ON TWO LEMMAS OF BROWN AND SHEPP HAVING APPLICATION TO SUM SETS AND FRACTALS

C. E. M. PEARCE ${ }^{1}$ and J. E. PEČARIĆ ${ }^{2}$

(Received 3 January 1993; revised 20 September 1993)

Abstract

An improvement is made to two results of Brown and Shepp which are useful in calculations with fractal sets.

1. Introduction

Recently there has been a resurgence the study of sum sets. They have, inter alia, application to fractals, which can often be attractors or Markov attractors of iterated function systems (see the seminal paper of Barnsley and Demko [1]). Measure properties of sum sets are important in the study of dynamical systems (see, for example, Newhouse [5] and Palis and Takens [6]). The calculation of associated Hausdorff dimensions and Hausdorff measures and other properties can be delicate. In [3], G. Brown and L. Shepp provided two key lemmas which have proved valuable in making available a number of simple calculations in this area.

We say two positive numbers s and t are conjugate if $s^{-1}+t^{-1}=1$. By $\|f\|_{p}$ we denote the L^{p} norm of a real-valued function f. Assuming the relevant quantities exist, the results of Brown and Shepp alluded to are as follows.
(i) Suppose $s_{1}<s_{0}<s_{2}$ and let s_{i} be conjugate to $t_{i}(i=0,1,2)$. Then

$$
\|f\|_{s_{0}}\|g\|_{t_{0}} \leq \max \left[\|f\|_{s_{1}}\|g\|_{t_{1}},\|f\|_{s_{2}}\|g\|_{t_{2}}\right]
$$

(ii) Suppose that, for $i=0,1,2$, we have $s_{i}, t_{i} \geq 1$ and $a s_{i}^{-1}+b t_{i}^{-1}=1$ for positive constants a, b. If $s_{1} \leq s_{0} \leq s_{2}$, then

$$
\begin{equation*}
M_{s_{0}}(x, u) M_{i_{0}}(y, v) \leq \max _{i=1,2} M_{s_{i}}(x, u) M_{t_{i}}(y, v) \tag{1}
\end{equation*}
$$

[^0]and, if further $a: b=\log n: \log m$, then
\[

$$
\begin{equation*}
S_{s_{0}}(x) S_{t_{0}}(y) \leq \max _{i=1,2} S_{s_{i}}(x) S_{t_{i}}(y) \tag{2}
\end{equation*}
$$

\]

where the mean of order t is

$$
M_{t}(x, u)=\left[\sum_{i=1}^{n} u_{i} x_{i}^{t}\right]^{1 / t}
$$

and the sum of order t is

$$
S_{t}(x)=\left[\sum_{i=1}^{n} x_{i}^{t}\right]^{1 / t}
$$

It is implicit in these statements that $x=\left(x_{i}\right)_{1}^{n}, u=\left(u_{i}\right)_{1}^{n}, y=\left(y_{i}\right)_{1}^{m}, v=\left(v_{i}\right)_{1}^{m}$ have positive entries, that $\sum u_{i}=1=\sum v_{i}$ and that m may differ from n. Various applications of (ii) are given by Brown [2] and Brown and Shepp [3].

2. Results

We now proceed to some useful extensions of these results.
THEOREM 1. Suppose $s_{1} \leq s_{0} \leq s_{2}$ with $s_{i} \geq a, t_{i} \geq b$ and $a s_{i}^{-1}+b t_{i}^{-1}=1$ ($i=0,1,2$), $a, b>0$. Then assuming the relevant quantities exist,

$$
\|f\|_{s_{0}}\|g\|_{t_{0}} \leq \max \left[\|f\|_{s_{1}}\|g\|_{t_{1}},\|f\|_{s_{2}}\|g\|_{t_{2}}\right]
$$

Proof. As in [3] choose α_{1}, α_{2} positive and such that $\alpha_{1}+\alpha_{2}=1$ and $s_{0}=\alpha_{1} s_{1}+\alpha_{2} s_{2}$. By the Hölder inequality

$$
\begin{equation*}
\|f\|_{s_{0}}^{s_{0}}=\|f\|_{\alpha_{1} s_{1}+\alpha_{2} s_{2}}^{\alpha_{1} s_{1}+\alpha_{2} s_{2}} \leq\|f\|_{s_{1}}^{\alpha_{1} s_{1}}\|f\|_{s_{2}}^{\alpha_{2} s_{2}} . \tag{3}
\end{equation*}
$$

