ON q-HYPERELLIPTIC k-BORDERED TORI

B. ESTRADA and E. MARTÍNEZ

Departamento de Matemáticas Fundamentales, UNED, Senda del Rey s/n, 28040-Madrid, Spain e-mail: bestra@mat.uned.es, emartinez@mat.uned.es

(Received 14 December, 1999)

Abstract. A compact Klein surface X is a compact surface with a dianalytic structure. Such a surface is said to be q-hyperelliptic if it admits an involution ϕ , that is an order two automorphism, such that $X/\langle \phi \rangle$ has algebraic genus q. A Klein surface of genus 1 and k boundary components is a k-bordered torus.

By means of NEC groups, q-hyperelliptic k-bordered tori are studied and a geometrical description of their associated Teichmüller spaces is given.

1991 Mathematics Subject Classification. 30F50.

1. Introduction. Klein surfaces, introduced from a modern point of view by Alling and Greenleaf [1], are surfaces endowed with a dianalytic structure. A compact orientable Klein surface X with topological genus 1 and $k \ge 1$ boundary components is a k-bordered torus. The surface X is said to be *q*-hyperelliptic if and only if X admits an involution ϕ , that is an order two automorphism, such that $X/\langle \phi \rangle$ is an orbifold with algebraic genus q. In the particular cases q = 0, 1, X is hyperelliptic and elliptic-hyperelliptic respectively.

Non-Euclidean crystallographic groups (NEC groups in short) where introduced by Wilkie [16] and Macbeath [10], and they are an important tool in the study of Klein surfaces since the results of Preston [14] and May [13]. Klein surfaces can be seen as quotients of the hyperbolic plane under the action of an NEC group. In particular, when X is a torus, then $X = D/\Gamma$, where D denotes the hyperbolic plane and Γ is a surface NEC group with signature:

$$\sigma(\Gamma) = (1, +, [-], \{(-)^k\}), \quad k \ge 1.$$
(1.1)

The surface X is q-hyperelliptic if and only if there exists an NEC group Γ_1 with $\Gamma \triangleleft_2 \Gamma_1$ such that $\Gamma_1/\Gamma = \langle \phi \rangle$. If k > 4q the group Γ_1 is unique [2] and Γ_1 is said to be the q-hyperellipticity group. In this case the automorphism ϕ is central in the group Aut(X) and it is called the q-hyperelliptic involution. The q-hyperelliptic surfaces have been studied in [2], [3], [5], and [8].

The aim of this work is the geometrical study of the Teichmüller space of q-hyperelliptic tori by means of fundamental regions of NEC groups. This technique was used in [6] and for the Moduli space of Riemann surfaces in [7].

In the next Section we give the necessary preliminaries about NEC groups and Klein surfaces. In Section 3 the signature of the *q*-hyperelliptic group Γ_1 is obtained. As a result Γ_1 may belong to one of four different classes. Afterwards we construct

¹Partially supported by DGICYT PB98-0017

fundamental regions R with all right angles for groups belonging to the above classes. The parameters (lengths of the sides in R) can be taken as coordinates in the Teichmüller space of q-hyperelliptic tori. It is done in Section 4.

2. Preliminaries on NEC groups. An NEC group Γ is a discrete subgroup of isometries of the hyperbolic plane D, including reversing-orientation elements, with compact quotient $X = D/\Gamma$.

Each NEC group Γ is given a signature [10]

$$\sigma(\Gamma) = (g, \pm, [m_1, \dots, m_r], \{(n_{i1}, \dots, n_{is_i}), i = 1, \dots, k\}),$$
(2.1)

where g, m_i, n_{ij} are integers verifying $g \ge 0$, $m_i \ge 2$, $n_{ij} \ge 2$. g is the topological genus of X. The sign determines the orientability of X. The numbers m_i are the *proper periods* corresponding to cone points in X. The brackets $(n_{i1}, \ldots, n_{is_i})$ are the *period-cycles*. The number k of period-cycles is equal to the number of boundary components of X. Numbers n_{ij} are the periods of the period-cycle $(n_{i1}, \ldots, n_{is_i})$ also called *link-periods*, corresponding to corner points in the boundary of X. The number $p = \eta g + k - 1$, where $\eta = 1$ or 2 if the sign of $\sigma(\Gamma)$ is '-' or '+' respectively, is called the *algebraic genus* of X.

