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Identifying causally significant features in
three-dimensional isotropic turbulence
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Flow patterns of causal significance to three-dimensional isotropic turbulence are
identified through the recently introduced algorithm of Jiménez (J. Fluid Mech., vol. 854,
2018, R1). Localised perturbations are introduced at arbitrary regions of a triple-periodic
decaying flow at Reλ ≈ 190, and their evolution is used as a marker of the significance
of said regions to the flow. Their dimensions are found to be an important parameter,
with sizes of the order of the integral scale being controlled by the kinetic energy
content, and sizes within the dissipative range, by the enstrophy and dissipation. The
three quantities are found to be important at intermediate (inertial) scales. Prominent
differences emerge between regions of high and low significance. The former typically
contain strong gradients and/or kinetic energy and the latter are weak. An analysis of the
structure of significant and insignificant flow patterns reveals that strain is more efficient
than vorticity at propagating the contents of the perturbation to other regions of the
flow. Moreover, the flow patterns of significant regions are found to be more complex,
typically containing vortex clusters, while simpler vortex sheets are found in insignificant
regions. The present results suggest that strategies aiming to manipulate the flow should
focus on strain-dominated vortex clusters, avoiding enstrophy-dominated vortex sheets.
This is confirmed through an assimilation experiment, in which greater synchronisation
between two simulations is achieved when simulations share significant regions rather than
insignificant ones. These conclusions have implications for both the control of turbulent
flows and the making of predictions based on limited or noisy measurements.
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1. Introduction

This paper originates from the recent Monte Carlo simulations of Jiménez (2018, 2020b).
In the first of these papers, the author explores whether structures significant to the
turbulent flow can be discovered semi-automatically by machine. The second studies the
properties of dipoles in two-dimensional turbulence, which are one of the suggestions
of significant pattern obtained from the former. Overall, the campaign was successful at
uncovering a flow pattern that had not received much attention until now. The premise
of these works is that it is possible to leverage state-of-the-art hardware for turbulence
research in a novel approach. From the earliest direct numerical simulations (DNSs,
Orszag & Patterson 1972; Rogallo 1981; Siggia 1981; Kim, Moin & Moser 1987) to the
most recent (Lee & Moser 2015; Iyer, Sreenivasan & Yeung 2020; Vela-Martín et al. 2021),
the most powerful supercomputers available at the time have been used to compute the
largest simulations to date (in terms of degrees of freedom). Alternatively, some lines of
research exploit faster hardware to minimise expensive cost functions iteratively, either
to find fixed points (Nagata 1990), orbits (Kawahara & Kida 2001), optimal transients
(Pringle & Kerswell 2010), optimal assimilations (Wang, Hasegawa & Zaki 2019) or
optimal states (Motoki, Kawahara & Shimizu 2018). The optimisation of these cost
functions involve iterating an expensive Newton-like optimiser, and cannot be applied to
simulations at the state-of-the-art complexity. Instead, they need to settle for a combination
of low Reynolds number, small boxes and moderate simulation times, which we can
summarise as ‘small’ simulations. These simulations were state of the art approximately 30
years ago (Jiménez 2020a), and are still relevant today. Jiménez (2018) explores a different
usage scenario for small simulations, one in which modern hardware is used to run massive
ensembles of them at an affordable cost. These randomised ensembles, and the analysis
produced from them, are referred by the author as Monte Carlo science (MCS, Jiménez
2020c).

The MCS is central to this work and we recall its premise here, although we refer the
reader to the original works for further details. The objective of the method is to study
causality in dynamical systems through intervention. The definition of causality is not
unique, but a sensible one is that event A is the cause of event B if B happens if and
only if A does (Pearl 2009). Two key aspects are introduced in the previous statement:
time and precedence. Causality requires time, so instances or ‘snapshots’ of a dynamical
system are agnostic to causality. It also requires A preceding B, as past must be a cause
for the future. Finally, there is a time horizon for causality and the delay between A and
B is an important parameter. For example, while it is likely that rain in the morning is a
cause for wet ground at noon, it is unlikely that rain on March is a cause for wet ground
in August. The time between A and B that maximises the probability of the former being
causal to the latter is usually known as the ‘causality horizon’ Thus, elucidating causality
in a dynamical system requires occurrences of both A and B in a time history, with A
preceding B, and somewhat consistent time delays between the two events. However, the
time history may fulfil all the previous requirements, with no causation between A and
B, as it is well-known that correlation does not imply causality (Beebee, Hitchcock &
Menzies 2009). An archetypical example of the former is the fact that day always precedes
night, but night is not a consequence of day. For these reason, several algorithms exist
to elucidate causality from time series detecting spurious correlations (Granger 1969;
Sugihara et al. 2012; Duan et al. 2013). They have shown promising results in fluid
mechanics (Lozano-Durán, Bae & Encinar 2020; Wang et al. 2021), although they are
not free from problems (James, Barnett & Crutchfield 2016).
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Causally significant features in 3-D isotropic turbulence

For dynamical systems that can be manipulated by experiments, such as a DNS of
the Navier–Stokes equations (NSEs), an alternative is modifying the system and studying
the consequences. For example, by modifying A with some perturbation and observing the
effect it has on B. If A is the sole cause of B it can be expected that at least some actions
on A have a large impact on B, while manipulations that are ‘orthogonal’ to A leave B
unaffected. In principle, evaluating the causal impact of an action is straightforward in
a DNS, albeit with some limitations. One needs to define a causal norm of interest, e.g.
large reduction of drag for an industrial flow, which takes the role of ‘B’, and manipulate
some cause ‘A’ to test the veracity of the hypothesis that A is the cause of B. A successful
example of this is the opposition control of Choi, Moin & Kim (1994), where the near-wall
vortices are opposed by blowing/suction from the wall, effectively reducing drag. In this
sense it can be said that the near-wall vortices are a cause of drag, as destroying them
affects the latter. However, they are probably not the only cause, as the friction is reduced,
but the flow does not relaminarise. Thus, some other structures act as a different cause
for drag and were not discovered in the previous experiments, which were based on a
preconception of which variables are important for the system. What the MCS introduces
is a methodology to ‘automatically’ deduce which are the causes for a given choice of B.
Instead of trying one intervention from a priori assumptions on A, one tries a massive
ensemble of actions, and checks which ones are effective. It is expected that from the
set of effective actions one can deduce which ‘As’ may be causes for the chosen ‘B’.
The MCS attempts to extract information about the flow from the information provided
by the interventions. In this sense, the intervention (or perturbations) can be interpreted
as a probe for the flow dynamics. As stated before, the procedure has shown promising
results in Jiménez (2020b), where the authors studied the properties of tight dipoles in
two-dimensional turbulence, a previous suggestion of cause for a particular choice of
consequence. Another example of success, related to the opposition control example above
is Pastor, Vela-Martín & Flores (2020), where the authors find that opposing streamwise
velocity streaks is also an effective way of reducing drag.

In the present paper we explore the potential of the MCS procedure in three-dimensional
decaying homogeneous isotropic turbulence (HIT). Decaying turbulence is an interesting
problem for MCS, as ensembles are the only way of computing statistics. The flow
is not ergodic, which naturally leads to the computation of independent experiments.
Modern hardware, such as graphical processing units (GPUs), allow for relatively small
problems to run fast enough to make massive simulation ensembles of reasonable HIT
flows (Vela-Martín & Jiménez 2021). For example, in the present case it is possible to run
one turnover of HIT in a 2563 grid in approximately 75 GPUs. That implies that a moderate
cluster of 8 GPUs can produce an ensemble of 10 000 experiments in approximately one
week and a half. The amount of data generated by those experiments presents a bigger
challenge. Assuming that 30 snapshots of the state of the flow are taken during one
turnover, the previous experiment generates 40 TB week−1, which is unmanageable for
most research labs. The consequence is that compromises have to be made, and extending
MCS to three dimensions implies attempting limited observations. Three-dimensional
turbulence is not only more challenging than the two-dimensional case in practical
considerations, but also on theoretical grounds. In two-dimensional flows, enstrophy is an
inviscid invariant (Onsager 1949), which results in an inverse cascade confined between
the energy-injection scale and the largest scale allowed by the boundaries (Kraichnan
1967). The implication is that obtaining sensible separation of scales in two-dimensional
turbulence is hard and computationally expensive. Thus, the experiments in Jiménez (2018,
2020c) have little scale separation and essentially there are few vortex sizes. In contrast,
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the present experiments (even at a moderate Reynolds number) have considerable scale
separation which makes our results very dependent on the size of the perturbations.

