) = Jr(Q5 2 + %) (17)
Hence, from (15) and (17), it follows that Jz(Q; z + y) = 0. O

PROPOSITION 4.3. For L = P or Q, the sum Jr({b;}, {c;}; L; z) is expressed as

10 T] g 2T ) g g)
220 [Ti=1 (g2 )

o:hort

l
q(171/272/:1 (,'j)(ot,l) 9(q<“’z>; q)
7 vz
250 [Tj=1 9(g9+*7): q)

o:long

where f(z) is a holomorphic function of z € Ec.
Proof. We set (* := ¢*?. By definition, Jr({b:}, {¢;}; L; z) can be regarded as a
function of (=({",...,{*")e(C*)", and we denote by Jg({) the sum

https://doi.org/10.1023/A:1012518910847 Published online by Cambridge University Press


https://doi.org/10.1023/A:1012518910847

SYMMETRY CLASSIFICATION FOR JACKSON INTEGRALS 333
Jr({bi}, {¢j}; L; z). Since Jg({) has poles lying in the set

S

ce@y : I I %@ q)]‘[ [] %79 =

i=l o>0 = >0
o short o:long

the sum Jg({) is written as

il Ca(s—l/z—Zj:lb,-)_ I C1(171/272::]c,)

‘aiot fxl>0
g — : :
H H K" q) - 1'[1 l_[o gL q)
j=1 o>
ashorl o:long

where g({) is a holomorphic function of { € (C*)". By Lemma 4.2, we have Jz({) =
if*=1,¢%", ¢, ..., sothat g({) = 0if {* = 1, ¢*!, ¢*2, .. .. Therefore the function
g(0) is divided out by the product [],., 3% ). ]

PROPOSITION 4.4 (Aomoto). For L = P or Q, the sum Jr(by, c1; L; z) is expressed
as

g9 q) 1y a7 9g 5 )
Cr(b1, c1; L) 1_[ 97 g) l_[ 9(q61+(a q)

o short o long

where Cr(by, c1; L) is a constant not depending on z € Ec.
Proof. See [Aol]. ]

Remark 4.4.1. In [Itol, Ma3], an explicit form of the constant Cg(by, ¢1; L) was
obtained when L = P or Q and it is written as a product of g-gamma functions.
The constant Cg(by, c1; Q) is expressed as

I1 (g' =P 0701 ) (PP )

Cr(b1,c1; Q) = 7 7 x
o (@ e ) (g et g) g
oz short
< TT (q W)= q) (g Pt b g)
0 —(p2") s q)oo(q—@k»“v); Doo ’
>
o:long
where
2p; = b Z o+ ¢ Z o,
>0 >0
o:short o:long

0, = 1if {p;, a¥) = by or ¢, and J, = 0 otherwise. And the constant Cg(by, ¢1; P) is
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expressed as

Cr(by, c1; P) = |P/Q| Cr(by, c1; Q).
where |P/Q)| is the order of the fundamental group P/Q of R, so that

R I A, | ByCoEr | Dy | Es | Go, Fy Eg

/Ol | n+l | 2 [ 4 [ 3 | 1 (1)

First, we consider the case where the holomorphic function f(z) in Proposition 4.3
is a constant not depending on z. As we see in Proposition 4.4, when (s, /) = (1, 1), the
function f'(z) is obviously a constant. In the following theorem, we see other possible
(s, 1) for Jr({bi}, {¢;}; L; z) when the function f(z) is a constant:

THEOREM 4.5. For L =P or Q, the sum Jr({b;}, {c;}; L; z) is expressed as

(s=1/2=30 b)) g gl
q i=1 (q : q)
Cr({bi}, {cj}; L) k :

' : 914:!) [Tio, H(gP+=*2; q)

oz short

1
[—-1/2— . C/’ V4 z
RS SR TR
/ ;i z).
o>0 1_[/‘:1 '9(q i+ >7 Q)

o:long

where Cr({b;}, {c;}; L) is a constant not depending on z € Ec, if and only if

s =1 for 4,, D,, Es, E; and Eg-type,

(s,))=(1,1) or 2n—1,0) for B,-type,

(s,)=(,1) or (0,(n+ 1)/2) for C,-type if n is odd,
(s,)) =(1,1) or (4,0) for G-type,

(s,)) =(1,1) or (3,0) for Fy-type.

