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ABSTRACT

A statistical analysis is performed on natural events which can produce
important damages to insurers. The analysis is based on hurricanes which have
been observed in the United States between 1954 et 1986.

At first, independence between the number and the amount of the losses is
examined. Different distributions (Poisson and negative binomial for frequency
and exponential, Pareto and lognormal for severity) are tested. Along classical
tests as chi-square, Kolmogorov-Smirnov and non parametric tests, a test with
weights on the upper tail of the distribution is used: the Anderson - Darling
test.

Confidence intervals for the probability of occurrence of a claim and
expected frequency for different potential levels of claims are derived.

The Poisson Log-normal model gives a very good fit to the data.
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1. INTRODUCTION

The United States of America are regularly hit by different types of natural
events. Hurricanes affect the east part of the United States, tornadoes the
middle one. Hailstorms and winter freeze may take place all over the United
States. Earthquakes are observed in some specific zones as California (for
example 1906 and 1989 San Francisco quakes).

These events cause very important losses. On the average the insured losses
represent 4% of the premium income in classes as fire and multiperils for
homeowners, farmowners and commercial risks.

1 Presented at the 21th Astin Colloquium, New-York, November 15-17, 1989.
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A very important hurricane may induce a 8 billion US $ insured loss which
would represent 20 % of the premium income of these classes for one year. This
percentage is even higher for an insurance company located in hurricane prone
zones (Texas, Florida, Georgia, .. .).

Direct insurers and reinsurers (underwriting non proportional treaties) must
estimate their exposure in order to define an adequate reinsurance coverage.

The topic of the study is to get some results on the loss amount and
frequency distributions of these events. In order to do homogeneous analysis,
the study has been realized on a sample of hurricanes affecting the United
States.

ISO keeps in its data base all losses (natural events) since 1949 whose
amount exceeds 1 million US $ (5 millions US $ after 1982). Three factors
explain the evolution of the losses amount from 1949: inflation, the number of

TABLE l

HURRICANES EXCEEDING 30 MILLIONS $

Year

1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
1960
1959
1958
1957
1956
1955
1954

Frequency

0
5
1
1
1
0
1
2
0
0
1
1
1
0
1
1
1
1
0
1
1
1
3
0
0
2
1
2
1
1
1
2
3

First loss

39,7
41,2
893,1
192,0

106,2
216,7

52,8
351,6
36,2

431,5
57,3

1602,1
822,2

260,1
58,7

6299,9
814,9

1263,5
1313,0
118,4
70,1

503,7
64,8
529,9

2465,4

Second loss

582,0

1243,4

137,2

53,7

167,8

87,8
317,9

Other losses

439,9 47,1 83,9

203,8

2753,9
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people having the coverage against hurricanes in their insurance policy,
demographic evolution.

These three factors have been taken into account in the trending of the losses
(FRIEDMAN, 1987) in order to get an homogeneous data base in 1987 US $.
Nevertheless as the indexation coefficients for the first years were close to 100
and those for the years 1954 to 1982 were lower than 30, the observed period of
time has been shortened to 33 years (1954 to 1986). During these years
37 hurricanes have been observed (cost of each hurricane in 1987 US $
exceeding 30 millions).

2. HYPOTHESIS

Consider N the random variable (r.v.) of the yearly loss frequency N(x0) the
r.v. of the losses exceeding x0, with x0 fixed. Let Xt be the amount of the loss i
and X_ = (Xl, ..., XN) the r.v. of the yearly loss amounts; the distribution of
each Xj is supposed continuous.

K observations years (K = 33) are available. They produce a realization
(nk, x}k\ = ,,..., * of a ^-sample (N,, X}\ ..., (NK, X}K)) of (N, X).

Two hypothesis are made

(HI) N and (Xx, X2, ...) are independent random variables
(7/2) Xu X2, ... are i.i.d. random variables.

(//I) may be partly checked looking at the 25 years for which at least one
loss has been observed. The grouping of the first losses in three classes gives the
following contingency table (into parenthesis theoretical frequencies in case of
independence).