One important limitation of our work is the finite number of types of interventions that
we can try. The MCS problem is akin to looking for needles in a haystack: the possible
interventions are infinite, and the number we can try is very limited. For example, one
could try to zero the velocity vector within a region, but it is also possible to zero the
vorticity vector instead. Several examples of reasonable families of perturbations can be
found in Jiménez (2020c), but the space of the ones not attempted remains infinite. As
a result, many potential features of the flow, perhaps more interesting than the ones we
show in the present paper, were possibly missed by our search. Nevertheless, it should
be acknowledged that this problem is shared by the ‘traditional science’ approach. In the
latter, the problem of limited capacity for testing is replaced by personal bias. For example,
choosing to study intense vortical regions may hide the energy-containing structures from
the researcher. Nevertheless, the identified structures by either method remain relevant
despite the fact that many other structural descriptions of the flow are possible. The aim
of the present work is to relate the structural description of the flow to its dynamics by
experimentation, rather than from preconceived ideas, and to relate them with previously
known features of the flow.

Perhaps the limitation on the number of trials suggests the search for an ‘optimal’
perturbation that maximises some norm. If only a few perturbations could be tried it
could be argued that an attempt should be made to optimise their growth. However, we
do not attempt this search for two reasons. In the first place, it is unclear whether optimal
perturbations constitute the best probes for the flow dynamics. The present work uses
perturbations mainly to investigate the dynamics of the flow, not of the perturbations
themselves. In this context the fact that they are optimal is of little relevance. Optimal
perturbations would point to a particular structure of the flow that may or may not be
more interesting than those pointed out by other types of perturbations. The second reason
concerns the cost of finding the optimal. For finite size perturbations, the search for
an optimal is computationally expensive, as it relies on iterative methods. In addition,
nonlinearity implies that the optimal depends on the amplitude introduced to the flow.
Thus, the cost of finding a single optimal for a particular amplitude is that of trying several
suboptimal perturbations. Since perturbations are used as probes, that computational
power is better invested in covering different perturbations (e.g. perturbations of different
sizes).

The dynamics of isotropic turbulence is a well-researched topic, although structural
descriptions of the flow are still limited. Most of the classical theories of cascades
(Kolmogorov 1941, 1962; Frisch, Sulem & Nelkin 1978; Meneveau & Sreenivasan 1991)
focus on predictions of the velocity structure functions rather than on the instantaneous
structure of the flow patterns. This stands opposite to free shear flows (Brown & Roshko
1974), and boundary layers (Kline et al. 1967; Lumley 1967; Wallace, Eckelmann &
Brodkey 1972) where the instantaneous structure of the flow patterns has been a topic
of research from the beginning. More recently, some structural aspects of HIT have been
investigated. Vorticity is known to concentrate in the form of thin tubes, although is also
possible to find it organised in vortex sheets (Siggia 1981; She, Jackson & Orszag 1991;
Vincent & Meneguzzi 1991; Jiménez et al. 1993; Horiuti & Takagi 2005). In contrast
to the tubular vorticity structures, the rate-of-strain concentrates in ‘flake’-like structures
(Moisy & Jiménez 2004; Leung, Swaminathan & Davidson 2012) with shapes and fractal
dimensions closer to surfaces than to tubes. Structures can also be extracted from the
invariants of the velocity gradient tensor, Q and R, which also point to vortical structures
(Hunt, Wray & Moin 1988; Chong, Perry & Cantwell 1990). All these structures are
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deduced from intense gradients, associating them to the dissipative range. To identity
structures in the inertial range, other works filter either the kinetic energy field (Cardesa,
Vela-Martín & Jiménez 2017) or the enstrophy and dissipation fields (Hosokawa, Oide
& Yamamoto 1997; Bermejo-Moreno, Pullin & Horiuti 2009; Leung et al. 2012). These
works show that there are gradient-based structures at larger scales, and that some
aspects of their geometry are different from those at the dissipative range, while other
characteristics remain similar. We will see how these descriptions are related to the ones
obtained from MCS.

Finally, although the main objective of the present paper is studying the flow field,
we will also study the evolution of the perturbations used to study it. The properties of
infinitesimal perturbations are well studied, through the research of Lyapunov exponents
(Eckmann & Ruelle 1985; Yamada & Ohkitani 1988). Although, in principle, these are
properties of the evolution of the perturbations, in practice they turn out to be properties
of the ergodic attractor (Oseledets 1968), as they are defined from an infinitely long
evolution. There are also adaptations of the theory to shorter time horizons, the so called
finite-time Lyapunov exponents (Aurell et al. 1997), which deal with locality in time
but still assume infinitesimal perturbations. The evolution of finite perturbations has also
received attention, mostly for the related problems of predictability (Aurell et al. 1996),
which is related to MCS, and data assimilation (Di Leoni, Mazzino & Biferale 2020; Wang
& Zaki 2022). The latter focus on which are the conditions that a finite perturbation has
to satisfy in order to be eliminated by a data assimilation program, which is opposite in
nature to what the present manuscript deals with. The object of study in many works on
predictability are the finite-size Lyapunov exponents, i.e. the evolution of finite-amplitude
perturbations. In MCS, the perturbations we use are both finite time and finite size, with
the additional property of being localised within the flow, which is necessary in order to be
able to detect structures. Characterising the growth and time scales of these perturbations
is important for their relevance as dynamical probes.

The remainder of the paper is organised into seven sections. The numerical experiments
are described in § 2, with § 3 detailing how perturbations are introduced in the flow.
Section 4 follows, which focuses on the properties of the extreme perturbations themselves,
while § 5 does so on the coarse-grained properties of the perturbed regions. The structural
properties of these regions are presented in § 6, both for the average structures and for the
instantaneous ones. Finally, § 7 proves the relevancy of the identified flow patterns with a
numerical assimilation experiment and § 8 closes.

2. Numerical experiments

We study the temporal evolution of an incompressible turbulent fluid, as given by the
three-dimensional NSEs:

∂tui + uj∂jui = −∂ip + ν∂jjui + fi, (2.1)

∂iui = 0, (2.2)

where f ≡ fi is a forcing, ν is the kinematic viscosity and p is the kinematic pressure.
Throughout the paper, repeated indices imply summation, and i = 1, 2, 3 denotes the three
spatial directions. Equations (2.1) and (2.2) are supplemented by triply periodic boundary
conditions of spatial period L = 2π, resulting in a turbulent flow which is statistically
homogeneous and approximately isotropic (HIT). The forcing injects constant power in
the largest wavenumber sphere, k < 2, where k = |k| is the wavevector k magnitude, and
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can be switched off to produce a naturally decaying flow. A statistically steady state ensures
that the average dissipation equals the constant power input in forced simulations.

