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Abstract

The lower part of the spectrum of the Helmholtz equation for a heterogeneous system in
a finite region in d dimensions, where the solutions to the corresponding homogeneous
system are known, can be systematically approximated by means of iterative methods.
These methods only require the specification of an arbitrary ansatz and converge to the
desired solution, regardless of the strength of the inhomogeneities, provided the ansatz
has a finite overlap with it. In this paper, different boundary conditions at the borders of
the domain are assumed, and some applications are used to illustrate the methods.
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1. Introduction

Consider the properties of heterogeneous systems in one or more dimensions,
satisfying the Helmholtz equation

(−∆d)Ψn(x) = EnΣ(x)Ψn(x), (1.1)

where x ≡ (x1, . . . , xd), ∆d is the Laplacian in a region Ωd in d dimensions, Σ(x) > 0 is
the density and Ψn(x) and En are the eigenfunctions and eigenvalues of the equation,
respectively. The eigenfunctions of the equation satisfy appropriate conditions on the
boundary x ∈ ∂Ωd.

Some heterogeneous systems are naturally present in nature, where the density
of the medium has typically random or granular properties, but they can also be
artificially created in the laboratory, usually with periodic properties. In particular,
the study of composite materials, built of alternating homogeneous layers of materials
with different properties, such as density, conductivity, refraction index, etc, is now-a-
days gaining importance in different areas of physics and engineering.
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Examples of these systems are numerous, and a full account of the bibliography on
the subject is outside the scope of this paper. Some of these problems are: composite
membranes [11, 12, 15, 16, 25], periodic multi-layered acoustic waveguides [1], elastic
properties in layered media [7, 8, 17, 19, 21, 22], photonic crystals [14] and acoustic
waves in strongly heterogeneous porous structures [20], to mention but a few. Both
from a physical and a mathematical viewpoint, particularly interesting is the case of
periodically layered composite materials, where the typical scale of the microstructure
(that is, the period of the layers) is much smaller than the macroscopic scale of the
object. The understanding of the macroscopic properties of such systems in terms
of their microscopic features is the fundamental goal of the homogenization method
(see [18] and the references therein).

Here, the current analysis is restricted to the class of problems described by
equation (1.1), which is a subset of the general problems listed above, although the
basic ideas of the method might be used in more general situations. The goal is
to devise a method which allows one to obtain arbitrarily precise approximations to
the eigenfunctions and eigenvalues corresponding to the lower part of the spectrum,
regardless of the specific details of the problem under consideration, such as the
geometrical properties of Ωd (for d , 2, the method requires that the solutions to the
homogeneous problem are known), the boundary conditions and, even more crucially,
the density.

An iterative method is described here, which progressively builds one of the
eigenfunctions of equation (1.1) corresponding to the lower states, starting from an
almost arbitrary ansatz.

Some of the salient features of this approach are the following:

• the method applies to d-dimensional regions where an orthonormal basis of the
Laplacian is known, with the exception of d = 2, where this limitation can be
circumvented using a conformal mapping which transforms the original simply
connected region into a region with a known basis;
• different boundary conditions on ∂Ωd can be enforced;
• the convergence of the method is not limited to cases where mild

inhomogeneities are present; in other words, the method is truly nonperturbative;
• the rate of convergence can be increased using a judicious choice of the initial

ansatz, which can also include variational parameters;
• if the density depends on some perturbative parameter λ, and it reduces to the

homogeneous case for λ→ 0, the iterative method allows one to extract the
perturbative expansion for the eigenfunction and eigenvalue of the targeted state
to any order with an appropriate number of iterations.

All these aspects are illustrated in this paper, considering examples in one and
two dimensions. In particular, the case of a one-dimensional problem with rapidly
oscillating density and different boundary conditions (such as Dirichlet, mixed
Dirichlet–Neumann, Neumann and periodic) is examined; the exact asymptotic
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behaviour of the lower eigenvalues of equation (1.1) is analysed when the size of
the microstructure goes to zero. For the case of Dirichlet boundary conditions, some
results were previously published as a special case [3, 9].