The signature determines a presentation [10] of Γ :

Generators

 $\begin{array}{ll} x_i & i = 1, \dots, r; \\ e_i & i = 1, \dots, r; \\ j & i = 1, \dots, r; \\ j & j = 0, \dots, s_i; \\ a_i, b_i & i = 1, \dots, g; \\ (\text{if } \sigma \text{ has sign '+'}); \\ d_i & i = 1, \dots, g. \\ (\text{if } \sigma \text{ has sign '-'}). \\ \text{Relations:} \\ x_i^{m_i} = 1; & i = 1, \dots, r; \\ c_{i,j-1}^2 = c_{i,j}^2 = (c_{i,j-1}c_{i,j})^{n_{i,j}} = 1; & i = 1, \dots, k; \\ j & j = 1, \dots, k; \\ c_i^{-1}c_{i,0}e_ic_{i,s_i} = 1; & i = 1, \dots, k; \\ r_i^{-1}x_i\prod_{i=1}^k e_i\prod_{i=1}^g (a_ib_ia_i^{-1}b_i^{-1}) = 1; & i = 1, \dots, g; \\ \prod_{i=1}^r x_i\prod_{i=1}^k e_i\prod_{i=1}^g d_i^2 = 1; & i = 1, \dots, g; \\ (\text{if } \sigma \text{ has sign '-'}); \\ \end{array}$

The isometries x_i are elliptic, e_i , a_i , b_i are hyperbolic, $c_{i,j}$ are reflections and d_i are glide reflections.

Wilkie in [16] found a fundamental region R_W from which he obtained the algebraic structure of NEC groups. The region R_W is called a *canonical region* or Wilkie region.

For an NEC group Γ with signature as (2.1) the region R_W is a hyperbolic polygon with sides labelled in anticlockwise order as follows

 $\varepsilon_1, \gamma_{10}, \ldots, \gamma_{1s_1}, \varepsilon_1', \ldots, \varepsilon_k, \gamma_{k0}, \ldots, \gamma_{ks_k}, \varepsilon_k', \alpha_1, \beta_1', \alpha_1', \beta_1, \ldots, \alpha_g, \beta_{\varphi}', \alpha_{\varphi}', \beta_g,$

if sign '+', or

$$\varepsilon_1, \gamma_{10}, \ldots, \gamma_{1s_1}, \varepsilon_1, \ldots, \varepsilon_k, \gamma_{k0}, \ldots, \gamma_{ks_k}, \varepsilon_k, \delta_1, \delta_1^*, \ldots, \delta_g, \delta_g^*$$

if sign '-', where

$$e_i(\varepsilon_i^{'}) = \varepsilon_i, \quad c_i(\gamma_i) = \gamma_i, \quad a_i(\alpha_i^{'}) = \alpha_i, \quad b_i(\beta_i^{'}) = \beta_i, \quad d_i(\delta_i^*) = \delta_i.$$

Let us denote by $\langle s_1, s_2 \rangle$ the angle between two consecutive sides. In R_W we have

$$<\varepsilon_i, \gamma_i>=<\gamma_i, \varepsilon'>=\pi/2,$$

and the sum of the remaining angles (accidental cycle) is 2π . Without a loss of generality we may suppose R_W is a convex polygon.

Every NEC group Γ with signature (2.1) has associated to it a fundamental region whose area $\mu(\Gamma)$, called the *area of the group* (see [15]), is:

$$\mu(\Gamma) = 2\pi \left(\eta g + k - 2 + \sum_{i=1}^{r} (1 - \frac{1}{m_i}) + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{s_i} (1 - \frac{1}{n_{i,j}}) \right)$$
(2.2)

An NEC group with signature (2.1) actually exists if and only if the right hand side of (2.2) is greater than 0 (see [17]).

If Γ is a subgroup of an NEC group Γ' of finite index N, then Γ is also an NEC group and the following Riemann-Hurwitz formula holds:

$$\mu(\Gamma) = N\mu(\Gamma'). \tag{2.3}$$

Let X be a Klein surface of topological genus g with k boundary components. Then by [14] there exists an NEC group Γ with signature

$$\sigma(\Gamma) = (g; \pm; [-], \{(-), \overset{k}{\ldots}, (-)\})$$
(2.4)

such that $X = D/\Gamma$, where the sign is "+" if X is orientable and "-" if not. An NEC group with signature (2.4) is called a *surface group*.

For each automorphism group G of a surface $X = D/\Gamma$ of algebraic genus p > 2there exists an NEC group Γ' such that $G = \Gamma'/\Gamma$ where $\Gamma \subset \Gamma' \subset N_{\mathcal{G}}$, and $N_{\mathcal{G}}$ denotes the normalizer of Γ in the group \mathcal{G} , the full group of isometries of \mathcal{D} [13].

We give two previous results from [2] in Proposition 2.1 for future reference.