Equations (2.1)–(2.2) are integrated in time using a fully phase-shifting dealiased
pseudospectral method (Rogallo 1981), with a three-step Runge–Kutta serving as the
time stepper (Spalart 1987). Both the algorithm and the GPU implementation have been
validated by previous works (Cardesa et al. 2017; Vela-Martín & Jiménez 2021). We use
2563 collocation points at kmaxη0 = 1 for a Reλ ≈ 190 and LE0/η0 ≈ 177, where η0 is the
Kolmogorov scale of the initial flow field, Reλ is the Reynolds number based on the Taylor
microscale, and LE0 is the initial integral scale. The three parameters are computed as in
Batchelor (1953),

LE = π

2(q′)2

∫ ∞

0
Eqq(k, t)/kdk (2.3)

and

(q′)2 = 2
3

∫ ∞

0
Eqq(k, t)dk, (2.4)

where Eqq is the energy spectrum and q′ the root-mean-square (r.m.s) velocity. The
large-scale eddy turnover time is defined from these two quantities, T0 = LE0/q′

0. Finally,
the Taylor microscale λ is

λ2 = 15νq′2/ε, (2.5)

where ε is the dissipation, and Reλ = q′λ/ν.
The initial conditions for the decaying simulations are taken from the statistically steady

state of simulations with the same parameters as the decaying ones, but forced as described
above. They are spaced from each other by 30 turnover times of the steady simulation,
guaranteeing their statistical independence. Decaying simulations serve as independent
experiments to detect structures in an environment free from the influence of the forcing
term. The length and time scales used to normalise the flow fields are computed for each
of the initial conditions, and differ slightly from one to another. The results of this paper
use up to 50 initial conditions, probed with O(100–10 000) perturbations (depending on
their size), for a total of approximately 106 simulations of two turnover times each.

3. Characteristics of the perturbations

Initial conditions u0 ≡ [u01, u02, u03] of a turbulent steady state are allowed to decay up to
60–70 % of their initial energy by running (2.1) and (2.2) without forcing. From now on,
the zero subindex references values at the initial conditions. These decaying simulations,
uref (x, t), serve as reference cases. Perturbed initial conditions are generated from u0, by
adding localised perturbations to it,

uψ0i(xi; ξj,Δ) = u0i(xj)+ ψi(xj; ξj,Δ), (3.1)

where the perturbations ψ are generated from the product of a Gaussian kernel,

g(xj;Δ) = exp (− ∥∥xj
∥∥2
/Δ2), (3.2)

and the velocity field,

ψ
†
i (xj; ξj,Δ) = −u0i(xj)g(xj − ξj,Δ), (3.3)

where ‖·‖ is the Euclidean norm. The perturbation ψ†, mimics the effect of an obstacle
of characteristic size Δ at x = ξ , which would stop the velocity around and within it.
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10–1 100

10–3

10–1

Eq

kη0

Figure 1. Average energy spectrum of the initial conditions. Symbols as table 1. The markers represent the
approximate size of the perturbations.

Table 1. Perturbation sizes and markers used in the plots.

However, incompressibility requires uψ0 to be divergence-free, and ψ† is projected to the
closest perturbation (under the L2-norm) that satisfies this requirement,

ψi = ψ
†
i −∂iΨ, (3.4)

where the scalar field Ψ is the solution to the Poisson equation

∂jjΨ = ∂iψ
†
i . (3.5)

The final perturbation ψ is very close to ψ†, although it does not completely stop the flow,
acting like a mildly permeable obstacle.

Figure 1 shows the spectrum of the initial conditions, as well as markers indicating the
values of kΔ = 2π/Δ used in our experiments, as listed in table 1. The sizes shown are the
radius in terms of the 1/e limit of the Gaussian. The five samples are distributed across
the spectral range with the intention of sampling the dissipative range withΔ0, the inertial
range with Δ1–Δ3, and the integral scale with Δ4.

Perturbed initial conditions are generated for a set of ξ positions collocated in a
Cartesian grid, with δξ ≈ 3Δ, which we found to be sufficient to probe the whole
flow field. The perturbed initial conditions are evolved in time, generating a set of
time-dependent perturbed solutions, uper(x, t; ξ), which allow us to define the perturbation
norm field

ψ ≡ ‖ψ‖ (x, t; ξ) = ∥∥uref (x, t)− uper(x, t; ξ)∥∥ . (3.6)

The perturbation norm field records the impact of the perturbation on the flow evolution as
a function of the position x, the position ξ where the perturbation of sizeΔwas introduced,
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Figure 2. Example of two different perturbations, one in the 95th percentile of growth (red) and one in the
fifth percentile of growth (blue): (a) tq′

0/LE0 = 0; (b) tq′
0/LE0 ≈ 1.2.

and the observation time t. The spectrum of the scalar field ψ is defined as

Eψ(k, t; ξ) =
∫
Σk

ψ̂ψ̂∗(k, t; ξ)dσ, (3.7)

where Σk is the surface of the sphere of constant wavevector magnitude, and the hat
denotes triply Fourier transformation. The perturbation spectrum can be further integrated
over k, giving the squared L2-norm of the kinetic energy of the perturbation

ψ ′2
q (t; ξ ) =

∫ kmax

0
Eψ(k, t; ξ)dk ≡

∫
Ω

‖ψ‖2 dx, (3.8)

where Ω stands for the full domain, and the squared L2 magnitude of the perturbation
enstrophy

ψ ′2
ω (t; ξ ) =

∫ kmax

0
k2Eψ(k, t; ξ)dk, (3.9)

which due to incompressibility is proportional to the magnitude of the perturbation strain.
Both magnitudes measure the global impact of the perturbation at a given time, the former
measuring the effect on the velocity, and the latter on the gradients of the flow.

Figure 2 shows an example of ψ for two different values of ξ and at two different
times. Figure 2(a) shows the initial perturbation and figure 2(b) after 1.2 tq′

0/LE0. Two
things should be noted. First, perturbations remain local, despite the presence of global
effects affecting them (e.g. the pressure). Second, based on their location on the flow,
perturbations may grow very differently. Both perturbations have a radius of ≈ 30η, their
centres are ≈ 200η apart, and their initial energy is very similar. After a time of the order
of one local eddy turnover, the ‘red’ perturbation has grown over nine times more than the
‘blue’ one in terms of ψ ′2

q .
Figure 3 shows the mean perturbation growth of ψ ′

q and ψ ′
ω as a function of time, for the

values ofΔ in table 1. From now on, ensembles are taken considering each ξ and uref as an
individual experiment. They are normalised with the contemporary magnitudes of kinetic
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Figure 3. Mean perturbation L2-squared growth (a) ψ ′
q/q

′
0 and (b) ψ ′

ω/ω
′
0 as a function of time, for all the

perturbation sizes. Symbols as in table 1. The dashed lines are an exponential-saturation model that saturates
at ψ ′

q/q
′
0 = √

2. (c) Perturbation growth for three cases with different initial energy (symbols), that run much
longer. The time series are collapsed by introducing a time offset that compensates for the difference in the
initial energy.

energy and enstrophy of the unperturbed field, ensuring a proper representation of the
perturbation growth despite the decay of the base flow. As expected for a homogeneous
flow, the initial value is proportional to Δ3, which is the volume of the perturbations.
Because the time scale changes in a decaying flow, we define the local eddy turnover as
LE/q′, which allows us to define the non-dimensional time

τ ≡
∫ τ

0

q′dt
LE

, (3.10)

which captures the slowing time scale of the flow. On average, all the perturbations grow
with time, regardless of their size. While this may seem natural for a chaotic system, effects
such as synchronisation are known to happen for perturbations in Fourier space at high
wavenumbers. For example, in Yoshida, Yamaguchi & Kaneda (2005), two simulations are
forced to share the low wavenumbers up to a cutoff, leaving the remaining wavenumbers
unconstrained. The latter synchronise in both simulations if the cutoff is in the dissipative
range. In contrast, perturbations here are local in space and have a non-local spectrum in
Fourier space, which explains why they do not vanish even in the dissipative range.