If we choose

$$
\beta_{i}=\alpha_{i} \frac{s_{i}}{s_{0}} \frac{t_{0}}{t_{i}} \quad(i=1,2)
$$

then

$$
\begin{align*}
\beta_{1}+\beta_{2} & =\left(\alpha_{1} \frac{s_{1}}{t_{1}}+\alpha_{2} \frac{s_{2}}{t_{2}}\right) \frac{t_{0}}{s_{0}} \\
& =\frac{b}{s_{0}-a}\left(\alpha_{1} \frac{s_{1}-a}{b}+\alpha_{2} \frac{s_{2}-a}{b}\right) \tag{4}\\
& =\frac{\alpha_{1} s_{1}+\alpha_{2} s_{2}-a\left(\alpha_{1}+\alpha_{2}\right)}{b} \frac{b}{s_{0}-a} \\
& =1
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{1} t_{1}+\beta_{2} t_{2}=\frac{\alpha_{1} s_{1}+\alpha_{2} s_{2}}{s_{0}} t_{0}=t_{0} \tag{5}
\end{equation*}
$$

so again by Hölder's inequality

$$
\begin{equation*}
\|g\|_{t_{0}}^{t_{0}}=\|g\|_{\beta_{1} t_{1}+\beta_{2} t_{2}}^{\beta_{1} t_{1}+\beta_{2} t_{2}} \leq\|g\|_{t_{1}}^{\beta_{1} t_{1}}\|g\|_{t_{2}}^{\beta_{t_{2}} t_{2}} . \tag{6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\beta_{i} \frac{t_{i}}{t_{0}}=\frac{\alpha_{i} s_{i}}{s_{0}} \quad(i=1,2) \tag{7}
\end{equation*}
$$

(3) and (6) may be combined to provide

$$
\begin{equation*}
\|f\|_{s_{0}}\|g\|_{t_{0}} \leq\left[\|f\|_{s_{1}}\|g\|_{t_{1}}\right]^{\alpha_{1} s_{1} / s_{0}}\left[\|f\|_{s_{2}}\|g\|_{t_{2}}\right]^{\alpha_{2} s_{2} / s_{0}} \tag{8}
\end{equation*}
$$

As

$$
\frac{\alpha_{1} s_{1}}{s_{0}}+\frac{\alpha_{2} s_{2}}{s_{0}}=1
$$

the right-hand side of (8) is a weighted geometric mean and the result follows.

THEOREM 2. Let $x=\left(x_{i}\right)_{1}^{n}, u=\left(u_{i}\right)_{1}^{n}, y=\left(y_{i}\right)_{1}^{m}, v=\left(v_{i}\right)_{1}^{m}$ be sequences of positive numbers and let $s_{i}, t_{i}(i=0,1,2)$ satisfy the conditions of Theorem 1. Then

$$
\begin{equation*}
S_{n}^{\left[s_{0}\right]}(x, u) S_{m}^{\left[t_{0}\right]}(y, v) \leq \max _{i=1,2} S_{n}^{\left[s_{i}\right]}(x, u) S_{m}^{\left[t_{i}\right]}(y, v) \tag{9}
\end{equation*}
$$

where

$$
S_{n}^{[t]}(x, u)=\left[\sum_{i=1}^{n} u_{i} x_{i}^{t}\right]^{1 / t}
$$

Proof. We proceed as in Theorem 1 but use the discrete Hölder inequality. With α_{1}, α_{2} as in Theorem 1 we have

$$
\sum_{i=1}^{n} u_{i} x_{i}^{s_{0}}=\sum_{i=1}^{n} u_{i} x_{i}^{\alpha_{1} s_{1}+\alpha_{2} s_{2}} \leq\left[\sum_{i=1}^{n} u_{i} x_{i}^{s_{1}}\right]^{\alpha_{1}}\left[\sum_{i=1}^{n} u_{i} x_{i}^{s_{2}}\right]^{\alpha_{2}}
$$

by the weighted form of the Hölder inequality [4, p. 136 Theorem 1(c)]. That is,

$$
\begin{equation*}
S_{n}^{\left[s_{0}\right]}(x, u)^{s_{0}} \leq S_{n}^{\left[s_{1}\right]}(x, u)^{\alpha_{1} s_{1}} S_{n}^{\left[s_{2}\right]}(x, u)^{\alpha_{2} s_{2}} \tag{10}
\end{equation*}
$$