The paper is organized as follows: in Section 2, the proposed method is described
and related theorems are proven, which apply both to the case where the spectrum of
the problem does not contain a zero mode and to the case where a zero mode is present;
Section 3 illustrates a few applications of the method in one and two dimensions. The
paper concludes with a discussion on some possible extensions of the present work in
Section 4.

2. The method

In this section, different approaches are described, which can be used to obtain
approximations to the normal modes of the Helmholtz equation for a d-dimensional
region with a variable density. The techniques that are used do not require that the
inhomogeneities are small, and that the convergence towards the targeted state is
always granted. The choice of a suitable ansatz containing variational parameters may
increase the convergence.

Consider a region of space in d dimensions, Ωd, and a density Σ(x) > 0 which varies
over Ωd; let Ξ(0)(x) be an arbitrary function defined on Ωd, which has an overlap with
the lowest mode of the Helmholtz equation (1.1), Ψn(x), where n is the set of numbers
which specify an eigenfunction.

We assume that the spectrum of equation (1.1) does not contain a zero mode (a mode
with vanishing eigenvalue) and, therefore, its eigenfunctions obey specific boundary
conditions on ∂Ωd; in one dimension, for instance, only Dirichlet boundary conditions
at both ends, or mixed Dirichlet and Neumann boundary conditions at each end are
allowed.

Let G(x; y) be the Green’s function of the homogeneous problem on Ωd, obeying
the same boundary conditions as Ψ. We call Ψ0(x1, . . . , xd) the eigenfunction of the
fundamental mode.

Under these assumptions, we have the following theorem.

Theorem 2.1 (Spectrum without zero mode). For p→∞, the sequence of functions

Ξ(p)(x) =
√

Σ(x)
∫

Ωd

G(x; y)
√

Σ(y)Ξ(p−1)(y) ddy (2.1)

converges to the lowest mode of equation (1.1), having an overlap with Ξ(0). In
particular, if Ξ(0) has an overlap with the fundamental mode of equation (1.1), then

Ψ0(x) = lim
p→∞

Ξ(p)(x)
√

Σ(x)
.

Proof. The proof is simple: we may cast equation (1.1) in the form

1
√

Σ(x)
(−∆d)

1
√

Σ(x)
Φn(x) = EnΦn(x), (2.2)
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where Ψn(x) = Φn(x)/
√

Σ(x). Notice that equations (1.1) and (2.2) are isospectral,
and let

Ô ≡
1
√

Σ(x)
(−∆d)

1
√

Σ(x)

be the operator appearing on the left-hand side of equation (2.2). The spectrum of Ô is
bounded from below and contains only positive eigenvalues; the ansatz Ξ(0)(x1, . . . , xd)
can be decomposed in the basis of the eigenfunctions of equation (2.2)

Ξ(0)(x) =
∑

n

cnΦn(x).

Equation (2.1) may be written as

Ξ(p) = Ô−1Ξ(p−1), (2.3)

where
Ô−1 ≡

√
Σ(x)(−∆d)−1

√
Σ(x)

is the inverse operator (that is, ÔÔ−1 = Ô−1Ô = 1).
The spectrum of Ô−1 is positive and bounded both from below and from above;

therefore, after p repeated applications of equation (2.3),

Ξ(p)(x) =
∑

n

cn

Ep
n

Φn(x).

When p→∞, only the term with the lowest eigenvalue of Ô with nonvanishing
coefficient cn survives; this completes the proof of the theorem. �

We need to separately discuss the case of a spectrum containing a zero mode (in
one dimension, this case corresponds to Neumann or periodic boundary conditions).
We assume that the spectrum of equation (1.1) contains a zero mode. Consider a d-
dimensional region of space, Ωd, and a density Σ(x1, . . . , xd) > 0 which varies over Ωd,
and let Ξ(0)(x1, . . . , xd) be an arbitrary function defined on Ωd, which has an overlap
with the lowest mode of the Helmholtz equation (1.1) with positive eigenvalue.