In contrast to infinitesimal perturbations, our finite-amplitude perturbations grow
sub-exponentially, as the growth rate (∂tq/q) slightly decreases with time. Smaller
perturbations grow faster, although their growth rate is never such that they overgrow
larger perturbations. Regardless of their size, both the kinetic energy and enstrophy of
the perturbations seem to approach an asymptote. It is important to recall that both base
and perturbed flows are decaying, and by the end of the time window shown in the
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figure, their turbulent kinetic energy is 60–70 % of the initial one. This implies that the
approached asymptotic value must be decaying too, and thus hard to estimate. However,
under the scaling shown in figure 3, which compensates for the decay of kinetic energy in
the simulations and for the changing time scale, the growth is close to exponential until
the magnitude of the perturbation is of the same order as that of the flow field, when it
starts to saturate. This is confirmed in figure 3(c), which shows how cases that run for
much longer behave like an exponential model with saturation. In this context, a good
reference is ψ ′

q/q
′ = √

2, which would be the constant asymptote for uncorrelated flows
with similar energy. The time series in figure 3(c) collapse together with the introduction of
an arbitrary time delay that compensates for the difference in initial energy. This suggests
that the dependence of the average perturbation magnitude with their average initial energy
can be modelled with the introduction of a virtual origin. The collapse is remarkable,
considering that at the end of the evolution of these extended cases, the perturbations
contain approximately one fifth of the initial energy of the flow.

Small differences exist between ψ ′
q and ψ ′

ω. The latter shows two different time scales,
a fast one, τ < 0.3, in which new gradients are generated in the perturbed region,
and another one comparable to that of ψ ′

q, which slowly approaches the asymptote.
The best indication that the initial growth is a different time scale, is that the growth
rate is approximately independent of the perturbation size, except for Δ0 which is a
small scale itself. A reasonable explanation is that the faster initial growth is related to
out-of-the-attractor dynamics caused by the abrupt initial perturbation, and a consequence
of the flow recreating the abnormally missing small scales. We refer to this first part of the
evolution (τ < 0.3) as the ‘transient’ from now on.

4. From perturbations to significance

While figure 3 gives an idea of the ‘typical’ growth of a perturbation, figure 4 shows the
evolution of the extreme ones. We divide the experiments at each time step in percentiles,
adopting the notation Pαa (t) for the αth percentile of the variable ψa(t; ξ). The percentile
is defined as the value of ψa(t) below which a percentage α of the samples fall. For small
values of α, we consider ‘insignificant’ perturbations those below Pαa (t) and ‘significant’
perturbations those above P100−α

a (t). We also define the α-‘significance ratio’ as

Rα
a = P(100−α)

a

Pαa (t)
. (4.1)

The high/low percentiles and the ratio (4.1) serve as proxies for the maximum and
minimum values of each variable, and for the quotient between the two, respectively,
because these statistics are very hard to converge. For the remainder of the paper we
limit our analysis to the 5 % most and least intense perturbations (α = 5), and omit the
α superscript when referring to R. We checked that our results are qualitatively similar as
long as 3 < α < 10. Lower values of α require considerably more experiments to obtain
converged statistics (which for α = 5 are O(105) for each size), and higher values of α
start to include perturbations that can no longer be considered ‘extreme’. These definitions
are consistent with causally significant and insignificant events in the context of MCS
(Jiménez 2020c). In turn, the significance ratio measures how different are both sets from
each other, and gives an indication of how hard is to tell them apart. The top row of figure 4
shows these three measures for the energy norm and the second row for the enstrophy
norm. A slightly different question is which perturbations are amplified the most or the
least over the same period. The last two rows of figure 4 show the significance ratio and

965 A20-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.407


Causally significant features in 3-D isotropic turbulence

5

10

10–2

10–1

100

10–3

10–2

10–1

100

0 2

5

10

0 2

10–2

10–1

100

0 2

0 2 0 2 0 2

10–2

10–1

100

Pq
5Rq Pq

95

Pω
5Rω

R̃q

Pω
95

P̃ω
5R̃ω P̃ω

95

(a)

(d )

(b)

(e)

(c)

( f )

2.5

5.0

7.5

100

101

100

101

0 1
τ τ τ

2

2.5

5.0

7.5

0 1 2
100

101

0 1 2

0 1 2 0 1 2 0 1 2

100

101

(g)

( j)

(h)

(k)

(i)

(l )

P̃q
95 P̃q

5

Figure 4. Statistics of the growth of the 95th (P95) and the 5th (P5) percentiles of ψ ′
q in (a–c), ψ ′

ω in (d–f ),
ψ̃ ′

q in (g–i) and ψ̃ ′
ω (j–l) for perturbations that reduce the kinetic energy. (a,d,g,j) Significance ratio, defined as

the quotient between the percentiles: (b,e,h,k) P95 and (c, f,i,l) P5.

percentiles for the amplification of the kinetic energy, ψ̃q(t) = ψq(t)/ψq(0), and of the
gradients, ψ̃ω(t) = ψω(t)/ψω(0).

Figure 4(a,b) show that smaller perturbations reach higher significance ratios than larger
ones, especially for the smallest perturbation, Δ0, whose size is in the dissipative range.
For the largest case, Δ4, the significance ratio is always lower than 1.5, and the ratio is
largely explained by the difference in the initial conditions. The implication is that the ratio
has little to do with the dynamics, and is almost entirely traceable to the energy removed
from the flow by the perturbation. The initial magnitude of these Δ4 perturbations is
approximately one tenth of the initial field, and considering the similarity in their growths,
it can be concluded that their size is too large to identify individual structures. This is not
the case with the rest of the perturbations, where the energy subtracted to the field stays
small. For example, theΔ2 perturbations initially subtract an average 0.03 % of the energy
of the flow, and the difference in energy between reference and perturbed simulation
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(‖u‖2 − ‖u†‖2) remains constant in percentage through the evolution. In contrast, the
perturbation energy (‖u − u†‖2) at τ ≈ 2 is approximately 3 % of the energy of the field,
which is a hundred times larger than the energy difference. It can be concluded that Δ4
perturbations essentially contain a piece of the flow that is almost homogeneous on its
own. Note that this can be used as an alternative definition of the integral scale, and that
Δ4/LE ≈ 1. Since the objective of this work is the identification of individual structures,
we do not pursue experiments at this size.

Figure 4 also shows that the smallest perturbation Δ0 behaves differently than the
larger ones. The greater significance ratio of Δ0 in figure 4(a,d,g,j) is not due to the
significant perturbations but to the evolution of the insignificant ones. The growth rate
of the perturbations decreases monotonically with time in almost every case except in P5

forΔ0, in which it increases as a function of time, both for the perturbation energy and for
its gradients. The other exception is the kinetic energy ofΔ1 which shows almost constant
growth rate in figure 4(c,i). This behaviour of the two smaller perturbations is specially
clear in the amplifications, where all perturbations start from unity at τ = 0. Their small
size allows some Δ0 perturbations to be dominated both by the larger scales that contain
them, and by dissipation (Yoshida et al. 2005). Our results show that this behaviour is not
possible for velocity perturbations larger than Δ1. Comparing figure 4(k–l) shows that Δ0
collapses with the inertial perturbations in P̃95

ω but departs from them in P̃5
ω. If we consider

an initially linear evolution of the perturbations, we can separate their initial energy into
a projection over the unstable manifold and another one over the stable one. In order
for the perturbation to experience a transient contraction, the projection over the stable
manifold has to dominate the dynamics initially. As the size of the perturbation grows, the
probability of injecting energy over the unstable manifold grows in detriment of the stable
one, until at approximately Δ > Δ1, no contracting perturbation can be found. From the
point of view of the structure of the flow, this is possible because the flow is intermittent,
and thus Δ0 can be smaller than the local dissipative range (Frisch & Vergassola 1993).
In turn, significant Δ0 perturbations are larger than the local dissipative range and thus
contain some inertial dynamics free from the contraction by the dissipation.

Regardless of the norm and of the perturbation size, all perturbations reach maximum
significance ratios within the interval τ ∈ (0.5, 1.5), with small differences in the peaking
time. The norm based on the gradients peaks slightly faster than the one based on the
kinetic energy but far from the initial transient, in which the perturbation gradients grow
much faster than its velocities.