PROPOSITION 2.1. (a) The Klein surface $X = D/\Gamma$ is q-hyperelliptic if and only if there exists an NEC group Γ_1 with algebraic genus q such that $\Gamma \triangleleft_2 \Gamma_1$.

(b) Let X be a q-hyperelliptic Klein surface of algebraic genus $p \ge 2$ such that p > 4q + 1. Then the group Γ_1 is unique and the automorphism ϕ , $\langle \phi \rangle = \Gamma_1/\Gamma$, is central in Aut(X).

In our case the algebraic genus of q-hyperelliptic tori is k + 1 so that the inequality in Proposition 2.1 (b) becomes k > 4q.

3. The signature of the *q*-hyperellipticity group Γ_1 . Let Γ be a surface NEC group with signature (1.1) and let Γ_1 be an NEC group with $\Gamma \triangleleft_2 \Gamma_1$. Then the signature of Γ_1 is [2]:

$$\sigma(\Gamma_1) = (g; \pm; [2^r], \{(2^{s_1}), \dots, (2^{s_n})\}), \tag{3.1}$$

where s_i are even and $q = \eta g + n - 1$. We have denoted by $[2^r]$ the set of proper periods [2, ..., 2], and in a similar way the link periods in the period-cycles.

Our first task is to look for the possible values for g, r, n and s_i in (3.1). This is done by means of (2.3). Let *m* be the number of non empty period-cycles in (3.1).

PROPOSITION 3.1. The actual values for g, r and m in (3.1) are given in the following table:

Case	g	η	r	т
Ι	0	2	0	0
II	0	2	0	1
III	0	2	0	2
IV	0	2	1	0
V	0	2	1	1
VI	0	2	2	0
VII	0	2	2	1
VIII	0	2	3	0
IX	0	2	4	0
Х	1	1	0	0
XI	1	1	0	1
XII	1	1	1	0
XIII	1	1	2	0
XIV	1	2	0	0
XV	2	1	0	0

Proof. From (2.3) we have

$$k = 2\left(\eta g + n - 2 + \frac{r}{2} + \frac{1}{4}\sum_{i=1}^{n} s_i\right).$$
(3.2)

The number of non-empty period-cycles is *m* and so

$$k \le 2(n-m) + \frac{1}{2} \sum_{i=1}^{n} s_i$$

or, equivalently,

$$-2m \ge k - 2n - \frac{1}{4} \sum_{i=1}^{n} s_i.$$
(3.3)

From (3.2) we obtain

$$k - 2n - \frac{1}{2} \sum_{i=1}^{n} s_i = 2\eta g - 4 + r, \qquad (3.4)$$

and from (3.3) and (3.4)

$$2m \le 4 - (2\eta g + r).$$

Giving numeric values to g and r and taking account of the sign in the signature we obtain the entries of the table.

We are interested in the case when the group of the q-hyperellipticity is unique. As we saw in the previous section, k must be greater than 4q; from now on we always suppose that this condition holds.

THEOREM 3.2. Let $X = D/\Gamma$ be a k-bordered torus, k > 4q. Then X is q-hyperelliptic if and only if there exists a unique NEC group Γ_1 with algebraic genus q, such that $\Gamma \triangleleft_2 \Gamma_1$ and the signature of Γ_1 is one of the following four signatures:

(1)
$$(0, +, [-], \{(-)^q, (2^{2(k-2q+2)})\});$$

(2) $(0, +, [-], \{(-)^{q-1}, (2^{s_1}), (2^{s_2})\})$, where $s_1 + s_2 = 2(k - 2q + 2)$, s_1 and s_2 are even;

(3) $(0, +, [2^4], \{(-)\})$, where q = 0, k = 2;

(4) $(1, -, [-], \{(-)^{q-1}, (2^{2(k-2q+2)})\}).$

Proof. First of all let us observe from (3.2) that if m = 0 (every period-cycle is empty) then

$$k = 2(q-1) + r,$$

and in this case k > 4q if and only if r > 2q + 2. From Proposition 3.1 we have $r \le 4$, then $m \ne 0$ except for the case IX.

Now we may discard a lot of cases in Proposition 3.1. The available ones are the cases II, III, V, VII, IX and XI. Each case gives us a possible signature for Γ_1 and for each one we must study the existence of an epimorphism

$$\theta_1: \Gamma_1 \longrightarrow Z_2 = \{1, y\},\$$

with ker $\theta_1 = \Gamma$.

In order to construct such an epimorphism let us observe that since ker θ_1 must be an orientable surface group ([4, Chapter 2]),

(a) consecutive reflections in a period-cycle cannot have the same image by θ_1 ,

(b) non orientable words (words in the generators of $\Gamma_1 - \Gamma$) cannot belong to ker θ_1 , and

(c) the image by θ_1 of every elliptic generator must have order two.