^ ^ \ . Loss
Yearly ^ \ ^
frequency ^ ~ \ ^ ^

1
2

3 and over

Total

9
1
1

S 200

(7,92)
(1,76)
(1,32)

11

200 < < 1000

6 (6,48)
2 (1,44)
1 (1,08)

9

3
1
1

• 1000

(3,60)
(0,80)
(0,60)

5

Total

18
4
3

25

Chi-square independence test gives an observed xlbs = 1,23 which for the
significance level (.P-value) is a = P(x4

2 > xlbs) = 0,87. So (HI) is accepted.

Remark: A grouping of yearly frequencies in two classes in order to follow the

Cochran criterion IV (i,j) and-^- 5 for at least 80% of (i,j)

would lead to the same conclusion.
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For (H2) independence of X\ and X2, and identical distribution of Xx, X2

and X3 are checked using three non parametric tests: Kendall, Spearman and
Kruskal-Wallis (GIBBONS, 1974).

— Independence of Xx and X2

For the 7 years during which at least 2 losses have been observed, the Kendall
tau statistic can be written as follows:

2 v^
T = 2^ AU with

7 ( 7 - 1) \4,i<MK

W'-xi1') > o
0 if (X\j)-Xl

0))(X2i
J)-X2

i0) = 0

- 1 (X[J) - X{°) {X(
2
j) - Af*) < 0

The critical region for Kendall test at level a = 0,20 is Wa = {\T\ > 0,4286}.
The observed tau being T = -0,333, independence between Xy et X2 can be
assumed for any reasonable level.

Let Rk be the rank of X\k) among the 7 observations (ordered increasingly)
for which nk^-2 and Sk be the rank of Xjk\ the Spearman rho statistic is

(Rk-R)(Sk-S)
k

R = - —

(Rk-R)2 J £ (S*-S)2

The critical region for Spearman test with a level a of 0,20 is
Wa = {\R[> 0,536}, observed rho is computed at -0,464 so the conclusion is
the same as for Kendall test.

— Identical distribution of Xx, X2 and X3

Let F, (/ = 1, 2, 3) be the cumulative distribution function (c.d.f.) of Xt, only
years when at least / losses have occured being selected: {X\k): k with
nk 5= 0-

The null hypothesis Fx — F2 = F3 is tested against the alternative
3i,j:Fj=fcFj by the Kruskal-Wallis test. Under the assumption that loss
amounts (XJ-k^)i>i are identically distributed, we have a mrsample of
Xx (mx = 25), a m2-sample of X2 (m2 = 7) and a m3-sample of X3 (w3 = 5).
These samples are assumed to be independent.

3

Let M = 2_] mi> Ri t n e sum of ranks of the /th sample observations in
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the combined (increasingly) ordered configuration of the M observations

with V Ri = — : Rx = 482, R2 = 128, R3 = 93. Under the null
£1 2

hypothesis E(R,) = ~ — — V/ [E(RX) = 475, E(R2) = 133, E(R}) = 95],
2

the Kruskal-Wallis statistic

KW= n , j J

is free (its distribution is independent of the common Ft distribution).
Asymptotically (m, -> + oo V7) AT W is chi-squared distributed with 2 degrees of
freedom. This asymptotic distribution is used in practice when m, ^ 5 Vz. Here
the critical region for the Kruskal-Wallis test {KW > c) has a significance level
a = P(x2

2 > KW) = 0,97 (the observed KW statistic having a value of
0,054).

Remark:

1. If the size of the third sample m3 (= 5) seems too small to use the
asymptotic distribution of KW, it is still possible to test Fx = F' against
F, + F' [F' being the c.d.f. of Xt (i ̂  2)] with a wrsample of Fx (m, = 25) and
a m'-sample of F' (m' = 12). In this case the Kruskal-Wallis test is the
Mann-Whitney-Wilcoxon test and has a significance level & = 0,82.
2. Under the assumption of the X/s independence the Kruskal-Wallis test
may be used to check the hypothesis (HI): no effect of the yearly loss
frequency upon their amount:

Considering the yearly loss amounts {X[k): k with nk = 1} for years when
exactly one hurricane occurs, {X}k) = k with nk = 2; i = 1, 2} for years with
two hurricanes and {X}k): k with nk ̂  3; i = 1, 2, ..., nk} for years with
more than two hurricanes as independent samples with respective sizes
m, = 18, m2 = 8, w3 = 11 of distributions Gx, G2, G3, the Kruskal-Wallis
test of the null hypothesis G\ = G2 = G^ gives a significance level a = 0,89
(observed KW = 0,25).