Remark 4.5.1. The cases (s,]) =(2n—1,0) for B,-type and (s,/) = (4,0) for
G>-type were investigated by Gustafson and explicit forms of the constants
Cr({b;}; P) of them are known (see [Gul, Ito2]). For the case (s, /) = (3, 0) for Fy-type
and its constant Cp,({b;}; P), see [Ito2, Ito3].

Before proving Theorem 4.5, we show two lemmas. We define positive definite
integral symmetric matrices A, = (a;);,_; and By = (by);;_, as

ay= Y (g, by= Y {0z 1)

>0 >0
o short o:long
for a basis {y,..., y,} of a sublattice L.
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LEMMA 4.6. If R = B,, C,, G and Fy, for any sublattice L, the relation between Ay
and By are the following:

B, =Q2n—-2)4; for B,,
24; = (n— 1B, for C,,
B; =3A4; for Gy,
B; =2A4; for Fy.

Proof. We denote by {y}, ..., y,} a basis of the coweight lattice P. For a basis
{x1,---. 1.} of a sublattice L C P, we write (yi,.... %) =, --.1,)C, where C
is a matrix such as |detC| > 1. By definition of A4A; and B;, we have
A; = CAp'C and B; = CBp'C. Therefore, for each R, it is enough to check the
relation in Lemma 4.6 for an L which is easy to calculate. We can easily check
it and this is left to the reader. O

LEMMA 4.7. Let L be a sublattice of the coweight lattice P of any irreducible root
system R. For any R, we have that det Ap > 1 except for the case L = P for B,
and det Ap =1 only for B,.

Proof. Since detA; = (det C)*detAp > detAp, it is enough to show that
det Ap > 1 except for B, and this is left to the reader. O

Proof of Theorem 4.5. By the g-periodicity (4) of Jr({b:}, {¢;}; L; z) and (6), for
% € L, the function f(z) in Proposition 4.3 satisfies

f<z+2f§x> = /) (19)
and

FE+ D = VA, 0)
where

V,(z) = 1—[ (= 1)~ D2 o= D3 )= () .20) o

>0
o short

x 1—[ (= 1)U D) =D 2} () Q1)

>0
o:long

n

We denote by M = (m,j) the positive definite integral symmetric matrix such that

ij=1
my=(-1 Y (o)) +T—1) Y () ). (22)
>0 o>0
oz short o:long
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If f(x) is a constant, V,(z) = 1. By (21), for a basis {y;, ..., x,} of L, we have
=1 Y ) +U=1 Y (z)=0 (mod?2) (23)
oc:yéﬁgrt oc:o:l?)gg
fori=1,2,...,n and
M=(—-1)A,+(—-1)B.=0. (24)

By Lemma 4.6 and Equation (24), we have (s, /) as in Theorem 4.5. Equation (23) is
valid for such (s, /). O

PROPOSITION 4.8. Assume that (s, [) satisfies the condition in Theorem 4.5. The
following relation holds for L = P or Q:

Jr((bi}, {¢;}: P; 2) = |P/QIJr({Di}. {ci}s Qs 2),
in particular,
Cr({bi}, {¢j}; P) = |P/OICR({bi}. {¢;}; Q).

where |P/Q)| is the order of the fundamental group P/Q as in (18).
Proof. For Ae P, we set A+ Q :={A+y; x < Q}). Let m be the order of the
fundamental group P/Q. Then, there exist Ai,..., 4, € P such that

P=J+0Q., L+Q#4+Q ifis#) (25)
k=1
By the definition (3) of Jr({b}, {¢;}; L; z) and (25), we have
Jr({bi}, {cj}; P 2) = ZJR({bi}a {cj}; Qs 2+ Ak).
k=1

From the theta product expression of Jr({b;}, {c;}; Q; z) in Theorem 4.5, it follows
that

JrUbi} Aci)s Qs z + A) = Jr({bi}, {¢)): Qs 2).
Thus, we have
Jr({bi}, {¢j}; P; 2) = mJr({bi}, {¢;}; O; 2).