Case II: $\sigma(\Gamma_1) = (0, +, [-], \{(-)^{n-1}, (2^s)\}).$

Since Γ_1 has algebraic genus q then n-1 = q. From (3.2) we have $k = 2(n-2+\frac{s}{4})$; therefore s = 2(k-2q+2).

To define θ_1 , we see (a) implies

$$\theta_1(c_{q+1,2j}) = y, \quad j = 0, \dots, k - 2q + 2$$

 $\theta_1(c_{q+1,2j+1}) = 1, \quad j = 0, \dots, k - 2q + 1.$

Thus we obtain k - 2q + 2 empty period-cycles in ker θ_1 . The remaining 2(q - 1) must be obtained from the empty period-cycles of Γ_1 : C_1, \ldots, C_q . Then q - 1 reflections from the set $\{c_{1,0}, \ldots, c_{q,0}\}$ will be in ker θ_1 , and for each one $\theta_1(e_i) = 1$. Let us define

$$\theta_1(c_{i,0}) = \theta_1(e_i) = 1,$$

for i = 1, ..., q - 1, and $\theta_1(c_{q,0}) = 1$. To complete the epimorphism there still are two images to determine: $\theta_1(e_q)$ and $\theta_1(e_{q+1})$.

From the canonical relation $e_1 \cdots e_{q+1} = 1$, we have

$$\theta_1(e_q) = \theta_1(e_{q+1}),$$

and, by (b), $\theta_1(e_q) = 1$; otherwise $e_q c_{q,0}$ would be a non-orientable word in ker θ_1 . Then

Furthermore, by construction, θ_1 is unique up to automorphisms of Γ_1 .

Case III: $\sigma(\Gamma_1) = (0, +, [-], \{(-)^{q-1}, (2^{s_1}), (2^{s_2})\})$, with s_1 and s_2 even. From (3.2) we have

$$k = 2\left(q - 1 + \frac{s_1 + s_2}{4}\right) = 2(q - 1) + \frac{s_1 + s_2}{2},$$

and hence

$$s_1 + s_2 = 2(k - 2q + 2).$$

Reasoning as in Case II we obtain the epimorphism θ_1 (unique up to Aut(Γ_1)) defined as follows:

348

Case V: $\sigma(\Gamma_1) = (0, +, [2], \{(-)^q, (2^s)\})$. From the relation (3.2) we obtain

$$k = 2(q - 1 + \frac{1}{2} + \frac{s}{2}) = 2q - 1 + \frac{s}{2},$$

and hence

$$s = 2(k - 2q + 2).$$

But the number of period-cycles in ker θ_1 is

$$2l + (k - 2q + 1),$$

where $l = \#\{c_{i,0} : \theta_1(c_{i,0}) = 1, i = 1, ..., q\}$. This number never equals k. So this case must be discarded.

Case VII: $\sigma(\Gamma_1) = (0, +, [2, 2], \{(-)^q, (2^s)\}).$

Every epimorphism $\theta_1: \Gamma_1 \longrightarrow Z_2$ such that ker θ_1 is a surface group must satisfy

$$\theta_1(x_1) = \theta_1(x_2) = \theta_1(c_{i,j}) = y,$$

for some $c_{i,j} \in \Gamma_1$. Then ker θ_1 is non-orientable, and this case must also be discarded.

Case IX: $\sigma(\Gamma_1) = (0, +, [2^4], \{(-)\}).$

In this case the epimorphism $\theta_1: \Gamma_1 \longrightarrow Z_2$ such that ker θ_1 is a torus with two boundaries is defined by

is unique up to $Aut(\Gamma_1)$.

Case XI: $\sigma(\Gamma_1) = (1, -, [-], \{(-)^{q-1}, (2^s)\})$. From (3.2) $k = 2(q-1) + \frac{s}{2}$. So that s = 2(k-2q+2) and reasoning as in Case II, the epimorphism θ_1 is defined by

4. Dimension of the Teichmüller space. In this Section we study the Teichmüller space associated to *q*-hyperelliptic *k*-bordered tori.