Hereafter (HI) and (7/2) will be assumed to be true. X will be the random
variable parent of Xt and Fx its c.d.f. (assumed to be continuous.)

3. LOSS FREQUENCY

The realization (n , , . . . , nK) of the /v-sample (Nx, ..., NK) from ./V is given in

the following Table 2. Let n = — > nk and <?„ = — > (nk — n).
Kk Kk
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Different distributions fitting the loss frequency are examined.

— Poisson distribution 3° (X) (X > 0)

with Px (N = n) = e~x Xn\n\ (n e IN), E(N) = V(N) = X, X = n is the maxi-
mum likelihood estimator (M.L.E.) of X. A confidence interval at a level of at
least (1 - a ) for X is [Xt, Xs] with

Xi = — x2 {all) and X, = — x1 (1 - a /2 ) .
2K IK

nk
k

In these expressions x2(a/2) and x2(l -a /2) are the a/2 and (1 -a /2) fractiles
of the chi-square distribution.

— Negative binomial N& (r,p) (r > 0, p e ] 0,1 [)

w i t h P r . { N = n ) = pr (1 -p)n (n e IN), E(N) = ——— and
r(r)n\ p

V(N) = —: — > E(N); the estimation of (r,p) by the M.L.E. or by the
P2

moments requires that the condition a2 > n is fulfilled.

From the frequencies by year of hurricanes, we have n = — = 1,12121
33

and a2 = 1,0762. So a fit by a negative binomial distribution is impossible.

TABLE 2

YEARLY FREQUENCY OF HURRICANES EXCEEDING 30 MILLIONS $

Yearly frequency
/

0
1
2
3
4
5
6 and over

Total

Observed freq.
«,•

8
18
4
2

°1
1 '
oj

33

Theoretical freq.
Kpt

10,75
12,06
6,76
2,53

I 0,90

33

(Oi-Kp,)2

Kp,

0,703
2,926
1,127
0,111

0,011

4,878 = XobS
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The x2 goodness-of-fit test to a Poisson distribution with A = n,
Pi = P%(N = /) and c = 5 classes gives (see Table 2) a significance level a
fulfilling condition

x2
obs)

belonging to the interval [0,18; 0,30].
So the fit of N to a Poisson distribution

x2
0bs),

is accepted with for A:

M.L.E. A = 1,12121

Confidence interval at a level at least 0,98

[0,73736; 1,63005]

Remark:

1. The M.L.E. of A obtained from grouped data (5 classes) is A = 1,09866,
so to state precisely the chi-square test gives a significance level
a = P(x\> 4,866) = 0,18.
2. The fit of a Poisson distribution to that kind of event frequency can be
checked with the distribution (see Table 3) of the frequency by year of all the
north atlantic hurricanes which approached the United States from 1899 to
1986 (meteorogical data, US Department of commerce):

« = 1,7045, = 1,8218, fie [0,72; 0,84].

TABLE 3

YEARLY FREQUENCY OF ALL NORTH ATLANTIC HURRICANES

Yearly frequency

0
1
2
3
4
5
6
7 and over

Total

Observed freq.

16
28
23
14
3
2]
2 4

oj
88

Theoretical freq.

16,00
27,28
23,25
13,21
5,63

2,63

88

(o-Kpf

0,000
0,019
0,003
0,047
1,229

0,714

2,012 = X
2

0hs

4. LOSS AMOUNT

Loss amounts are assumed to be i.i.d. random variables. Let

n = 2 J nk ( = 37), a realization ( x , , . . . , xn) of a n-sample {Xx, ..., Xn) of X
k=\

is obtained; all losses are over 30.
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The aim of the following lines is to estimate the probability
P(X~^x0) = 1— FX{XQ) that a loss amount exceeds x0 and to derive a
confidence interval at a level 1 — a (= 0,98).

1. Non parametric estimation

Let Xm =* ... ^ X(n) be the ordered sample corresponding to {Xx, ..., Xn) and
(Fn*(x))x6|R+ the empirical c.d.f.