If β_{1}, β_{2} are chosen as in Theorem 1, (4) and (5) hold as before and Hölder's inequality again gives

$$
\sum_{i=1}^{m} v_{i} y_{i}^{t_{0}}=\sum_{i=1}^{m} v_{i} y_{i}^{\beta_{1} t_{1}+\beta_{2} t_{2}} \leq\left[\sum_{i=1}^{m} v_{i} y_{i}^{t_{1}}\right]^{\beta_{1}}\left[\sum_{i=1}^{m} v_{i} y_{i}^{t_{2}}\right]^{\beta_{2}}
$$

so that

$$
\begin{equation*}
S_{m}^{\left[l_{0}\right]}(y, v)^{t_{0}} \leq S_{m}^{\left[t_{1}\right]}(y, v)^{\beta_{1} t_{1} S_{m}} S_{m}^{\left[t_{2}\right]}(y, v)^{\beta_{2} \tau_{2}} . \tag{11}
\end{equation*}
$$

Combining (10) and (11) gives, via (7), that

$$
S_{n}^{\left[s_{0}\right]}(x, u) S_{m}^{\left[t_{0}\right]}(y, v) \leq\left[S_{n}^{\left[s_{1}\right]}(x, u) S_{m}^{\left[L_{1}\right]}(y, v)\right]^{\alpha_{1} s_{1} / s_{0}}\left[S_{n}^{\left[s_{2}\right]}(x, u) S_{m}^{\left[s_{2}\right]}(y, v)\right]^{\alpha_{2} s_{2} / s_{0}},
$$

and the desired result follows as before.

REMARK 1. If $\sum_{1}^{n} u_{i}=1=\sum_{1}^{m} v_{i}$, we have (1) from (9) but with the wider supposition that $s_{i} \geq a$ and $t_{i} \geq b$ in place of $s_{i} \geq 1, t_{i} \geq 1$. Moreover, if $u_{i}=1 \quad(i=1, \ldots, n), v_{i}=1 \quad(i=1, \ldots, m)$, then we have (2) without the requirement that $a: b=\log n: \log m$.

REMARK 2. The proof of Theorem 1 depends only on Hölder's inequality and certain convexity properties of the (real) exponents. Consequently the proof is valid in a general measure space. Indeed, f and g can even be taken from different measure spaces. From this viewpoint, Theorem 2 becomes a special case of the more general form of Theorem 1 , since the expression $S_{n}^{[t]}(x, u)$ is then the usual norm $\|\cdot\|_{\text {r }}$ with respect to the obvious discrete measure.

Acknowledgement

The authors wish to thank the referee for helpful comments on an earlier version of this paper.

References

[1] M. F. Barnsley and S. Demko, "Iterated function systems and the global construction of fractals", Proc. Roy. Soc. London A 399 (1985) 243-275.
[2] G. Brown, "Some inequalities that arise in measure theory", J. Austral. Math. Soc. Ser. A 45 (1988) 83-95.
[3] G. Brown and L. Shepp, "A convolution inequality", in Contributions to Prob. and Stat. Essays in Honor of Ingram Olkin, (Springer, New York, 1989) 51-57.
[4] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their inequalities (D. Reidel, Dordrecht, 1988).
[5] S. E. Newhouse, "The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms", Publ. Inst. des Hautes Etudes Scient. Publ. Math. 50 (1979) 101-151.
[6] J. Palis and F. Takens, "Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms", Invent. Math. 82 (1985) 397-422.

[^0]: ${ }^{1}$ Department of Applied Mathematics, The University of Adelaide, South Australia 5005.
 ${ }^{2}$ Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia.
 (C) Australian Mathematical Society, 1994, Serial-fee code 0334-2700/94