Let \mathcal{G} be the full group of isometries of the hyperbolic plane \mathcal{D} . Given an NEC group Λ let us denote by $\mathcal{R}(\Lambda, \mathcal{G})$ the set of monomorphisms $r: \Lambda \longrightarrow \mathcal{G}$ such that $r(\Lambda)$ is a discrete group and the quotient $\mathcal{D}/r(\Lambda)$ is compact. Two elements $r_1, r_2 \in \mathcal{R}(\Lambda, \mathcal{G})$ are equivalent, $r_1 \sim r_2$, if and only if there exists an element $g \in \mathcal{G}$ satisfying $r_1(\lambda) = g r_2(\lambda) g^{-1}$, for every $\lambda \in \Lambda$ The quotient space $\mathcal{T}(\Lambda, \mathcal{G}) = \mathcal{R}(\Lambda, \mathcal{G})/\sim$, the Teichmüller space of Λ , is homeomorphic to a cell with dimension $d(\Lambda)$. If Λ is a Fuchsian group with (NEC) signature $(g, +, [m_1, \dots, m_r], \{-\})$ it is well known that $d(\Lambda) = 6g + 2r - 6$. It is proved in [15] that if Λ is a proper NEC group then $d(\Lambda) = \frac{d(\Lambda^+)}{2}$.

The Teichmüller modular group $\mathcal{M}(\Lambda)$ of Λ is the quotient $\operatorname{Aut}(\Lambda)/\operatorname{Inn}(\Lambda)$ [11], where $\operatorname{Aut}(\Lambda)$ is the full group of automorphisms of Λ and we denote by $\operatorname{Inn}(\Lambda)$ the inner automorphisms.

Now let Γ be an NEC group with signature $(1, +, [-], \{(-)^k\})$ and $X = D/\Gamma$. Let ϕ an automorphism of order two such that $X/\langle \phi \rangle = X_1$ has algebraic genus q and let Γ_1 be an NEC group such that $X_1 = D/\Gamma_1$. We have seen in the previous section that if k > 4q the group Γ_1 has a signature of four possible types. So we divide the q-hyperelliptic k-bordered tori into four classes according to whether the quotient by the q-hyperelliptic involution is:

(1) a sphere with corner points in a single connected boundary component;

- (2) a sphere with corner points in two connected boundary components;
- (3) a disc with four cone points;
- (4) a non-orientable surface.

Hence the Teichmüller space

 $\mathcal{T}_q = \{ [r] \in \mathcal{T} : \mathcal{D}/r(\Gamma) \text{ is a } q \text{-hyperelliptic } k \text{-bordered torus, } k > 4q \}$

becomes divided into four subspaces corresponding to the above classes:

$$\mathcal{T}_q = \mathcal{T}_q^1 \cup \mathcal{T}_q^2 \cup \mathcal{T}_q^3 \cup \mathcal{T}_q^4.$$

From [9] we have for i = 1, 3 and 4,

$$\mathcal{T}_{q}^{i} = \bigcup_{\overline{\alpha} \in \mathcal{M}(\Gamma)} \overline{\alpha} (\bigcup_{i_{\phi} \in \Phi(\Gamma, \Gamma_{1}, \Gamma_{1}/\Gamma)} i_{\phi}^{*}(\mathcal{T}(\Gamma_{1}, \mathcal{G}))),$$
(4.1)

where Γ_1 is the (unique) NEC group of the *q*-hyperellipticity of *X*, $\Phi(\Gamma, \Gamma_1, \Gamma_1/\Gamma)$ is the family of equivalence classes of surjections $\phi: \Gamma_1 \longrightarrow Z_2$ with ker $\phi = \Gamma$ modulo the action of Aut(Γ_1) and Aut(Z_2) and i_{ϕ}^* is the induced isometry by the inclusion i_{ϕ} : ker $\phi \longrightarrow \Gamma_1$:

$$\begin{array}{cccc} i_{\phi}^{*} : & \mathcal{T}(\varGamma_{1}) & \hookrightarrow & \mathcal{T}(\varGamma) \\ & & & [\tau] & \longrightarrow & [\tau \, i_{\phi}] \end{array}$$

where $\tau \in \mathcal{R}(\Gamma, \mathcal{G})$.

In the class (2), we have a family of q-hyperellipticity groups, that will be denoted by $\Gamma_1^{s_1,s_2}$, with signature as in Theorem 3.2(2). Then, \mathcal{T}_q^2 is decomposed as follows:

$$\mathcal{T}_{q}^{2} = \bigcup_{s_{1}+s_{2}=2(k-2q+2)} \mathcal{T}_{q}^{s_{1},s_{2}},$$

where $\mathcal{T}_{a}^{s_{1},s_{2}}$ has the same expression as in (4.1), changing Γ_{1} to $\Gamma_{1}^{s_{1},s_{2}}$.