Considering X^ = 30, Ar
(n+1) = +oo, we have, for k — 0, . . . , n,

F?(x) = - if Xw<x^Xik+l).
n

1 "
The statistic 1 — F* (x0) = - 2_, "̂  [*„, +<»[(̂ 7) is a n unbiased consistent esti-

n t=\

mator of l-Fx(x0).
Furthermore if Dn(\ - a ) is the (1 - a ) fractile [Dn(0,98) = 0,244 for n = 37]

of the Kolmogorov-Smirnov statistic £>„= Sup \F*(x)-Fx(x)\ associated

to the sample, if we let, for x e IR+,

/„(x) = max [1 - F * ( x ) - D n { \ - a ) , 0]

Sn{x) = min [l-Fn*

the band ([In(x), Sn(x)])xfB^ is a level (1 - a ) confidence band for 1 -Fx(x0)
meaning that

The table with the values of l-F*(x), In(x) and Sn(x) for k = 0, . . . , n and
x(k) < * ^ *(*+i) is presented in Appendix 1.

Joining with segments the points

n-k+1
+ Z > ( l )

for the superior envelope and

n-k
- a ) , 0

for the inferior envelope, a confidence band (Bx)xen+ containing the first one
([/„(*), SnOOLeR* and graphically easier to draw is derived. Graph 1 shows
the plot of 1 -F* (x) and Bx for 30 ^ x ^ 8000.
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0.8 -

GRAPH 1. Plot of l-F*(x) and Bx.

2. Parametric family of distributions

A graphical approach and the value of significance levels of goodness-of-fit
tests based on the empirical c.d.f. (D'AGOSTINO and STEPHENS, 1986) are used
to test the fit of observations to a family ,'J = {F(x; 0): 6 e 0} of parametric
distributions (9 varying in on open subset 0 of IR*).

For the graphical procedure (Q - Q plot) following results are applied: for
r = ! , . . . ,«

rin-r+X)
E[Fx(X(r))] =

For n ̂  30 (a generally accepted level) a realization of Fx(X(r))
 ls verY likely

close to . So it is possible to write Fx(x(r)) ^ for r = 1, ..., n.
n+\ n+1
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By an adequate transformation, depending of the examined family, the
procedure is equivalent to estimate whether n points are roughly on a straight
line.

Let 6 be the M.L.E. of 6 in the hypothesis Fxe ,9~, the goodness-of-fit test is
based on Anderson-Darling statistic

Al
n=n V '\ dF(x, 6)

Jo F(x;d)[\-F(x;d)]
1

This statistic gives one of the globally most powerful tests (D'AGOSTINO and
STEPHENS, 1986). Moreover it is an adequate statistic of the here studied

problem because of the weight factor — given to the tail of the

distribution.
In order to compare with other tests, Kolmogorov-Smirnov statistic will be

computed:

Dn = Sup \F*(x)-F(x,0)\ = m a x 0 ; , i 3 - ) with
xs R +

Of = max |~- - F(Xir); 0)~\ and D " = max \F(X(T); 9) - —
r=l , . . . , « ^n J r=l,...,n ^ n

Let fn be one of these two test statistics and fnx its value for the realization
x = (x{,..., xn) of {Xx, ..., Xn). The distribution of tn under the null hy-
pothesis Ho: Fxe ^F depends generally only on n and the examined family.
Thus a significance level ot(x) = PH°[fn > fnx] may be computed from the
table of this distribution.

Remark: It is not advisable to compare the fit of two families of distributions
to the observations by a simple comparison of their Tnx. Indeed the same
deviation has not the same likelihood to be reached under Ho. For example
considering Dn, for n = 37 and Dnx = 0,165: PH"{D n> D nx) = 0,24 if
$~ = {Fo} has only one distribution (fully specified), PH°(Dn > Dnx) = 0,08 if
^ i s the exponential distributions family, PH"{D„ > D „ x) = 0,15 if .'f is the
log-normal distributions family.

The histogram of the observations suggest to choose a dissymmetrical
distribution. Successively exponential, Pareto and log-normal distributions will
be tried: for these distributions there are statistical tables which give the
goodness-of-fit significance levels a,{x).
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2a. Exponential distribution e(P; 30)

With P > 0, this distribution has the following density and c.d.f.