The significance ratios defined from the amplification, R̃q and R̃ω in figure 4(g,j), share
most of their statistics with the absolute magnitude ones, Rq and Rω in figure 4(a,d). The
time of maximum significance ratio is slightly delayed in every case, while remaining
of the same order. Their maximum significance ratios are shallow, and their amplitudes
tend to plateau after some time. The average values of the significance ratios based on
amplification are lower, due mostly from the influence of the magnitude of the initial
perturbation being removed. This can be easily seen from their definitions

ψ ′
q(τ ) � ψ ′

q(0)ψ̃
′
q(τ ) = ψ ′

q(0) exp
(∫ τ

0
Λ(t)dt

)
, (4.2)

where Λ(t) = d[log(ψ ′
q(t))]/dt is the average finite-size finite-time Lyapunov exponent.

Note that Λ(t) is the local growth rate of the average growth and, in general, it is different
from the growth rate of each perturbation. Thus, (4.2) is an approximation in which ψ̃ ′

q
and Λ(t) do not depend on ψ ′

q(0). It suggests that the difference between absolute norms
and amplifications must come from the memory of the initial perturbation in the system.
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Causally significant features in 3-D isotropic turbulence

If ψ ′
q(0) and ψ ′

q(τmax) are approximately independent, then the significance ratio of the
magnitudes is necessarily larger than or equal to the ratio of the amplifications. The
consequence of having smaller values of the significance ratio in the amplifications is that
significant and insignificant regions are harder to tell apart, and thus individual structures
are harder to identify in this case.

Finally, figure 4(k) shows excellent collapse of the maximum enstrophy growth during
the transient. This is in agreement with our hypothesis, that the growth of enstrophy in the
initial transient depends on the regeneration of the dissipative scales and, thus, is roughly
universal.

The analysis so far hinges on a single definition of perturbation. In order to confirm
our results we run similar experiments, with perturbations that target the vorticity inside
a compact region instead of the velocity. The procedure is analogous to (3.1)–(3.5),
but replacing the velocity field by the vorticity field. These perturbations are harder to
associate with a physical mechanism that modifies the local rate of rotation, but serve
our purpose of probing the flow for structural differences related to the significance.
Because they reinforce our previous conclusions but do not provide any new strong one,
we discuss them in Appendix A. Our objective is characterising regions that show extreme
behaviour when perturbed. For this reason, being able to distinguish significant regions
from insignificant ones is fundamental for the rest of the analysis. Under this premise, the
most obvious time delay to define causation is the time of maximum significance ratio,
τmax. Moreover, the consistency of time delays across very different perturbation sizes,
norms and types of perturbations indicates that the interval τ ∈ (0.5, 1.5) is most relevant
in our experiments. Before committing ourselves to one time delay, we explore how critical
this choice is for the identification of significant regions. Figure 5 shows the ‘persistence’
of significances defined as

P(τ ; a) = prob.
[(
ψ ′

a(τ ) > P95
a

)
&

(
ψ ′

a(τmax) > P95
a

)]
prob.

[
ψ ′

a(τmax) > P95
a

] , (4.3)

i.e. the probability that a perturbation that is considered significant at τ = τmax is also
significant at other times. We show the results for Δ2, but they are qualitatively similar
for the other inertial sizes. Blue lines show P(τ, q), revealing how persistent the absolute
norm is. Taking the time of maximum significance according to Rq (τmax ≈ 1.15) as a
reference, the minimum persistence in the interval τ ∈ (0.5, 1.5) is 70 %, which justifies
considering τmax representative of the whole interval. Taking τmax ≈ 0.6, which is the
maximum for Rω maintains 75 % of the significant regions at the previous choice of τmax,
and more than 50 % elsewhere. The persistence of the amplification, shown in orange,
behaves qualitatively similar but is worse everywhere. Still, it gives a minimum of 50 % of
persistence within the τ ∈ (0.5, 1.5) interval. The difference between the absolute and the
relative persistences should come from the effect of the norm of the initial perturbation
(as hypothesised in (4.2)), which persists for a very long time. The persistence of Λ(τ)
is represented by green lines, showing that is a very local quantity, where the persistence
decays to less than 10 % within the (0.5, 1.5) interval. In contrast, the persistence of the
initial norm of the perturbation ψ ′

q(0), decays initially but never goes below 30 % (not
shown). These results suggest that the approximations introduced in (4.2) are justified.
The local nature of Λ(τ) explains well the different behaviour of R5

q and R̃q. The latter
plateaus when the growth rates of initially different perturbations are equal, as shown in
figure 4(g,j). After some time, all sufficiently weak perturbations approach the growth rate
given by the largest Lyapunov exponent of the system (Oseledets 1968). The beginning of
the plateau (or a very weak maximum) indicates that the growth rate of every perturbation
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Figure 5. Persistence of significance for velocity perturbation of size Δ2, as a function of time. Blue lines are
(a) P(τ, q) and (b) P(τ, ω). Orange lines are (a) P(τ, q̃) and (b) P(τ, ω̃). Green lines are (a) P(τ,Λ) and
(b) P(τ,Λω). (a,b) Solid lines are τmax = argmax(Rω) and dashed lines are τmax = argmax(Rq).

becomes approximately equal, making it a sensible choice for the causality horizon. In Rq,
the added factor ψ ′

q(0) gives an initial significance that decays in importance respect to the
growth of the integral term at latter times. The product of a decaying significance in ψ ′

q(0)
and a growing one in ψ̃ ′

q(τ ) results in a maximum of the significance ratio. At this time the
memory from the initial perturbation is of the same order as the growth of the integral of
Λ(τ). Based on our analysis, it is reasonable to use the time of maximum significance ratio
as the causality horizon for each norm. For the remainder of the article we show results for
significant and insignificant perturbations at τ = τmax, which is different for the different
sizes and norms, but they can be thought of representative of the interval τ ∈ (0.5, 1.5) in
every case.

It should be noted that (4.3) is based on the intersection of significant sets, but it could
have been formulated equivalently for the intersection of insignificant sets. The persistence
defined that way is always larger than that shown in figure 5, so the analysis we have
performed is the most restrictive of the two. More details about the relations among the
different norms are in Appendix C.

Fixing the causality horizon τmax allows us to define sets of significant and insignificant
perturbations. We can explore the differences between both sets by conditioning statistics
of the perturbations to either of them. Figure 6 shows the conditionally averaged spectra
Eψ for significant/insignificant perturbations as a function of time for Δ2. Figure 6(a)
shows the spectra of the sets based on Rq and figure 6(b) based on R̃q. It is remarkable
that the difference between both norms amounts mostly to a vertical translation of the
significant spectra, removing the offset of ψq(0) in (4.2). Initially, the spectral mass is
centred around the perturbation size, shifting towards smaller scales as the perturbation
starts to grow. This phenomenon can be attributed to the initial transient, and thus applies
both to significant and insignificant perturbations. The difference between significant
regions and insignificant ones lies mostly on the scales larger than the perturbation, which
grow substantially in the significant perturbations, and remain inactive in the insignificant
ones. This difference is more acute in the inertial sizes such as Δ2, where small scales
grow comparably for both sets, but insignificant perturbations develop no large scales. The
evolution is less clear for the smallest perturbations, Δ0, because most wavenumbers are
larger than the perturbation size, and the difference in growth rate among sets is distributed
across most of the spectrum (not shown). Caution should be taken when interpreting the
higher energy growth of the perturbation in the significant case. Because Eψ is the spectra
of the difference between two fields, larger values are not necessarily associated to larger
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Figure 6. Average spectra of the significant (red) and insignificant (blue) velocity perturbations of Δ2,
classified according to (a) ψ ′

q and (b) ψ̃ ′
q as a function of time, from light to dark. The darkest lines corresponds

to τmax in each case. The vertical red line is k2η0.

energies, but to large spatial energy differences among the two. Thus, the significant
perturbations are capable of displacing or deforming large scales in space, generating
large energy differences that show in the difference spectra. This is confirmed by visual
inspection of the perturbed fields.