In all cases, the families $\Phi(\Gamma, \Gamma_1^i, \Gamma_1^i/\Gamma)$, i = 1, 3 and 4, and $\Phi(\Gamma, \Gamma_1^{s_1,s_2}, \Gamma_1^{s_1,s_2}/\Gamma)$ have a single element, as was shown in the proof of Theorem 3.2. There, we constructed the unique class of epimorphisms

 $\phi: \Gamma_1 \longrightarrow Z_2$, ker $\phi = \Gamma$, for all q-hyperellipticity groups Γ_1

(see Cases II, III, IX and XI).

So the conditions of Maclachlan's method [12, Lemma 3] hold. Thus, we may conclude that \mathcal{T}_q^i is a submanifold of $\mathcal{T}(\Gamma)$ of dimension $d(\Gamma_1) = 2k - q - 1$. We have proved the following Theorem.

THEOREM 4.1. The subspace of the Teichmüller space associated to each class of q-hyperelliptic k-bordered tori, with k > 4q, is a submanifold of dimension 2k - q + 1.

5. Geometrical description of \mathcal{T} . The abstract concept of Teichmüller space $\mathcal{T}(\Gamma)$ of an NEC group Γ can be interpreted by means of fundamental regions. As we have seen two elements $r_1, r_2 \in \mathcal{R}(\Gamma)$ belong to the same class in $\mathcal{T}(\Gamma)$ if and only if there exists $g \in \mathcal{G}$ such that

$$r_1(\gamma) = g r_2(\gamma) g^{-1}$$
, for all $\gamma \in \Gamma$.

Equivalently, the fundamental regions of the NEC groups $r_1(\Gamma)$ and $r_2(\Gamma)$ are congruent, that is, there exists an isometry $g \in \mathcal{G}$ which transforms one of them on the other one. For this reason we can associate to each class in $\mathcal{T}(\Gamma)$ a normalized fundamental region R such that the number of parameters involved in the construction of R equals $d(\mathcal{T}(\Gamma))$, the dimension of the Teichmüller space.

Let R_1 be a fundamental region of the *q*-hyperellipticity group Γ_1 . The canonical epimorphism $\theta_1 : \Gamma_1 \longrightarrow \Gamma_1/\Gamma$ gives us a way to obtain a fundamental region *R* of Γ from two copies of R_1 . Our goal in this section will be the description of the necessary parameters in the construction of R_1 . To do this we will transform a canonical Wilkie region R_W into a right-angled fundamental region by a cutting and pasting procedure.

Description of \mathcal{T}_q^1 . Let Γ_1 be the q-hyperellipticity group with signature

$$(0, +, [-], \{(-)^q, (2^{2(k-2q+2)})\}),$$

and let R_W be a Wilkie region of Γ_1 (see Figure 1).

Let us consider the following geodesics in R_W : let λ_i be the common orthogonal to γ_i and $\gamma_{q+1,0}$, (i = 1, ..., q). Every side γ_i is divided by λ_i in two pieces, $\gamma_i = \gamma_i^1 \cup \gamma_i^2$, and $\gamma_{q+1,0}$ is divided by the λ_i in q+1 pieces:

$$\gamma_{q+1,0} = \overline{\gamma}_0 \cup \ldots \cup \overline{\gamma}_q.$$

Figure 1. R_W .

Let us denote R_W by R_{q+1} and define transformations Q_{λ_i} by the following rule: cut in R_{i+1} by λ_i the polygon which contains the side ε'_i and paste this side with ε_i via e_i to obtain R_i .

Then the region

$$R^* = Q_{\lambda_1} \cdots Q_{\lambda_q}(R_W)$$

is a right-angled fundamental region of Γ_1 with 2k + 4 sides:

$$\underbrace{\dots, f_{i-1}(\overline{\gamma}_{i-1}), f_{i-1}(\lambda_i), f_{i-1}(\gamma_i^*), f_i(\lambda_i), \dots, f_q(\overline{\gamma}_q) \cup \gamma_{q+1,s}, \gamma_{q+1,s-1}, \dots, \gamma_{q+1,1},}_{i=1,\dots,q}$$
(5.1)

where s = 2(k - 2q + 2) and

$$f_0 = i_d,$$

$$f_i = e_1 \cdots e_i,$$

$$\gamma_i^* = e_i(\gamma_i^2) \cup \gamma_i^1, i = 1, \dots, q.$$

The pairs of identified sides in R^* are $(\lambda_i, f_i(\lambda_i)), i = 1, ..., q$.