/;uo(*) = / ^ ( * - 3 0 % 0 j + 0 0 [ ( x )
Fp,yO(.x)=l-e-l>lx-3O)(x>30) so -Log [1 -FPt30(x)] = /?(x-30).

Let (F,, ..., Yn) be a n-sample of {e(jS, 30): fi > 0} and ( j ^ , . . . , yn) its realiza-
tion.

the n points jF(r)-30, —Log 1 - r

n+1
r = ! , . . . , « are roughly on a

straight line going through (0, 0) with a positive slope (the slope of an
adjusted line on these points gives if necessary a graphical estimation of P).

M.L.E. of P is p = , M.L.E. of 1 -FA30(x0) is

1 -^>,3o(*o) = e f o r xo > 30.

* a level (1 —a) confidence interval with symmetric risks is

fory9: P — — ; p
In In

for I - F ^ J Q C

f -y?x2
2

n(l-a/2) ) [ y9x2nra/2)
exp { ^x0 - 30) ; exp x0 - 30)

1 In ) \ In
2nP ,

as -—- is X2« distributed (d.f. In).
P

The graphical procedure applied to the 37-sample (xx,..., xn) of X in
graph 2 rejects in a first approach a fit to an exponential distribution: the tail
of this distribution is too light to take into account the observed amounts of
loss.

With B = = 0,00157, the significance levels of the goodness-of-fit tests
638,2

corroborate the lack of fit of the exponential distribution to the data:

Al = 5,98054 &{x)< 0,0025

Dn = 0,2599 a.(x)< 0.005.
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GRAPH 2. Plot of the points x(r)-30, -Log 1 -

8

(x1000)

2b. Pareto distribution P(y; 30)

With y > 0 this distribution has the following density and c.d.f.

y30y

G,,3o(*) = 1 -
30

so - Log [1 - G7>30(x)] = y Log — (x > 30).
30

Let ( F , , . . . , F J be a «-sample of {/> (y; 30 ) : y > 0} and {yx,...,yn) its
realization.
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* the n points r = ! , . . . , « are roughly on a
30 \ n+l

straight line going through (0, 0) with a positive slope (the slope of an
adjusted line on these points gives if necessary a graphical estimation of y).

M.L.E. of y is y =

x0

, M.L.E. of 1 -Gy30(x0) is

for XQ > 30.

a level (1 —a) confidence interval with symmetric risks is

for y : \y
In

y-
In

30
for l-Gy<i0(x0):

as is jcfn distributed.

2K 30

x0

2«

Graph 3 shows that the n points I Log —— , - Log 1
30 n + l

r - I,..., n are not roughly on a straight line. Pareto distribution has a too
heavy tail for the observed amounts of loss.

With y = 0,465141 the test statistics can be computed as follows

Al = 1,56365 with a significance level &(x) = 0,025

D„ = 0,14586 with a significance level &(x) = 0,16 .

Comparing the two significance levels demonstrates the interest of A2
n

relatively to D„. The fit to a Pareto distribution is rejected by A2
n (tail of the

distribution) though such a fit seems to be acceptable with Dn, taking into
account the small number of observations.

The fit to a Pareto distribution being rejected, the lower and upper limits of
the confidence interval are not computed.
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4

3

2

1

0

-•

•

i

/ : '
••

i • •• • ' - I . I . I

•

•

/

/ ^ '

y = yx

, , . , i , , . . i , , , . i . . . . i • . . . i . , . , i

*<<•) r \
GRAPH 3. Plot of the points Log— , -Log 1 r = 1, . . . ,«.

30 n+l

2c. Log-normal distribution Log N(pi,o; 30)

With n e R and a > 0, a random variable F is log-normally distributed if
Log (Y— 30) is normally distributed N(ji, a). Its density is

VooOO = —p= exp| - —-[Log(x-30) - / / ] 2

(x-30) { 2a2

Let 0 be the c.d.f. of N(0, 1), the c.d.f. of the log-normal distribution can be
written (JC 5* 30)

rLog(x-30)-AT
therefore 0-1[Hfl^o(x)] =
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Let (F,, ..., Yn) be a n-sample of {Log N((i, a, 30): /i e R, a > 0}

The n points Log (y,r-j-3Q), 0 - l

n+l

straight line with a positive slope.

