RESULTS ON COMMON FIXED POINTS ON COMPLETE METRIC SPACES

by BRIAN FISHER

(Received 26 April, 1979)
The following theorem was proved in [1].
Theorem 1. Let S and T be continuous, commuting mappings of a complete, bounded metric space (X, d) into itself satisfying the inequality

$$
\begin{gathered}
d\left(S^{p} T^{\rho^{\prime}} x, S^{a} T^{q^{\prime}} y\right) \leqslant c \cdot \max \left\{d\left(S r T^{r^{\prime}} x, S^{s} T^{s^{\prime}} y\right), d\left(S^{r} T^{r^{\prime}} x, S^{\rho} T^{\rho^{\prime}} x\right), d\left(S^{s} T^{s^{\prime}} y, S^{\sigma} T^{\sigma^{\prime}} y\right)\right. \\
\left.0 \leqslant r, \rho \leqslant p ; 0 \leqslant r^{\prime}, \rho^{\prime} \leqslant p^{\prime} ; 0 \leqslant s, \sigma \leqslant q ; 0 \leqslant s^{\prime}, \sigma^{\prime} \leqslant q^{\prime}\right\}
\end{gathered}
$$

for all x, y in X, where $0 \leqslant c<1$ and $p, p^{\prime}, q, q^{\prime} \geqslant 0$ are fixed integers with $p+p^{\prime}, q+q^{\prime} \geqslant 1$. Then S and T have a unique common fixed point z. Further, if p^{\prime} or $q^{\prime}=0$, then z is the unique fixed point of S and if p or $q=0$, then z is the unique fixed point of T.

It was shown that the condition that S and T commute was necessary in this theorem. It is possible however that the condition that X be bounded is not necessary in this theorem. We now prove the following theorem which does not require S and T to commute or \boldsymbol{X} to be bounded.

Theorem 2. Let S and T be continuous mappings of a complete metric space (X, d) into itself satisfying the inequality

$$
\begin{equation*}
d\left(S^{p} x, T^{q} y\right) \leqslant c . \max \left\{d\left(S^{r} x, T^{s} y\right): 0 \leqslant r \leqslant p ; 0 \leqslant s \leqslant q\right\} \tag{1}
\end{equation*}
$$

for all x, y in X, where $0 \leqslant c<1$ and p, q are fixed positive integers. Then S and T have a unique common fixed point z. Further, z is the unique fixed point of S and T.

Proof. Let x be an arbitrary point in X and put

$$
A=\max \left\{d\left(T^{s} x, T^{q} x\right): 0 \leqslant s \leqslant q\right\}
$$

Suppose that the sequence $\left\{S^{n} x: n=1,2, \ldots\right\}$ is unbounded. Then there exists an integer $n \geqslant p$ such that

$$
d=d\left(S^{n} x, T^{q} x\right) \geqslant \max \left\{d\left(S^{r} x, T^{q} x\right): 0 \leqslant r \leqslant n\right\}
$$

with

$$
d>c A /(1-c)
$$

Thus

$$
d\left(S^{r} x, T^{s} x\right) \leqslant d\left(S^{r} x, T^{q} x\right)+d\left(T^{q} x, T^{s} x\right) \leqslant d+A
$$

for $0 \leqslant r \leqslant n$ and $0 \leqslant s \leqslant q$. On using inequality (1), it now follows that

$$
d=d\left(S^{n} x, T^{q} x\right) \leqslant c \cdot \max \left\{d\left(S^{r} x, T^{s} x\right): n-p \leqslant r \leqslant n ; 0 \leqslant s \leqslant q\right\} \leqslant c(d+A)
$$

Glasgow Math. J. 21 (1980) 165-167.
and so $d \leqslant c A /(1-c)$ giving a contradiction. This contradiction implies that the sequence $\left\{S^{n} x: n=1,2, \ldots\right\}$ must be bounded.

Similarly, we can prove that the sequence $\left\{T^{n} x: n=1,2, \ldots\right\}$ is bounded and so

$$
M=\sup \left\{d\left(S^{r} x, T^{s} x\right): r, s=0,1,2, \ldots\right\}
$$

is finite. Now for arbitrary $\varepsilon>0$, choose a positive integer N such that $c^{N} M<\varepsilon$. It follows that for $m, n \geqslant N . \max \{p, q\}$