Then we have constructed a hyperbolic right-angled polygon R^* having 2k + 4 sides and the 2k + 1 consecutive sides with the following lengths:

$$\left|\gamma_{q+1,s-3}\right|,\ldots,\left|\gamma_{q+1,1}\right|,\ldots,\underbrace{\left|\overline{\gamma}_{i-1}\right|,\left|\lambda_{i}\right|,\left|f_{i-1}(\gamma_{i}^{*})\right|,\left|f_{i}(\lambda_{i})\right|}_{i=0,\ldots,q}.$$
(5.2)

Since $|f_{i-1}(\gamma_i^*)| = |\gamma_i|$ and $|f_i(\lambda_i)| = |\lambda_i|$ then we have the following free lengths

 $\begin{aligned} |\lambda_1|, \dots, |\lambda_q|, & (q \text{ orthogonal lines}) \\ |\gamma_1|, \dots, |\gamma_q|, & (q \text{ empty boundaries}) \\ |\gamma_{q+1,1}|, \dots, |\gamma_{q+1,s-3}|, & (s-3 \text{ sides of the non-empty } (q+1)\text{-boundary}) \\ |\overline{\gamma}_0|, \dots, |\overline{\gamma}_{q-1}|, & (q \text{ pieces in that } \gamma_{q+1,0} \text{ becomes divided}). \end{aligned}$

Then, there are 2k - q + 1 lengths and this number equals the dimension of \mathcal{T}_q^1 .

Description of $\mathcal{T}_q^{s_1,s_2}$. Let Γ_1 be the q-hyperellipticity group with signature

$$(0, +, [-], \{(-)^{q-1}, (2^{s_1}), (2^{s_2})\}),$$

where s_1, s_2 , are even positive integers such that $s_1 + s_2 = 2(k - 2q + 2)$; and let R_W be a Wilkie region of Γ_1 . To convert R_W in a right-angled polygon, let us consider

the geodesics: λ_i , (i = 1, ..., q - 1) as in the description of \mathcal{T}_q^1 , and λ_q the common orthogonal to $\gamma_{q,0}$ and $\gamma_{q+1,0}$.

Then the region

$$R^* = Q_{\lambda_1} \cdots Q_{\lambda_q}(R_W)$$

is a right-angled fundamental region of Γ_1 with 2k + 4 sides. The perimeter of \mathbb{R}^* , and the 2k + 1 lengths of consecutive sides in \mathbb{R}^* are the same as (5.1) and (5.2), changing s to s_2 , and $f_{q-1}(\gamma_q^*)$ to $f_{q-1}(\gamma_{q,0}^*) \cup f_q(\gamma_{q,1}), \ldots, f_q(\gamma_{q,s_1})$.

The involved lengths are:

$ \lambda_1 ,\ldots, \lambda_q ,$	(q orthogonal lines)
$ \gamma_1 ,\ldots, \gamma_{q-1} ,$	(q-1 empty boundaries)
$ \gamma_{q,0} ,\ldots, \gamma_{q,s_1} ,$	$(s_1 + 1 \text{ sides of the non-empty } q$ -boundary)
$\left \overline{\gamma}_{0}\right ,\ldots,\left \overline{\gamma}_{q-1}\right ,$	(q pieces in that $\gamma_{q+1,0}$ becomes divided)
$ \gamma_{q+1,1} ,\ldots, \gamma_{q+1,s_2-3} ,$	$(s_2 - 3 \text{ sides of the non-empty } (q + 1) \text{-boundary})$

Description of \mathcal{T}_q^3 . Let Γ_1 be the q-hyperellipticity group with signature

$$(0, +, [2^4], \{(-)\}),$$

and let R_W be a Wilkie region of Γ_1 (see Figure 3). The side-pairings are (δ'_i, δ_i) via the canonical generators x_i , i = 1, ..., 4; and $(\varepsilon'_1, \varepsilon_1)$ via e_i .

To convert R_W in a right-angled polygon let us consider the orthogonal lines λ_i from the vertex X_i to γ_1 , i = 1, ..., 4. These geodesic segments divide γ_1 in five pieces $\overline{\gamma}_i$, i = 0, ..., 4. Denote R_W by R_4 , and define the transformations Q_{λ_i} , i = 1, ..., 4, as follows: cut in R_i the polygon which contains the side δ'_i and paste it with δ_i via x_i to obtain R_{i-1} .

354

Then $R^* = Q_{\lambda_1} \circ \ldots \circ Q_{\lambda_4}(R_W)$ is a right-angled octagon with the following sides:

$$\gamma_5^*\cup\gamma_1^*,\,\lambda_1^*,\,\gamma_2^*,\,\lambda_2^*,\,\gamma_3^*,\,\lambda_3^*,\,\gamma_4^*,\,\lambda_4^*,$$

where

$$\lambda_i^* = f_i(\lambda_i) \cup f_{i-1}(\lambda_i),$$

$$\gamma_i^* = f_i(\overline{\gamma}_i),$$

$$f_i = x_1 i,$$

$$f_0 = id.$$

The polygon R^* is completely determined by five lengths:

$$2|\lambda_1|,\ldots,2|\lambda_4|,|\overline{\gamma}_1|,$$

where $|\lambda_i|$ is the distance between the boundary and the cone point X_i , and $|\overline{\gamma}_1|$ is the distance between λ_1 and λ_2 .