Finally, we explore the geometric aspects of the evolution of absolutely significant and
insignificant q-perturbations. We first define the centroid xψ of the perturbation energy
distribution

xψ(τ ; ξ) =
∫
Π

x
∥∥ψq

∥∥2
(x, t; ξ)dx

ψ ′2
q (τ ; ξ)

, (4.4)

where Π stands for the full domain, and we construct the correlation tensor of ψq:

Dij(τ ; ξ) =
∫
Π

(
xi − xψ i

) (
xj − xψ j

) ∥∥ψq
∥∥2
(x, t; ξ)dx

ψ ′2
q (τ ; ξ)

, (4.5)

whose eigenvalues are D2
i , and a characteristic dimension is D = 3

√
D0D1D2. This value

can be interpreted as the radius of the equivalent sphere of constant energy density that
contains the same perturbation energy.

Figure 7(a) shows the averaged evolution of the displacement of the centroid d =
‖xψ − x0‖ for Δ2. The initial value is approximately 10η, one third of the radius of
the perturbation. It initially grows for both sets of perturbations but is significantly faster
for the significant. This could be expected as significant perturbations have higher local
velocity magnitudes and are thus more likely to be immersed in a region of faster velocity.
After the first turnover, the total displacement becomes comparable for both families of
perturbations as the significant ones decrease their speed. At this point, the centroid has
moved between three and four times its initial displacement, and the effect of the initial
displacement is negligible.

The magnitude D is shown in figure 7(b). Its initial value is very close to 30η for both
significant and insignificant perturbations, which is the radius of the Gaussian almost
exactly. This validates using D as a measure of the typical radius of the perturbation at
other instants. Significant perturbations initially grow faster than insignificant ones, until
τ ≈ 1, where the two growth rates become equal. The red line shows the ratio of the
volume of the averaged significant perturbations over the insignificant ones (Dsi/Din)

3. In
the interval of maximum significance, τ ≈ (0.5, 1.5), it stays approximately constant and
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Figure 7. (a) Average distance of the centroid of the q-perturbations of Δ2 as a function of time. (b) Average
growth in size of the perturbations in the same case. The red line and red ordinate are the cubed ratio of the
significant size over the insignificant. (a,b) Blue lines are the insignificant perturbations and orange lines are
the significant ones. The shaded contours contain 90 % of the probability mass.

approximately equal to the ratio of perturbation energies (see figure 4a). This shows that
the difference between significant and insignificant perturbations in the inertial range is
not one of intensities, which are comparable, but of size. Significant perturbations spread
faster until they are approximately 2.5 times bigger than insignificant ones. During the
transient, the growth rate of the perturbation sizes is almost linear with time, and much
faster than a passive scalar would grow if seeded in the same place (Richardson 1926). The
faster growth rate implies that the production term of the perturbation or the pressure term
(see Appendix B) must dominate their spatial growth. More details about the differences
between a passive scalar, a passive vector which only has pressure and a perturbation can
be found in Tsinober (2001).

5. From significance to flow markers

In the previous section we have explored the properties of the perturbation field and
extracted significant and insignificant perturbations. In this section we explore which
features of the flow field locations where the perturbations are introduced are different
in each set.

First, we construct a library of coarse-grained averages over the regions where the
perturbations are introduced, e.g.

〈a〉(ξ ;Δ) =
∫
Π

g(x − ξ ;Δ)a(x, t = 0)dx, (5.1)

where a stands for any scalar, vector or tensor field (e.g. vorticity field). For scalar
variables we compute the averaged magnitude 〈a〉 and the square 〈a2〉. For vector and
tensor fields, we define the magnitude as the L2-norm of the averaged vector |〈a〉|, and
the averaged square stands for the averaged squared magnitude 〈|a|2〉, and for the squared
Frobenius norm of tensors. We abuse our notation for the sake of simplicity, omitting the
magnitude operator from now on when referencing the averages (e.g. 〈u〉 instead of 〈|u|〉).
Similarly, 〈ωiSijωj〉 stands for 〈ωi〉〈Sij〉〈ωj〉, i.e. the product of the mean fields, etc. Precise
definitions are gathered in table 2. Some elements of the library are self-explanatory, but
others require a brief description. The tensor Aij = ΩijSjk + SijΩjk, is indicative of the
presence of vortex sheets (Horiuti & Takagi 2005). Since A is a second-order tensor, we
compute the same coarse-grained quantities as for S. We also track the invariants of the
velocity gradient tensor (Chong et al. 1990), Q and R, both their mean and the mean of
their squares. They are defined through the second I2() and third I3() invariant operators,
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respectively, applied to the velocity gradient tensor (see table 2). The vortex stretching,
ωiSijωj and the rate-of-strain self-amplification SijSjkSki, are important quantities related
to the evolution of the velocity gradients (Tsinober 2019). Another important quantity is the
source term of the perturbation energy at the initial condition, uiSijuj (Tsinober 2001, see
also Appendix B). Similarly, τijSij is an indicator of the energy flux in the cascade across a
given scale, where τij are the subgrid stresses (Germano et al. 1991, see equation (7)). We
use g(x;Δ) as a filter for the computation of τij, with the same width as the perturbation.
This leaves us with 32 classifiers in total.

To generate a figure of merit of which elements of the library are good markers of
significance, we use linear support vector machines (SVMs; Boser, Guyon & Vapnik
1992), which are generalisations of one-dimensional thresholds. A threshold separates two
variables if their probability mass does not overlap. The SVMs assign a score M of 1.0 if
the separation is complete and a score of 0.5 if no separation is achieved and, thus, the best
guess is a random one. This is illustrated in figure 8(a), where the conditional probability
density functions (p.d.f.s) for the significant and insignificant sets are shown for (log 〈u2〉),
and a black line shows the optimum threshold. In contrast to figure 8(a), which shows an
example of a good classifier with score M ≈ 0.97, figure 8(b) is an example of a bad
one M ≈ 0.605, in which the value of (log 〈ω〉) marginally separates the p.d.f.s. Thus,
knowledge of 〈ω〉 marginally improves the odds of choosing an element from a desired
set of the two, while knowledge of 〈u2〉 almost guarantees that an element is assigned to
the desired set. As shown in figure 8(b), no classifier with score below M ≈ 0.7 should
be taken too seriously. For example, two sets represented by identical normal distributions
with their means separated by one standard deviation have an approximate score of 0.7;
and two, three and four standard-deviation separations give scores of 0.84, 0.93 and 0.98,
respectively. As anticipated by the example in figure 8(a,b), we use the natural logarithm of
the variables as a classifier, because we found that it makes the significant and insignificant
p.d.f.s similar and close to normals in most cases. Because some variables are not positive
definite, we use the logarithm of the absolute value, and we also use a linear classifier
which preserves the information about the sign. We only keep the best score of the two
classifiers in those cases.

The remainder of figure 8 is devoted the classification of different perturbations using
one variable at a time. Figure 8(c) shows the scores of the classification of q-perturbations
for Δ2. Each marker represents the score of one classifier. The horizontal axis shows the
score Mq for the significance defined using the absolute q-norm Rq, whereas the vertical
one shows the absolute q-norm for the blue dots, and the relative q-norm R̃q for the
orange triangles. The dots do not add information but help to compare both norms visually.
Several aspects of the figure stand out, but perhaps the most immediate one is that scores
tend to be clustered. Within these clusters, classifiers have negligible differences in their
classification scores, so they can be considered equivalent to each other.