Let G(0)(x1, . . . , xd; y1, . . . , yd) be the regularized Green’s function of the
homogeneous problem on Ωd, obeying the same boundary conditions as Ψ. The
function Ψ0(x1, . . . , xd) is called the eigenfunction of the zero mode, corresponding
to the vanishing eigenvalue, and Ψ1(x1, . . . , xd) the eigenfunction of the mode with
smallest positive eigenvalue.

Theorem 2.2 (Spectrum containing a zero mode). For p → ∞, the sequence of
functions

Ξ̃(p)(x) =
√

Σ(x)
∫

Ωd

G(0)(x; y)
√

Σ(y)Ξ(p−1)(y) ddy, (2.4)

Ξ(p)(x) = Ξ̃(p)(x) −
√

Σ(x)

∫
Ωd

√
Σ(y)Ξ̃(p)(y) ddy∫
Ωd

Σ(y) ddy
(2.5)
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converges to the lowest mode of equation (1.1) with positive eigenvalue having an
overlap with Ξ(0). In particular, if Ξ(0) has an overlap with the mode with the smallest
positive eigenvalue, then

Ψ1(x) = lim
p→∞

Ξ(p)(x)
√

Σ(x)
.

Proof. First, we note that the explicit form of the eigenfunction of the zero mode is
known, namely,

Ψ0(x) = 1/
√

VΩ,

where VΩ is the volume of Ωd; this implies that

Φ0(x) =

√
Σ(x)
VΩ

.

As discussed by the current author in an earlier paper [6], it is convenient to define
the modified operator

Ôγ ≡
1
√

Σ(x)
(−∆ + γ)

1
√

Σ(x)
,

where γ→ 0+; similarly, equation (1.1) can be modified as

(−∆ + γ)Ψn(x) = EnΣ(x)Ψn(x).

Thus, the presence of a zero mode is avoided when γ > 0.
The Green’s function is now

Gγ(x, y) =
1

VΩγ
+

′∑
n

φn(x)φn(y)
εn + γ

,

where VΩ is the volume of the region Ω. Here, εn and φn are, respectively,
the eigenvalues and eigenfunctions of the negative Laplacian on Ω, obeying the
appropriate boundary conditions, and

∑′
n is the sum over all possible modes, except

the zero mode.
It is possible to expand the Green’s function around γ = 0 as

Gγ(x, y) =
1

VΩγ
+

∞∑
q=0

(−1)qγqG(q)(x, y),

where
G(q)(x, y) ≡

∑
n,0

φn(x)φn(y)

ε
q+1
n

.

Observe that G(0)(x, y) is the “regularized” Green’s function discussed by the author
in some earlier papers [4, 5] and, at this point, the current problem has been converted
to the same form as in those papers. Therefore, the application of Theorem 2.1
using the shifted Green’s function Gγ(x, y) could be used to obtain the power series
expansions of the eigenvalue and the eigenfunction of the fundamental mode around
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γ = 0. However, while this calculation is useful in the evaluation of the sum rules
involving eigenvalues of Ô (see [6]), in the present case calculation of the first mode
of Ô with a nonvanishing eigenvalue is emphasized.

First, Theorem 2.1 is applied to the shifted problem to obtain

Ξ̃(1)(x) =
√

Σ(x)
∫

Ωd

Gγ(x, y)
√

Σ(y)Ξ(0)(y) ddy. (2.6)

Even if the starting ansatz is assumed to be independent of γ, Ξ̃(1)(x) contains terms
which depend on 1/γ. These terms, however, are only present if Ξ̃(0)(x) is not
orthogonal to Φ0(x). The effect of orthogonalizing Ξ̃(1)(x) with respect to Φ0(x) is
then to eliminate the factors which depend on 1/γ. Moreover, if these terms are not
present, one can work with the regularized Green’s function G(0) rather than the full
Green’s function. As a matter of fact, the only way that the infinitesimal contributions
of G(q) with q = 1, 2, . . . could survive when γ→ 0+ would be if they could interfere
with divergent contributions going as 1/γq, which, however, are absent due to the
orthogonalization. As a result, equation (2.6) can be written in terms of the regularized
Green’s function G(0), and equations (2.4) and (2.5) follow.

