A DEGREE ONE BORSUK-ULAM THEOREM

Danny Calegari

We generalise the Borsuk-Ulam theorem for maps $M^{n} \rightarrow \mathbb{R}^{n}$.
Everyone knows the Borsuk-Ulam theorem as a simple application of some of the first ideas one encounters in algebraic topology.

Theorem 0.1. (Borsuk-Ulam) Let $f: S^{n} \rightarrow \mathbb{R}^{n}$ be any continuous map. Then there are antipodal points in S^{n} which are mapped to the same point under f.

The purpose of this brief note is to observe that there is an easy generalisation of this theorem for maps $f: M^{n} \rightarrow \mathbb{R}^{n}$ where M^{n} is a closed n-manifold.

Theorem 0.2. Let M be a closed n-manifold. Let $f: M \rightarrow \mathbb{R}^{n}$ be any continuous map and $g: M \rightarrow S^{n}$ a degree one map. Then there are points $p, q \in M$ such that $f(p)=f(q)$ and $g(p)=-g(q)$.

Proof: We wiggle g to be smooth and generic. By compactness of the space of antipodal points in S^{n}, it suffices to prove the theorem in this case, since then we can extract a subsequence of pairs of points in M with the desired properties for a sequence of degree one smooth maps $g_{i}: M \rightarrow S^{n}$ approximating g.

We define the following spaces

$$
\begin{gathered}
\widehat{M} \subset M \times M-\Delta=\{(p, q): g(p)=-g(q)\} \\
S \subset S^{n} \times S^{n}-\Delta=\{(p, q): p=-q\}
\end{gathered}
$$

Observe that S is homeomorphic to S^{n}. There is an induced map $\widehat{g}: \widehat{M} \rightarrow S$ given by $\widehat{g}:(p, q) \rightarrow(g(p), g(q))$. Since g was degree one, one easily observes that there are an odd number of points in the generic fibre of \widehat{g} so that there is some connected component of \widehat{M} for which the restricted map \widehat{g} has odd degree. Moreover, the $\mathbb{Z} / 2 \mathbb{Z}$ action on \widehat{M} and S given by interchanging the co-ordinates commutes with \widehat{g}, so there is an induced map on the quotients. We define $N=\widehat{M} / \sim$ and call the quotient map $h: N \rightarrow \mathbb{R} P^{n}$.

Assume on the contrary that points in M mapping to antipodal points in S^{n} map to distinct points in \mathbb{R}^{n}. Then there is a map

$$
\widehat{f}: \widehat{M} \rightarrow S^{n-1}
$$

[^0]defined by
$$
\widehat{f}:(p, q) \rightarrow \frac{f(p)-f(q)}{\|f(p)-f(q)\|}
$$

It is obvious that this descends to a map $j: N \rightarrow \mathbb{R} P^{n-1}$ where $\mathbb{R} P^{n-1}$ is obtained from S^{n} by quotienting out by the antipodal map.

In the sequel, we consider homology and cohomology with $\mathbb{Z} / 2 \mathbb{Z}$ coefficients. For simplicity of notation, we omit the coefficients.

Since the degree of h is odd, h^{*} pulls back the generator $\left[\mathbb{R} P^{n}\right]$ of $H^{n}\left(\mathbb{R} P^{n}\right)$ to the generator [N] of $H^{n}(N)$. Furthermore, if α generates $H^{1}\left(\mathbb{R} P^{n}\right)$ then $h^{*} \alpha \in H^{1}(N)$ is an element whose nth power is [N]. Moreover by construction for every cycle $C \in H_{1}(N)$ we have $h_{*} C \neq 0$ in $H_{1}\left(\mathbb{R} P^{n}\right)$ if and only if $j_{*} C \neq 0$ in $H_{1}\left(\mathbb{R} P^{n-1}\right)$, since these are exactly the C which do not lift to \widehat{M}.

It follows that if β denotes the generator of $H^{1}\left(\mathbb{R} P^{n-1}\right)$ then $j^{*} \beta(C)=h^{*} \alpha(C)$ for all C, and therefore $j^{*} \beta=h^{*} \alpha$ so that the nth power of $j^{*} \beta$ is nontrivial. But $\left(j^{*} \beta\right)^{n}=j^{*}\left(\beta^{n}\right)$ which is trivial, giving us a contradiction.

Remark 0.1 . Notice that the proof works in exactly the same way if $g: M \rightarrow S^{n}$ is a map of odd degree.

The following corollary led the author to observe the theorem above:
Corollary 0.3. Let $M^{n} \subset \mathbb{R}^{n+1}$ be an embedded submanifold bounding a closed region which contains a ball of diameter t. Let $f: M^{n} \rightarrow \mathbb{R}^{n}$ be a continuous map. Then there are points in M at distance at least t apart from each other which have the same image under f.

Proof: Let g be the map which is radial projection of M onto the boundary of the ball of diameter t.

Department of Mathematics
University of California
Berkeley CA 94720
United States of America
e-mail: dannyc@math.berkeley.edu

[^0]: Received 7th June, 1999
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