1 A
* M.L.E. of (ft, a) is fi = - ^ Log (7,-31

n 1=1

r = 1, ..., n are roughly on a

M.L.E. of l -

[Log (7,-30) -fi]2

~Log(x0-30) ~i

a

* the way to derive a confidence interval for 1 — //^ CT 30 (x0) is explained
later.
Graph 4 shows a very good fit of the log-normal distribution to the 37

observations. It is corroborated by the values of the test statistics computed
with fi = 5.19853 and a = 1.74297:

A2 = 0.26265 with a significance level &(x) = 0.70

Dn = 0.07939 with a significance level x(x) P 0.15.

The values of 1 — H^aiQ (x0) for x0 varying from 100 to 8000 are presented in
Appendix 2 (column 1) and plotted in Graph 5.

2d. Confidence interval for \—& '

As the size of the sample (n = 37) is too small to use the confidence interval
derived from the asymptotic normality of (fi, a) and the ^-method, the
non-central Student distribution and its table (RESNIKOFF and LIEBER-

MAN, 1957) are to be used.

Let Y, = Log (X,— 30) for i = 1,.. . , n, Y = ~ £ 7, and
n t

S\ = —L £ (Y- Y)\ (Yl, ..., Yn) is a «-sample of N(n, a).
n-\ i

i~

So —[Log (xo-3O)-Y] is distributed as JV I — {Log (xQ~30)-/i}, 1

(n-l)S2
Yand is xn_x distributed. These two random variables being inde-
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GRAPH 4. Plot of the points Log(x ( r ) -30) , <P
n + 1

10

r = 1, . . . , « .

pendent, the distribution of Jn isis a tn-.l

non-central Student distribution with ( « - 1) degrees of freedom and centrality

parameter *Jn [Log (x0 - 30) - /j]/a.
In a more general way the y-fractile tv<s(y) of a Student distribution tv6 with

v d.f. and centrality parameter 5 is, for fixed v and y, a strictly increasing
continuous function of S noted C,, y with P[tvJ < Cvy(d)] = y V d.

Let Cv r (t) be its reciprocical function: for fixed t e R, d = Cv,,'(/) is the
only solution of the equation, d being the unknown: P[tvd< t]'= y. From
that it follows
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l , , , _a/2

'

y~ [Log(x0-30)-F] ,

[Log(x0-30)-F]r '

is a level (1—a) confidence interval for with symmetric risks.

For 1 - 0

interval are

Log (x0- 30)-ft

a
the lower and upper limits of the confidence

1 - 0

\-(p

<-«-!,oc/2

n - 1,1 - a/2

[Log (x 0 - 30) - 7 ]

[Log (x 0 -30 ) -7 ]

and

From the fractiles of the Resnikoff-Lieberman table, it is possible to compute
this interval for n - 37 and 1 — a = 0,98 (by linear interpolation and with a
limited accuracy) only for x0 ̂  1500. So it seems to be preferable to use the
following approximation of fractile tn-x<s(y) (VAN EEDEN, 1961):

(1) ^ -MGO- 'n - i (?) + *(<$) With

h{8) = 8 (l+2q [3(4q4+l2q2+l)
)296(n- l ) 2

+ 4q)8-4(q2-\)82-3q83]

and with ?„_, (y) and r̂ being the y-fractiles of the (central) Student distribution
and of the normal distribution N(0, 1).

Let t0 = y~- [Log (xo — 3O) — y] , the approximation (1) provides C'l^ y(t0)

as solution of the equation (8 being the unknown): tn_1(y)-to + h(8) = 0.
This equation can be numerically solved using the Newton-Raphson algorithm

a starting value could be 80 = to — tn-i(y), obtained by neglecting the terms

1 1
and in (1) .

n-\
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Appendix 2 shows in columns 2 and 3 the lower and upper limits of the level
0,98 confidence interval for 1 ~H^a^ (x0). These limits are plotted in
Graph 5.
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GRAPH 5. Plot of 1 - HM ff 30 (x0) (curve 1), lower limit (curve 2) and upper limit (curve 3) of the
confidence interval for 1 - H)la 30(x0). The log-normal case.