At each iteration, the lowest energy components of the ansatz are inflated, and the
component corresponding to the zero mode is removed by orthogonalization, which
yields

Ψ1(x) = lim
p→∞

Ξ(p)(x)
√

Σ(x)
.

This completes the proof of the theorem. �

Theorems 2.1 and 2.2 are the extensions of the power method (PM) for
approximating eigenvalues and eigenvectors of a finite Hermitian matrix to the case
of a Hermitian operator (and, therefore, to the infinite-dimensional case).

As for the case of the PM, the rate of convergence of the iterated function towards
the eigenfunction of the fundamental mode of equation (1.1) is essentially determined
by the separation between the two largest eigenvalues of Ô−1.

These theorems apply to arbitrary regions in d dimensions, although they require
the knowledge of the Green’s function of the homogeneous problem corresponding to
that region, and therefore of the spectrum of the associated homogeneous problem. In
two dimensions, however, one can always reduce the original problem to an equivalent
problem over a suitable region (that is, a region where a basis of functions is known)
with the use of an appropriate conformal map.

3. Applications
Some applications of the theorems in Section 2 will be discussed in this section.

The first two applications in one and two dimensions are simple, but they serve to
illustrate the methods discussed in this paper to higher orders, obtaining highly precise
results; the third application, which concerns one-dimensional heterogeneous systems
with a highly oscillatory density and different boundary conditions, illustrates the
effectiveness of this approach.
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3.1. A string with parabolic density Let us consider a string with density [2]

Σ(x) = (1 + αx)2, (3.1)

where α ≤ 2/a and |x| ≤ a/2. This particular density is chosen to illustrate the
implementation of our theorems by limiting the technical difficulties. In the following
calculations, it is assumed that a = 1 and α = 2.

First, consider the case of Dirichlet boundary conditions and choose the ansatz

ξ(0)(x) =

√
105
8

(2x + 1)(1 − 4x2).

In this case, it is straightforward to perform a very large number of iterations
because of the polynomial form of the functions involved, and 105 iterations have
been easily calculated, obtaining an estimate for the energy of the fundamental mode
which is accurate up to 130 digits.

The precise value of E(exact)
0 after 100 iterations of Theorem 2.1 is

E(exact)
0 ≈ 7.733336533465966863902638033367838303091611969871617630

20525195744620997306947223596884733603198306461387550007
5565385500030558828 . . . .

Next, consider the case of Neumann boundary conditions and use the initial ansatz

ξ(0)(x) = 2x + 1. (3.2)

The precise value of E(exact)
0 after 105 iterations of Theorem 2.2 is

E(exact)
0 ≈ 12.18713946809512900475057235600396744072004951834

58591999323057450689688696123459800390650121512407
90737876149983 . . . .

Finally, consider the case of periodic boundary condition, using the same initial
ansatz of equation (3.2).

The precise value of E(exact)
0 after 105 iterations of Theorem 2.2 is

E(exact)
0 ≈ 26.592555829320000527137620214897435779315

46820189393 . . . .

3.2. A rectangular drum with density which varies along one direction Now
Theorem 2.1 is applied to the two-dimensional problem of a rectangular region
(x, y) ∈ (−a/2, a/2) × (−b/2, b/2) with Dirichlet boundary conditions at the border and
with density as in equation (3.1).

In this case, the Green’s function is

G(D)(x, y; x′, y′) =

∞∑
nx=1

∞∑
ny=1

ψ(D)
nx (x)φ(D)

ny (y)ψ(D)
nx (x′)φ(D)

ny (y′)

ε(D)
nx + η(D)

ny

.
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Figure 1. Approximate energy of the fundamental mode of a rectangular membrane with sides a = 1
and b = 1/2, with density (3.1). The solid and dashed lines are the values obtained using the bounds
of equations (3.3) and (3.4), respectively, setting β = 0. The dot-dashed and dotted lines are the values
obtained using the bounds of equations (3.3) and (3.4), respectively, setting β = β?. The triangles are the
precise results obtained using the Rayleigh–Ritz method with 800 basis functions.