For the absolute q-norm, 〈u2〉 is the best classifier, with a score of almost 1.
The magnitude of the perturbation source term, 〈(uiSijuj)

2〉 is equally good, but the
reason is that it is a quadratic form similar to 〈u2〉. This is tested using the classifier
〈(uiSijuj)

2〉/〈u2〉, which measures the initial alignment of the perturbation with the rate
of strain, and has units of strain. This classifier does not contain the initial energy, only
its amplification, and it is a very poor classifier (Mq ≈ 0.55). The mean values of both
quantities, 〈u〉 and 〈uiSijuj〉 follow the score of 〈u2〉. They are indicators of the kinetic
energy at scales of the order of the region size, and the amplification of the perturbation
at the same scale, respectively. At a score of Mq ≈ 0.75, we have a cluster of classifiers
labelled in figure 8(c) as ‘〈∇2〉’, representing the following square gradients and related
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i Symbol Definition Meaning (Mq,M̃q)

0 〈u〉 | ∫ gui| Magnitude of the average velocity (0.90, 0.66)
1 〈u2〉 ∫

guiui Kinetic energy (0.98, 0.50)
2 〈ω〉 | ∫ gωi| Magnitude of the average vorticity (0.61, 0.59)
3 〈ω2〉 ∫

gωiωi Enstrophy (0.74, 0.67)
4 〈S〉 | ∫ gSij| Magnitude of the average strain (0.72, 0.76)
5 〈S2〉 ∫

gSijSij Normalised dissipation (0.75, 0.73)
6 〈s+〉 (

∫
gSij)+ Most stretching eigenvalue of the average strain (0.73, 0.76)

7 〈sm〉 (
∫

gSij)m Intermediate eigenvalue of the average strain (0.63, 0.62)
8 〈s−〉 (

∫
gSij)− Most compressive eigenvalue of the average strain (0.72, 0.74)

9 〈s2+〉 ∫
g(Sij)

2+ Average squared magnitude of the most stretching
eigenvalue of the strain

(0.75, 0.73)

10 〈s2
m〉 ∫

g(Sij)
2
m Intermediate eigenvalue of the average strain (0.66, 0.55)

11 〈s2−〉 ∫
g(Sij)

2− Most compressive eigenvalue of the average strain (0.75, 0.72)
12 〈A〉 | ∫ gAij| Magnitude of the average vortex sheet tensor (VST) (0.75, 0.70)
13 〈A2〉 ∫

gAijAij Magnitude of the squared norm of the VST (0.75, 0.71)
14 〈a+〉 (

∫
gAij)+ Most stretching eigenvalue of the average VST (0.74, 0.69)

15 〈am〉 (
∫

gAij)m Intermediate eigenvalue of the average VST (0.66, 0.55)
16 〈a−〉 (

∫
gAij)− Most compressive eigenvalue of the average VST (0.74, 0.69)

17 〈a2+〉 ∫
g(Aij)

2+ Average squared magnitude of the most stretching
eigenvalue of the VST

(0.75, 0.71)

18 〈a2
m〉 ∫

g(Aij)
2
m Intermediate eigenvalue of the average VST (0.64, 0.64)

19 〈a2−〉 ∫
g(Aij)

2− Most compressive eigenvalue of the average VST (0.75, 0.69)
20 〈Q〉 I2(∂j

∫
gui) Second invariant of the averaged velocity gradient

tensor
(0.65, 0.6)

21 〈Q2〉 ∫
gI2(∂jui)

2 Average squared magnitude of the second invariant of
the velocity gradient tensor

(0.75, 0.69)

22 〈R〉 I3(∂j
∫

gui) Third invariant of the averaged velocity gradient
tensor

(0.67, 0.57)

23 〈R2〉 ∫
gI3(∂jui)

2 Average squared magnitude of the third invariant of
the velocity gradient tensor

(0.75, 0.69)

24 〈ωiSijωj〉
∫

gωi
∫

gSij
∫

gωj Vortex stretching of the average magnitudes (0.78, 0.74)
25 〈(ωiSijωj)

2〉 ∫
g(ωiSijωj)

2 Average squared magnitude of the vortex stretching (0.75, 0.7)
26 〈SijSjkSki〉

∫
gSij

∫
gSjk

∫
gSki Strain self-amplification of the average magnitudes (0.78, 0.75)

27 〈(SijSjkSki)
2〉 ∫

g(SijSjkSki)
2 Average squared magnitude of the strain self

amplification
(0.76, 0.71)

28 〈uiSijuj〉
∫

gui
∫

gSij
∫

guj Perturbation production of the averaged magnitudes (0.83, 0.67)
29 〈(uiSijuj)

2〉 ∫
g(uiSijuj)

2 Average squared magnitude of the perturbation
production

(0.97, 0.53)

30 〈τijSij〉
∫

gτijSij Average subgrid energy transfer (0.70, 0.60)
31 〈(τijSij)

2〉 ∫
g(τijSij)

2 Average squared subgrid energy transfer (0.73, 0.66)

Table 2. Library of classifiers. Here Ii is the operator that computes the ith invariant of a tensor and Mq and
M̃q are the magnitude and amplification classification scores for q-perturbations of size Δ2. See the text for
more information.

quantities: 〈ω2〉, 〈S2〉, 〈A2〉, 〈Q2〉, 〈R2〉, 〈a2±〉, 〈s2±〉. All of them contain information
associated to strong vortices or strong vortex sheets and their associated rate of strain.

Two classifiers sit at Mq ≈ 0.78; 〈(SijSjkSki)
2〉 and 〈(ωiSijωj)

2〉, grouped together as
〈∇̇2〉. These are the total magnitude of the production terms of the velocity gradients.
Because they are slightly better classifiers than the gradient magnitudes, it could be argued
that strong gradient production is related to significance. For this reason, we also tested
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Figure 8. Classification of significant/insignificant regions. (a) Example of a good classifier (log 〈u2〉 for
q-perturbations at size Δ3) and the norm Rq. (b) Example of a bad classifier for the same case (log 〈ω〉). (c–g)
Classification score for different perturbations and significance criteria. The abscissa is the score associated to
Rq. Colours are the classifier of the ordinate, (blue) Rq, and (orange) R̃q. (c) Classification of q-perturbations
atΔ2. (d) Classification of q-perturbations atΔ3. (e) Classification of q-perturbations at Δ0. ( f ) Classification
of ω-perturbations at Δ2. (g) Classification of ω-perturbations at Δ0.

the classifiers 〈(SijSjkSki)
2〉/〈S2〉3 and 〈(ωiSijωj)

2〉/(〈S2〉〈ω2〉2
), which contain little

information about the magnitude of the gradients, and focus on gradient amplification.
They can be thought of the average rate of strain self-alignment and vorticity-strain
alignment. Their classification scores are low ≈ 0.6, which shows that the relevancy of
the production terms as classifiers is mostly tied to the intensity of the gradients, and
only secondarily to their amplification. A similar argument can be made for 〈A2〉, which
contains information about vortex sheets but also about the gradients’ magnitude. The
classifier 〈A2〉/(〈S2〉〈ω2〉) only contains information about the vorticity-strain structure
but not about its magnitude. It completely fails, with Mq ≈ 0.5. The same is true for
the squared invariants of the velocity gradient tensor, as the classifiers 〈Q2〉/〈S2〉2 and
〈R2〉/〈S2〉3 give a score of Mq ≈ 0.55.

The ranking of classifiers continues with the magnitude of the mean rate of strain,
〈S〉, scoring Mq ≈ 0.72. Aside from 〈u〉, it is the only mean magnitude that provides
some classification. The remaining one, 〈ω〉, is a poor classifier Mq ≈ 0.605. Although
unlabelled, the next classifier is 〈τijSij〉 with Mq ≈ 0.73. If the influence of S2

ij is removed
from the classifier, the score drops to the level of a random guess Mq ≈ 0.5. This suggests
that the cascading process is irrelevant for classification, which is associated instead to the
local rate of strain. All other quantities in table 2 fail to classify significance.

We can now compare these numbers with the classification of the amplification of
kinetic energy q̃. The classification score of gradients is comparable to the absolute
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norm, either slightly better or slightly worse, but the score of the kinetic energy markers
plummets, making them useless as classifiers. This is shown explicitly in the plot by the
vertical black arrows.