5. FREQUENCY OF LOSSES WITH AN AMOUNT ^ Xo

Let, for fixed x0 ̂  30, N(x0) the r.v. of the yearly frequency of losses exceeding
x0. Using the same notations as before and considering that the r.v. N has a
Poisson ,9"(X) distribution, under (HI) and (//2), the following results are
obtained.
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Theorem:

a) N(xu) is Poisson distributed with parameter X(x0) = X[l—Fx(x0)].

b) If the distribution of X belongs to the family 3~ = {F(x; 6): Be 0), the
M.L.E. of/l(x0) islOc^) = X[l-F(xo;6)].

c) If [!,, Xs\ and [/(x0), S(x0)] are confidence intervals for X and 1 — Fx(x0) at
a level of at least (1 - a / 2 ) , [l , /(x0), 1,5 (;c0)] is a confidence interval for
l(x0) at a level of at least (1 — a).

Proof:

a) Direct calculation.
b) Because of the independence hypothesis and invariance of the M.L.E.

c) />[l,/(xo)<A(xo)<l,S(xo)]>
l X^XS, /(x0) ^ l-Fx(xQ) ^ S(x0)]

and the result with the Bonferroni inequality P(Af[B)^ 1 -P(AC)-P{BC)
for any two events A and B. It is worthwhile to note that a direct use of the

independence frequency-amount would give a level ^ (1 - a / 2 ) 2 = 1 - a + —
4

very close to (1 —a)
These results applied to the frequency and amounts of hurricanes give in the

same way as for 1 - Fx(x0) but at a level 1 - a = 0.96:

* In the non parametric case (Appendix 1)

— an estimation of X (x0): X [ 1 — F* (x0)] (Column 4)

— a confidence band ([!,/„(x), XsSn(x)])x eR+ for X(x0) such as

P [1,/„ (x) «U (x) sc As S,, (x) Vx e R+] ^ 1 - a .

The values 2,/n(x) and XsSn(x) are shown in Columns 5 and 6.

* In the log normal case (Appendix 2)
— the M.L.E. T o ^ ) of X(x0) (Column 4)
— the upper and lower limits of a confidence interval for X (x0) (Columns 5

and 6).

Graph 6 shows a plot of these values.

In conclusion Table 4 shows for the values of x0 for which observations are
available, in order to judge of the goodness-of-fit: the M.L.E. A(x0) derived
from the model, the empirical mean («) and variance (<rn

2) of the yearly
frequency of losses exceeding x0 , the empirical distribution of the frequencies
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GRAPH 6. Plot of A(x0) (curve 4), lower limit (curve 5) and upper limit (curve 6) of the confidence
interval for A(x0). The log-normal case.

(columns obs.), to compare with the theoretical distribution derived from the
Poisson log-normal model (column theor.).

Empirically the fit of the model seems very satisfactory.

CONCLUDING REMARKS

These results do not seem to be exclusive for hurricanes in the United States.
So they could be used to modelize the frequency and amount distributions of
natural events of any kind in the United States (for examples tornadoes) and
even world wide.
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Values

k

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

of:

*(«<

30,0
36,2
39,7
41,2
47,1
52,8
53,7
57,3
58,7
64,8
70,1
83,9
87,8

106,2
118,4
137,2
167,8
192,0
203,8
216,7
260,1
317,9
351,6
431,5
439,9
503,7
529,9
582,0
814,9
822,2
893,1

1243,4
1263,5
1313,0
1602,1
2465,4
2753,9

6299,9

x<x(k+l)

36,2
39,7
41,2
47,1
52,8
53,7
57,3
58,7
64,8
70,1
83,9
87,8

106,2
118,4
137,2
167,8
192,0
203,8
216,7
260,1
317,9
351,6
431,5
439,9
503,7
529,9
582,0
814,9
822,2
893,1

1243,4
1263,5
1313,0
1602,1
2465,4
2753,9
6299,9

+ co

1\PPENDIX

\-F*{x)

/„(*)
Sn(x)
X[l-F*
lln(x)
lsSn(x)

(l)

1,000
0,973
0,946
0,919
0,892
0,865
0,838
0,811
0,784
0,757
0,730
0,703
0,676
0,649
0,622
0,595
0,568
0,541
0,514
0,486
0,459
0,432
0,405
0,378
0,351
0,324
0,297
0,270
0,243
0,216
0,189
0,162
0,135
0,108
0,081
0,054
0,027

0,000

(*)]

(2)

0,756
0,729
0,702
0,675
0,648
0,621
0,594
0,567
0,540
0,513
0,486
0,459
0,432
0,405
0,378
0,351
0,324
0,297
0,270
0,242
0,215
0,188
0,161
0,134
0,107
0,080
0,053
0,026
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000

1

: Col.
: Col.
: Col.
: Col.
: Col.
: Col.