Here, ψnx (x) and φny (y) are the Dirichlet eigenfunctions of the one-dimensional
negative Laplacian on x ∈ (−a/2, a/2) and y ∈ (−b/2, b/2), respectively, and ε(D)

nx

and η(D)
ny are the corresponding eigenvalues. The explicit expression for the two-

dimensional Green’s function can be found in the literature [4, 13].
The choice of the initial ansatz

Ξ(0)(x, y) = (1 + βx)
√

Σ(x, y)ψ(D)
1 (x)φ(D)

1 (y)

yields the upper bound for the energy of the fundamental mode as

E0 ≤ E(var)
0 (β) =

∫
Ξ(0)ÔΞ(0) dx dy∫
Ξ(0)Ξ(0) dx dy

, (3.3)

which has a minimum at a particular value, β = β? (the explicit expressions of E(var)
0 (β)

and β? have been calculated explicitly, but those are not reported here for saving
space).

A stricter bound for the energy of the fundamental mode can be derived using the
function obtained after one iteration of Theorem 2.1:

E0 ≤

∫
Ξ(1)ÔΞ(1) dx dy∫
Ξ(1)Ξ(1) dx dy

. (3.4)

The explicit expressions for
∫

Ξ(1)ÔΞ(1) dx dy and
∫

Ξ(1)Ξ(1) dx dy are not reported here
because of their lengthy form.

In Figure 1, the approximate energy of the fundamental mode of a rectangular
membrane is plotted, with sides a = 1 and b = 1/2, and density given in equation (3.1).
The solid and dashed lines are the values obtained using the bounds of equations (3.3)

https://doi.org/10.1017/S144618111500022X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111500022X


158 P. Amore [9]

and (3.4), respectively, setting β = 0. Similarly, the dot-dashed and dotted lines are
the values obtained using the bounds of equations (3.3) and (3.4), respectively, setting
β = β?. The triangles are the precise results obtained using the Rayleigh–Ritz method
with 800 basis functions.

3.3. A string with rapidly oscillating density The iterative methods that are
described here can be applied to the study of inhomogeneous systems with a density
which varies on a much smaller scale than the scale of the system itself. In particular,
the behaviour of the system when the period of the density tends to zero is discussed
here.

For simplicity, the present discussion is restricted to one dimension, and the
Helmholtz equation

−
d2ψ

dx2 = EnΣε(x)ψn(x) (3.5)

is studied for an inhomogeneous system with density

Σε(x) ≡ Σ(x/ε),

where Σ(x) is a periodic function. The eigenfunctions ψn(x) obey specific boundary
conditions (such as Dirichlet, Neumann, periodic or mixed Dirichlet–Neumann).

The physical properties of the composite materials which can be modelled by
these equations will depend both on the microscale (that is, the typical scale where
the density changes) and on the macroscale of the system (that is, the typical size
of the system itself). However, a numerical study of these systems is challenging,
because the size associated with the discretization of the problem must clearly be much
smaller than the size of the microscale, thus leading to a huge number of grid points.
The homogenization method has been developed over the past 40 years to obtain an
effective description of these systems (see, for example, [10, 18, 24]), which have
important applications in several areas of physics and applied mathematics.

The approach described in this paper allows one to obtain systematic
approximations to the lowest part of the spectrum of systems described by
equation (3.5). For simplicity, let us consider a string of unit length with a rapidly
oscillating density

Σε(x) = 2 + sin
[2π
ε

(x + η/2)
]
, (3.6)

where ε → 0+ is the parameter determining the typical size of the oscillations of the
density and η is an arbitrary phase.

This problem has been originally studied by Castro and Zuazua [9] for the case
η = 1, obtaining explicit expressions for the lowest eigenvalues of this string up to
order ε3 using the WKB method. The author has reproduced these results [3] and has
obtained the fundamental eigenvalue of the string up to order ε5 [2].
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(a) (b)

Figure 2. (a) Equation (3.8) for three different values of η; (b) mean square deviations obtained after one
and two iterations for the string with density (3.6) using the initial ansatz (3.7).