This concludes the proof. O

According to Aomoto [Lemma 2.1 in Ao2], the number x :=det M is the
dimension of the space of holomorphic functions satisfying (19) and (20), and
the function in this space is described as a linear combination of theta functions
of number k. Next we consider the problem of finding (s, /) such that the holomorphic
function f(z) in Proposition 4.3 satisfies the condition x = 1. From Lemmas 4.6 and
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4.7 and the definition (22) of M, we have xk =1 only if L = P and (s,/) = (2, 1) or
(2n, 0) for B,. The sum Jg, ({b;};_, {cj};:l; P;z)of (s,1) =(2,1) or (2n, 0) is, indeed,
realized as a special case of the following theta product formulae (26) and (27) inves-
tigated by Gustafson and van Diejen. We set

2n+2 n —bi+(ek,x) .

ol @' 1 q)
Dby, .., baya x) =[] Ja">"e (PrHec; q) 003
i=1 k=1 g Do

Dp(by, by, b3, ba, c1; x)

4 1—bi+(er,x) .
o 1—[ ﬁq(]/Z—b,)(sk,x> ) o
L1 (qb,-+(z:k,x); Q)oo

1—- £ —Ey,X) o 1—c¢ €y, X) o
x 1_[ q(l—2c'1)<1;)‘,x) (q crtlen— )L)v q)oo (q crtleuts x), q)oo
(qCI?L(Uu*wa); q)oo (q¢'|+<'5u+8r»x>; q)oo ’

l<u<v<n

Ac,(0) =g — g~ )x
k=1

x 1_[ (q(z:ﬂ—u‘.,x>/2 _ q—(z:ﬂ—lz‘.,x>/2)(q(1:u+z:‘,,x)/2 _ q—(s:u+z:‘,,x)/2)

I<pu<v<n
and
Q="Ze +Ze, +Zes+ -+ ZLey, (g.8) =0

We define two types of Jackson integrals as follows:

Jo(bi, -+, byyr; 2) == Z¢G(b1, cybysz+y) - Ac,(z+ x)
1€Q

(Gustafson’s C,-type sum),

Jp(b1, b2, b3, ba, c1; 2) := Z Dp (b1, ba, b3, ba, c1;z2+ ) - Ac,(z+ 1)
1€Q

(van Diejen’s BC,-type sum).

LEMMA 4.9 (Gustafson, van Diejen). The sum Jg(by,...,byir;z) and
Jp(b1, by, b3, by, c1; z) are expressed as

n =3 ) ) g g2, g
CG(blv ey b2n+2) l_[ 2n+2 bi+(ex,2) X
N | P Ui )

x [T a 29" 93g“*?; ) (26)

1<u<v<n
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and
n (l—bl—hz—b3—b4)<sk,z)9 (26,2) .
CD(bl’bz’b3’b4’cl)l_[q 3 bi+(e ~(>q 9) x
k=1 Hl:l lg(q T B2 5 CI)
—2c¢1(e4,2) 9 (e4—&y,2) . 9 (liHrL‘\,,z);
< |1 g q c:+<s,—(sq‘-,z}>. 9 q(?1+((i]14;8‘r,2)- & 27
l<pu<v<n (q ! ’ q) (q ! ) Q)
respectively, where Cg(by, . .., by12) and Cp(by, by, b3, bs, ¢1) are some constants not
depending on z.
Proof. See [p. 96 (7.8) in Gul] and [vD]. 0

Remark 4.9.1. In [Gul, vD, Ito4], the constants Cg(by,---,byys) and
Cp(by, ba, b3, by, 1) are expressed as a product of g-gamma functions.

Remark 4.9.2. Gustafson’s D,-type sum [p. 197 in Gu4] is deduced from

Gustafson’s C,-type sum by setting ¢?' = 1, g’ = ¢, ¢+ = —g2, gP»+ = —1.

Remark 4.9.3. Gustafson’s C,-type sum and van Diejen’s BC,-type sum are both
included in the classification list of BC,-type Jackson integral (see [Ito4]).

We have theta product expressions of Jg, ({b;}i_,, {cj}jl-zl; P;z)of (s,]) =(2,1) and
(2n, 0) by setting

@ =—q"% ¢ =—1 forJp(bi, by, b3, by, cr; 2)

and

qbz"“ — _ql/Z’ qhzm =—1 forJg(by, -, b2n+2§ 2),
respectively. Thus, we can conclude the discussion on the case k = 1 as follows:
THEOREM 4.10. It follows that k = 1 only if L = P and (s,[) = (2, 1) or (2n, 0) for

B,. The sum Jg,({b;}i_,, {cj}]l-zl; P; z) where (s,1) = (2, 1) or (2n,0) is expressed as a
product of elliptic theta functions.

Remark 4.10.1. The sum Jp,({b:}}_,. {Cj}j[-zl; P;z) of (s,))=(1,1) and 2n—1,0)

for B,-type in Theorem 4.5 are deduced from that of (s,/) = (2, 1) and (2n, 0) for
B,-type by taking b, = 1/2 and by, = 1/2 respectively.
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