Description of \mathcal{T}_q^4 . Let Γ_1 be the q-hyperellipticity group with signature

$$(1, -, [-], \{(-)^{q-1}, (2^{2(k-2q+2)})\}),$$

and let R_W be a Wilkie region of Γ_1 (see Figure 5).

Let *d* be the glide reflection which transforms δ' in δ . The axis of *d* is the geodesic joining the middle points of δ and δ' . Let *P*, *Q*, and *S* be the vertices between the pair of sides (ε'_q, δ) , (δ', ε_1) and (δ, δ') . Let us consider the following segments: ε (respectively ε') the orthogonal to the axis of *d* from *P* (respectively *Q*) (see Figure 6). Then, d^2 is a hyperbolic transformation satisfying $d^2(\zeta') = \zeta$.

We are going to convert R_W in a fundamental region of Γ_1 in which the sidepairings involves the hyperbolic transformation d^2 . To do it, let us consider the geodesic *m* orthogonal to the axis of *d* which contains the vertex *S*, and the hyperbolic triangles T_1 and T_2 (see Figure 4). Then, the region

Figure 5.

 $\widehat{R} = R - (T_1 \cup T_2) \cup d(T_2) \cup d^{-1}(T_1)$

is a fundamental region of Γ_1 that follows the pattern of identifications of R in \mathcal{T}_q^1 (see Figure 7).

Then, we transform \widehat{R} into a right-angled region as we did for R in \mathcal{T}_q^1 , obtaining in the same way the set of necessary lengths for its construction.

Figure 6.

Figure 7.

REFERENCES

1. N. L. Alling and N. Greenleaf, *Foundations of the theory of Klein surfaces*, Lecture Notes in Mathematics **219** (Springer-Verlag, 1971).

2. E. Bujalance and J. J. Etayo, A characterization of *q*-Hyperelliptic compact planar Klein surfaces. *Abh. Math. Sem. Univ. Hamburg* **58** (1988), 95–104.

3. E. Bujalance, J. J. Etayo and J. M. Gamboa, Superficies de Klein elipticas hiperelipticas, *Memorias de la Real Academia de Ciencias*, **XIX**, (1985).

4. E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki. A combinatorial approach to automorphisms groups of compact bordered Klein surfaces, *Lectures Notes in Mathematics* **1439** (Springer-Verlag, 1990).

5. J. A. Bujalance and B. Estrada, Q-hyperelliptic compact non-orientable Klein surfaces without boundary, preprint.

6. A. F. Costa and E. Martínez, Planar hyperelliptic Klein surfaces and fundamental regions of N.E.C. groups. *London Math Soc. Lecture Notes Series* 173 (1992), 57–65.

7. A. F. Costa and E. Martínez, Parametrization of the Moduli Space of hyperelliptic and symmetric Riemann surfaces, *Ann. Acad. Sci. Fenn.* 22 (1997), 75–88.

8. B. Estrada, Automorphism groups of orientable elliptic-hyperelliptic Klein surfaces, *Ann. Acad. Sci. Fenn. Math.* **25** (2000), 439–456.

9. W. J. Harvey, On branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971), 387–399.

10. A. M. Macbeath, The classification of non-Euclidean crystallographic groups. *Canad. J. Math.* **6** (1967), 1192–1205.

11. A. M. Macbeath and D. Singerman, Spaces of subgroups and Teichmüller space. *Proc. London Math. Soc. (3)* **31** (1975), 211–256.

12. C. Maclachlan, Smooth coverings of hyperelliptic surfaces. *Quart. J. Math. Oxford* Ser (2) 22 (1971), 117–123.

13. C. L. May, Large automorphism groups of compact Klein surfaces with boundary, *Glasgow Math. J.* 18 (1977), 1–10.

14. R. Preston, *Projective structures and fundamental domains on compact Klein surfaces*, Thesis, Univ. of Texas, (1975).

15. D. Singerman, On the structure of non-euclidean crystallographic groups. Proc. Cambridge Phil. Soc. 76 (1974), 233–240.

16. H. C. Wilkie, On non-Euclidean Crystallographic groups, Math. Z. 91 (1966), 87–102.

17. H. Zieschang, E. Vogt and H. D. Coldewey, Surfaces and planar discontinuous groups, Lecture Notes in Mathematics, 835 (Springer-Verlag, 1980).