3.3.1 Dirichlet boundary conditions. Here, the same ansatz [3]

ξ(0)(x) =
√

Σ(x)ψ(DD)
1 (x) (3.7)

is used, where
ψ(DD)

n (x) ≡
√

2 sin nπ(x + 1/2)

are the Dirichlet eigenfunctions of the negative one-dimensional Laplacian.
In analogy with the previous calculation [3], applying Theorem 2.1 yields an

expression for the lowest eigenvalue of the string, which is exact up to order ε5 after
two iterations:

E0 ≈
π2

2
−

1
64
π2ε2 +

1
4
πε3 sin

(
π

ε

)
sin

(
πη

ε

)
−

15π2ε4

1024

+
1

512
πε5

[
116 sin

(
π

ε

)
sin

(
πη

ε

)
+ 5 sin

(2π
ε

)
cos

(2πη
ε

)]
+ · · · . (3.8)

For η = 1, this result reduces to the one obtained in the paper [3]. The behaviour of E0

for three different values of η is plotted in Figure 2.
Note that the Rayleigh quotients obtained using Theorem 2.1 form a monotonically

decreasing sequence which converges to the exact eigenvalue of the fundamental mode
as the number of the iterations goes to infinity. For this reason, the study of the
Rayleigh quotient around ε = 0 clearly leads to a hierarchy of contributions which
correspond to the different powers of ε, possibly multiplied by functions which are not
analytical at ε = 0, but are bounded (see, for example, (3.8)). At a given iteration, it
may happen, depending on the initial ansatz used, that the first few coefficients of the
expansion have converged to the exact value; in this case, the contribution of the first
term which has not yet converged must decrease at the next iteration. Since this must
happen in an infinitesimal interval containing ε = 0, it means that only even terms in ε
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may decrease in the whole interval; in other words, the convergence of a term which
is even in ε forces the convergence of the subsequent term in the expansion, which is
odd in ε. This is observed in equation (3.8), which is exact up to the order ε5.

Alternatively, one can obtain a bound on the error in the eigenvalue by calculating
the mean square deviation using the function obtained after k iterations, ξ(k)(x) (clearly,
Theorem 2.1 implies that limk→∞ ∆(k) = 0):

∆(k) ≡

√√∫
ξ(k)(x)Ô2ξ(k)(x) dx∫

[ξ(k)(x)]2 dx
−

[ ∫
ξ(k)(x)Ôξ(k)(x) dx∫

[ξ(k)(x)]2 dx

]2

.

The mean square deviation corresponding to the first iteration is

∆(1) = 1
64

√
7π2ε2 + O[ε3]

and it is plotted in Figure 2(b) together with ∆(2).
Now, the ansatz of equation (3.7) is generalized to arbitrary states:

ξ(0)
n (x) =

√
Σ(x)ψ(DD)

1 (x).

Although Theorem 2.1 only holds for the lowest state, it is useful to check if
the functions obtained after one iteration are good approximations to the higher
eigenmodes for ε → 0. Applying equation (2.1), ξ(1)

n (x) has been obtained explicitly,
which is not reported here. To see if ξ(1)

n (x) are good approximations, the mean square
deviation is estimated using these states; if we let ε → 0+ keeping n fixed,

∆(1)
n ≈

√
7

64
π2ε2n4 + O(ε3).

Therefore, ξ(1)
n (x) are good approximations if ∆

(1)
n � 1, implying that n� 1.25/

√
ε.

Using this limit, an estimation is obtained for the eigenvalues of the lowest part of the
spectrum by evaluating the expectation value of Ô:

En ≈ 〈Ô〉ξ(1)
n
≈
π2n2

2
−

1
64
π2ε2n4 +

1
4
πε3n4 sin

(
π

ε

)
sin

(
πη

ε

)
+ O(ε4).

For η = 1, this result reproduces the estimate obtained in previous papers [3, 9].

3.3.2 Neumann–Dirichlet and Dirichlet–Neumann boundary conditions. Working
in analogy with what we have done for Dirichlet boundary conditions in the previous
case, we use the ansatz

ξ(0)(x) =
√

Σ(x)ψ(ND)
1 (x),

where ψ(ND)
n (x) are the Dirichlet eigenfunctions of the negative one-dimensional

Laplacian on x ∈ (−1/2, 1/2).
Now Theorem 2.1 is applied and after two iterations the expressions for the

eigenvalue of the fundamental mode have converged to order ε for ε → 0 as follows:

E(ND)
0 ≈

π2

8
−

1
16
πε cos

(
π(1 − η)

ε

)
+ O(ε2). (3.9)
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(a) (b)

Figure 3. (a) Equation (3.9) for three different values of η; (b) equation (3.10) for three different values
of η.