(3)

1,000
1,000
1,000
,000
,000
,000
,000
,000
,000
,000

0,974
0,947
0,920
0,893
0,866
0,839
0,812
0,785
0,758
0,730
0,703
0,676
0,649
0,622
0,595
0,568
0,541
0,514
0,487
0,460
0,433
0,406
0,379
0,352
0,325
0,298
0,271

0,244

1
2
3
4
5
6

(4)

1,121
1,091
1,061
1,030
1,000
0,970
0,940
0,909
0,879
0,848
0,818
0,788
0,758
0,727
0,697
0,667
0,636
0,606
0,576
0,545
0,515
0,485
0,454
0,424
0,394
0,364
0,333
0,303
0,273
0,242
0,212
0,182
0,152
0,121
0,091
0,061
0,030

0,000

(5)

0,557
0,538
0,518
0,498
0,478
0,458
0,438
0,418
0,398
0,378
0,358
0,338
0,318
0,298
0,278
0,259
0,239
0,219
0,199
0,179
0,159
0,139
0,119
0,099

(6)

,630
,630
,630
,630
,630
,630
,630
,630
,630
,630
,587
,543
,499
,455
,411
,367
,323
,279
,235
,191
,147
,103
,056
,015

0,079 0,970
0,059 0,926
0,039 C),882
0,019 0,838
0,000 0,794
0,000 0,750
0,000 0,706
0,000 0,662
0,000 0,618
0,000 0,574
0,000 0,530
0,000 0,486
0,000 0,442

0,000 0,398
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APPENDIX 2

LOG NORMAL CASE

— Estimation of l — Fx(x0): Col. 1
— Lower and upper limits of the confidence interval for 1 — Fx(x0): Col. 2 and 3
— Estimation of X(X0): Col. 4
— Lower and upper limits of the confidence interval for X (Xo): Col. 5 and 6.

x0

100
150
200
250
300
350
400
450
500
600
700
800
900
1000
1250
1500
1750
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000

(1)

0,707
0,593
0,514
0,455
0,409
0,372
0,341
0,315
0,292
0,255
0,226
0,203
0,184
0,168
0,137
0,115
0,098
0,085
0,067
0,054
0,045
0,038
0,033
0,029
0,022
0,018
0,015

(2)

0,55
0,44
0,36
0,31
0,27
0,24
0,21
0,19
0,17
0,14
0,12
0,105
0,09
0,08
0,06
0,045
0,04
0,03
0,02
0,015
0,01
0,01
0,01
0,005
0,005
0,0
0,0

(3)

0,83
0,73
0,66
0,61
0,565
0,53
0,50
0,47
0,45
0,41
0,38
0,355
0,33
0,31
0,28
0,25
0,23
0,21
0,18
0,16
0,14
0,13
0,12
0,11
0,095
0,085
0,075

(4)

0,793
0,665
0,577
0,511
0,459
0,417
0,382
0,353
0,327
0,286
0,254
0,228
0,206
0,188
0,153
0,129
0,110
0,096
0,075
0,061
0,051
0,043
0,037
0,032
0,025
0,020
0,017

(5)

0,41
0,32
0,27
0,23
0,20
0,175
0,16
0,14
0,13
0,105
0,09
0,08
0,07
0,06
0,045
0,035
0,03
0,02
0,015
0,01
0,01
0,005
0,005
0,0
0,0
0,0
0,0

(6)

1,35
1,19
1,08
0,99
0,92
0,86
0,81

- 0,77
0,73
0,67
0,62
0,58
0,54
0,51
0,45
0,41
0,375
0,34
0,295
0,26
0,23
0,21
0,195
0,18
0,155
0,14
0,12
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