$$
\begin{aligned}
d\left(S^{m} x, T^{n} x\right) & \leqslant c \cdot \max \left\{d\left(S^{r} x, T^{s} x\right): m-p \leqslant r \leqslant m ; n-q \leqslant s \leqslant n\right\} \\
& \leqslant c^{2} \cdot \max \left\{d\left(S^{r} x, T^{s} x\right): m-2 p \leqslant r \leqslant m ; n-2 q \leqslant s \leqslant n\right\} \\
& \leqslant c^{N} \cdot \max \left\{d\left(S^{r} x, T^{s} x\right): m-N p \leqslant r \leqslant m ; n-N q \leqslant s \leqslant n\right\} \\
& \leqslant c^{N} M<\varepsilon
\end{aligned}
$$

and so

$$
d\left(S^{m} x, S^{r} x\right) \leqslant d\left(S^{m} x, T^{n} x\right)+d\left(T^{n} x, S^{r} x\right)<2 \varepsilon
$$

for $m, n, r \geqslant N . \max \{p, q\}$. Thus $\left\{S^{n} x: n=1,2, \ldots\right\}$ is a Cauchy sequence in the complete metric space X and so has a limit z in X. Further, since

$$
d\left(S^{n} x, T^{n} x\right)<\varepsilon
$$

for $n \geqslant N . \max \{p, q\}$. the sequence $\left\{T^{n} x: n=1,2, \ldots\right\}$ also converges to z. From the continuity of S and T it now follows immediately that z is a common fixed point of S and T.

Now suppose that w is a second fixed point of T. Then

$$
\begin{aligned}
d(z, w) & =d\left(S^{p} z, T^{q} w\right) \\
& \leqslant c \cdot \max \left\{d\left(S^{r} z, T^{s} w\right): 0 \leqslant r \leqslant p ; 0 \leqslant s \leqslant q\right\} \\
& =c d(z, w)
\end{aligned}
$$

proving that $z=w$, since $c<1$. Similarly we can prove that z is the unique fixed point of S. This completes the proof of the theorem.

Corollary 1. Let S be a mapping and let T be a continuous mapping of a complete metric space (X, d) into itself satisfying the inequality

$$
d\left(S x, T^{q} y\right) \leqslant c . \max \left\{d\left(S^{r} x, T^{s} y\right): 0 \leqslant r \leqslant 1 ; 0 \leqslant s \leqslant q\right\}
$$

for all, x, y in X, where $0 \leqslant c<1$ and q is a fixed positive integer. Then S and T have a unique common fixed point z. Further, z is the unique fixed point of S and T.

Proof. Let x be an arbitrary point in X. Then as in the proof of Theorem 2, the sequences $\left\{S^{n} x: n=1,2, \ldots\right\}$ and $\left\{T^{n} x: n=1,2, \ldots\right\}$ convęrge to a point z in X. Since T
is continuous, z is a fixed point of T. Further

$$
\begin{aligned}
d(S z, z) & =d\left(S z, T^{q} z\right) \\
& \leqslant c \cdot \max \left\{d\left(S^{r} z, T^{s} z\right): 0 \leqslant r \leqslant 1 ; 0 \leqslant s \leqslant q\right\} \\
& =c d(S z, z)
\end{aligned}
$$

proving that $S z=z$, since $c<1$. Thus z is a common fixed point of S and T. The uniqueness of z follows from the proof of the theorem, since the continuity of S was not used to prove the uniqueness.

Corollary 2. Let S and T be mappings of a complete metric space (X, d) into itself satisfying the inequality

$$
d(S x, T y) \leqslant c \cdot \max \{d(x, y), d(x, T y), d(y, S x)\}
$$

for all x, y in X, where $0 \leqslant c<1$. Then S and T have a unique common fixed point z. Further, z is the unique fixed point of S and T.

Proof. Let x be arbitrary point in X. Then again the sequences $\left\{S^{n} x: n=1,2, \ldots\right\}$ and $\left\{T^{n} x: n=1,2, \ldots\right\}$ converge to a point z in X. Further

$$
\begin{aligned}
d(S z, z) & \leqslant d\left(S z, T^{n} x\right)+d\left(T^{n} x, z\right) \\
& \leqslant c \cdot \max \left\{d\left(z, T^{n-1} x\right), d\left(z, T^{n} x\right),\left(T^{n-1} x, S z\right)\right\}+d\left(T^{n} x, z\right)
\end{aligned}
$$

Letting n tend to infinity it follows that

$$
d(S z, z) \leqslant c d(S z, z)
$$

proving that $S z=z$, since $c<1$. Similarly, we can prove that z is also a fixed point of T. The uniqueness of z again follows from the proof of the theorem.

Acknowledgement. The author would like to thank the referee for his helpful suggestions towards the improvement of this paper.

REFERENCE

1. B. Fisher, Results on common fixed points on bounded metric spaces, Math. Sem. Notes Kobe Univ., 7 (1979), 73-80.

Department of Mathematics
The University
Leicester LE1 7RH