Notice that the convergence in this case is slower than that in the Dirichlet boundary
conditions.

Observe that for ε → −ε and η→ −η, one gets Σ(x)→ Σ(−x) to obtain the energy
of the lowest mode for Dirichlet–Neumann boundary conditions:

E(DN)
0 ≈

π2

8
+

1
16
πε cos

(
π(η + 1)

ε

)
+ O(ε2).

In Figure 3(a), we have the diagram for equation (3.9) for three different values of η
(the curves for ε < 0 may be viewed as the asymptotic expression for E(DN)

0 with phase
−η). As for the case of Dirichlet boundary conditions, the mean square deviations after
one iteration is

∆(1) =

∣∣∣∣∣ε cos
(
π(η − 1)

ε

)∣∣∣∣∣ π64

√
1
6

(π4 − 96) + O(ε2).

For a general state, the initial ansatz ξ(0)
n (x) =

√
Σ(x)ψ(ND)

n (x) can be used, which
yields the approximate expression for the nth eigenvalue after one iteration:

E(ND)
n ≈

π2

8
(1 − 2n)2 −

π

16
ε(1 − 2n)2 cos

(
π

ε
−
πη

ε

)
+ O(ε2).

The corresponding mean square deviation in this case is

∆(1)
n =

π(1 − 2n)2

64
√

6

√
(π4(1 − 2n)4 − 96)

∣∣∣∣∣ε cos
(
π(η − 1)

ε

)∣∣∣∣∣ + O(ε2),

which, therefore, requires n� ε−1/4.

3.3.3 Neumann boundary conditions. This case is slightly more complicated, since
the spectrum contains a zero mode. The implementation of the iterative method is done
following Theorem 2.2 and using an initial ansatz orthogonal to the zero mode:

ξ(0)(x) =
√

Σ(x)ψ(NN)
1,2 (x) −

∫ a/2
−a/2 ψ

(NN)
1,2 (x)Σ(x) dx∫ a/2
−a/2 Σ(x) dx

√
Σ(x),
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(a) (b)

Figure 4. (a) Reduced mean square deviation ∆̃ as a function of φ; (b) asymptotic behaviour of E1,2(ε)
for η = 1 obtained using Theorem 2.2 and numerical results obtained with the Rayleigh–Ritz method.

where ψ(NN)
n,u (x) are the eigenfunctions of the negative one-dimensional Laplacian,

obeying Neumann boundary conditions. After one iteration,

E(NN)
0 ≈

π2

2
−
πε

2
sin

(
π

ε

)
sin

(
πη

ε

)
+ O(ε2). (3.10)

Notice that for η = 1, this agrees with the approximate expression obtained by the
author in an earlier work [4, equation (53)].

3.3.4 Periodic boundary conditions. In this case, the ansatz

ξ(0)(x) =
√

Σ(x)(cos φψ(PP)
1,1 (x) + sin φψ(PP)

1,2 (x))

−

∫ a/2
−a/2(cos φψ(PP)

1,1 (x) + sin φψ(PP)
1,2 (x))Σ(x) dx∫ a/2

−a/2 Σ(x) dx

√
Σ(x)

is used, where ψ(PP)
n,u (x) are the eigenfunctions of the one-dimensional negative

Laplacian obeying periodic boundary conditions. Remember that these eigenfunctions
are twice degenerate for n > 0; the ansatz is expressed in terms of the lowest two
degenerate states.

Applying Theorem 2.2, after one iteration for ε → 0 the Rayleigh quotient provides
the estimate for the lowest nontrivial eigenvalues as

E(PP)
1,2 = 2π2 − 2πε sin

(
π

ε

)
cos2(φ) sin

(
πη

ε

)
+ O(ε2). (3.11)

Using ξ(1)(x) for ε → 0, the mean square deviation is

∆(1) =
1
3

√
2
5
π

∣∣∣∣∣ε cos(φ) sin
(
π

ε

)
sin

(
πη

ε

)∣∣∣∣∣ √π4 − 45 cos(2φ) − 45 + O(ε2).

Figure 4(a) displays the quantity ∆̃ ≡ |cos(φ)|
√
π4 − 45 cos(2φ) − 45 as a function of

the parameter φ, which controls the mixing of the degenerate states in the initial ansatz.
As shown in the figure, the mean square deviation vanishes to order ε at φ = π/2, while
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it has a local minimum at φ = 0. This suggests that the two lowest degenerate states
of the homogeneous problem split at a finite ε into a state with constant energy (up
to order ε) and a state with oscillating energy. Figure 4(b) displays the asymptotic
formulas (3.11) for η = 1 (corresponding to φ = 0 and φ = π/2) and these can be
compared with the numerical results obtained using the Rayleigh–Ritz method with
a set of 101 states. The agreement between the analytical and the numerical results
is evident. A similar agreement was also observed for the cases η = 0 and η = 1/2,
although no figure has been included for these cases.

4. Conclusions

An iterative method has been devised which allows one to obtain arbitrarily precise
solutions to the lowest eigenvalues and eigenfunctions of the Helmholtz equation for
a heterogeneous medium in d dimensions, obeying different boundary conditions.
The method requires the knowledge of the Green’s function for the corresponding
homogeneous problem and, therefore, it is limited to certain classes of domains (in
two dimensions, however, one can apply it to arbitrary simply connected domains,
which can be conformally mapped to a circle or to a square, and for which explicit
expressions for the homogeneous Green’s functions are available). A sequence of
approximations which converges to the targeted solution is obtained by iteratively
applying the inverse operator of equation (A.1) to an initial arbitrary ansatz with a
finite overlap with the targeted state. Some applications in one and two dimensions
are used to illustrate the method. In particular, an asymptotic behaviour of the lowest
part of the spectrum of a string with a rapidly oscillating density is obtained when the
size of the microstructure goes to zero for Dirichlet, Dirichlet–Neumann, Neumann
and periodic boundary conditions.
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Appendix A. Inverse operator

The spectrum of the operator

Ô =
1
√

Σ(x)
(−∆)

1
√

Σ(x)

on a d-dimensional region Ωd is considered, where its eigenfunctions obey appropriate
boundary conditions; depending on the boundary conditions, the spectrum may
contain a zero mode.

Let us first consider the case in which a zero mode is not present, and let G(x, y)
be the Green’s function of the negative Laplacian on Ωd, corresponding to the specific
boundary conditions. We assume that G(x, y) is known exactly (which, in general, is
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not true). Under these assumptions, it is straightforward to check that the operator

P̂ f =
√

Σ(x)
∫

G(x, y)
√

Σ(y) f (y) ddy (A.1)

is the inverse of Ô. In fact,

ÔP̂ f =
1
√

Σ(x)
(−∆)

∫
G(x, y)

√
Σ(y) f (y) ddy

=
1
√

Σ(x)

∫
δ(x − y)

√
Σ(y) f (y) = f (x) ddy.

The case of a zero mode being present is more delicate. There, it is assumed
that G(x, y) is the regularized Green’s function, which does not contain the divergent
contribution of the zero mode. This yields

(−∆)G(x, y) = δ(x − y) −
1

VΩ

and

ÔP̂ f =
1
√

Σ(x)
(−∆)

∫
G(x, y)

√
Σ(y) f (y) ddy

=
1
√

Σ(x)

∫ [
δ(x − y) −

1
VΩ

] √
Σ(y) f (y) ddy

= f (x) −
1

VΩ

1
√

Σ(x)

∫ √
Σ(y) f (y) ddy.

Therefore, for a generic f , the operator P̂ is not the inverse of Ô. However, if f (x) is
orthogonal to the zero mode, whose eigenfunction is precisely

√
Σ(x), then it follows

that
∫ √

Σ(y) f (y) ddy = 0, and P̂ behaves as Ô−1.
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