Figures 8(d) and 8(e) are equivalent to figure 8(c) for a larger (Δ3) and a smaller
(Δ0) size, respectively. The general structure of the classifiers is the same, although
some differences exist. First, classifiers that rely on kinetic energy are better for larger
perturbation sizes and classifiers relying on gradients are better for smaller ones. This is
consistent with common turbulence knowledge that gradients are associated to small scales
and kinetic energy to larger ones, but arises here through the introduction of perturbations.
Second, the amplification of kinetic energy (and enstrophy) is classified better the smaller
the perturbation. Regardless of the size, the kinetic energy is a bad classifier of the
amplification and the ability of the gradients to classify it improves for small perturbations.
This is separate from the general improvement of gradients as classifiers for the absolute
norm. For Δ2 the scores of the gradients for amplifications and absolute norms are almost
equal, whereas the former are lower than the latter in Δ3, and the converse applies to
Δ0. The most likely explanation of this behaviour comes from the effect of the initial
perturbation. In larger perturbations, the magnitude of the initial perturbation is more
relevant, and estimating their norm after a given time correlates well with estimating
their initial norm. This is different for small perturbations, where the initial norm is not
as important, as most of their magnitude at the time of classification comes from the
amplification.

Finally, figure 8( f,g) shows the classification scores for ω-perturbations for Δ2 and
Δ0, respectively. The main difference between these perturbations and those of kinetic
energy is that kinetic energy markers are never good classifiers. They are unable to
classify significance for any norm, M ∈ (0.5, 0.6), and their quality lowers for smaller
perturbations. In contrast to that, the markers of intense gradients have slightly better
scores than for q-perturbations of the same size. The scores of the amplification of the
kinetic energy are very similar in ω-perturbations and in q-perturbations, and improve for
smaller perturbations.

The overall picture is that (i) classifiers related to the kinetic energy are best for
the absolute norm, (ii) classifiers that are related to the squared gradients or squared
production of gradients are reasonable for all norms and (iii) complex classifiers add little
value over simpler ones. Averages act as a filter when they operate before squaring the
magnitude, but as accumulators when they operate after squaring. That square gradients
are better classifiers than averages suggests that significance is related to the scales
contained in the cell, i.e. of the cell size and smaller, rather than exclusively on scales
of the order of the cell. This also applies to the kinetic energy, where squared magnitudes
are almost perfect classifiers, and averages are not. Despite having worse scores, scales at
the order of the perturbation are not irrelevant, as classifiers such as 〈S〉 and 〈u〉 are able
to provide some classification.

Figure 9 explores how much the classification improves using more than one classifier
at the same time. For multiple classifiers, the SVM generalises the threshold to a
hyperplane separating both sets. An example of the procedure for two classifiers is shown
in figure 9(a). A useful feature of the log–log transformation in two dimensions is that
hyperplanes correspond to products of powers of the classifiers, e.g. bnam = c for two
classifiers (a, b), which may hint relevant groups. For example, a notable combination is
(〈u〉, 〈S〉), which works well for the classification of Rq for q-perturbations at Δ2. The
resulting hyperplane in log–log space approximately suggests the group 〈u〉2〈S〉, which
has the same units as the source term of the perturbations 〈uiSijuj〉 and is an excellent
classifier. Figure 9(b) shows a map with the scores for every pair of predictors in the
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Figure 9. Classification of significant/insignificant regions using two classifiers simultaneously. (a) Example
of a case where two classifiers contribute to a better classification. (b) Classification score for pairs of classifiers
from (light, 0.5) to (dark, 1.0) for q-perturbations at sizeΔ3: (blue) Rq and (red) R̃q. The dark bracketed square
corresponds to (a).

library both for the absolute norm and the amplification of kinetic energy. Whenever an
off-diagonal point is dark (high score), one of the two predictors has essentially the same
score by itself. The result is that dark lines ‘radiate’ vertically and horizontally from the
diagonal, indicating that only marginal gain is achieved by using multiple predictors at
the same time. Most non-dimensional groups found are worse versions of better classifiers
already contained in the library. It should be noted that we ‘discovered’ 〈uiSijuj〉 through
this procedure. We realised that it was the production term at the initial condition, and it
was added to the library a posteriori, based on this suggestion. Similar conclusions apply
to using three classifiers at the same time, where the gains in classification are negligible
(not shown).

Finally, figure 10 shows the difference between the ‘prediction’ classification scores
shown in figure 8(c), and the ‘postdiction’ scores, which evaluate how easy is to separate
strong from weak values of a classifier with knowledge of the significance. Thus, they
are a measure of how the past state of the flow can be estimated with knowledge of the
future significances. They are obtained from the same SVM classifier, but reverting the
input and outputs. Now the initial condition is classified using some magnitude, e.g. 〈S〉,
and the classification is postdicted using the future significance. Although in a strict sense
causality does not require postdiction, it is useful to know which causes are necessary ones,
in the sense that they can be postdicted, and which ones are not. The general behaviour
of the classifiers is that those based on squared magnitudes can be postdicted while those
based on averages cannot. Most average classifiers whose postdiction does not worsen have
scores close to 0.5 (e.g. 〈Q〉 for norms based on the gradients). The only exception is 〈S〉
which is a reasonable predictor and postdictor. These results add to the evidence that the
relevant structures are small scales contained within the perturbation and the mean rate of
strain, while other classifiers are less important.

6. From flow markers to structures

The analysis above shows that the local intensity of gradients is the most reliable
predictor of the amplification of perturbations and their absolute magnitude. However, the
predictions are not perfect, and it is likely that other properties characterise these regions.
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Figure 10. Difference between the prediction and postdiction score of the different classifiers for
q-perturbations of size Δ2. Blue is Rq, orange is R̃q, green is Rω and red is R̃ω. Each norm is taken at
the time of maximum significance. Only classifiers with differences larger than |ΔM| > 0.03 are shown.

In this section, we extract the significant and insignificant regions from the flow and study
their structure. We work with the significant and insignificant sets of Δ2, using R̃q for
q-perturbations, which are representative of the inertial range. Our findings indicate that
other perturbation sizes are less informative, and the absolute norms of these perturbations
are not particularly noteworthy. In contrast, the relative norms are more relevant, as the
absolute norms can be largely explained by the magnitude of the perturbation introduced
to the flow, as observed in the larger cases such as Δ4.

Figure 11 shows an example of a significant (both absolutely and relatively) region
of Δ2 and of an insignificant region. Although we focus on R̃q, approximately 40 % of
the structures are also absolutely significant (see Appendix C). We choose one that is
representative of both sets for the example. The structure is extracted by multiplying
the flow field by a wider window g(x − ξ ; 3Δ2), capturing both the perturbed region
and its surroundings, while the remainder of the flow field is set to zero. We show
isosurfaces of the enstrophy (red) and the turbulent kinetic energy (blue). The latter is
made Galilean invariant by subtracting from the velocity field the mean velocity of the
region. For the remainder of the section we refer to this quantity as ‘kinetic energy’. We
apply a percolation analysis (Moisy & Jiménez 2004) independently to the significant
and insignificant sets to obtain adequate values for the thresholds for each quantity. If a
constant threshold was used for both sets, most members of the insignificant set would be
completely below the threshold. Both structures involve an almost centred kinetic energy
object surrounded by enstrophy structures. The remainder of this section studies both sets
of perturbations by computing several statistics about them.

Perhaps the simplest statistics are two conditional averages, one representative of
significant structures and another one representative of insignificant ones. Obtaining a
conditional average of an isotropic flow requires choosing consistent reference axes for
each region. For example, aligning the mean velocity vector, we obtain a conditional
average reminiscent of a velocity jet for the significant structures, but retain little
information of the velocity gradients. On average, this conditional structure is able to
represent 80 % of the energy of the significant regions, but only 0.02 % of their enstrophy.
The information this provides is marginal, as the fact that strong kinetic energy is present
in significant regions was already known. Changing the rotation criteria to align the
most intense vorticity (mean vorticity is a bad marker of significance), the rate-of-strain
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(a) (b)

(c) (d )

Figure 11. Example of (a,c) a significant and (b,d) an insignificant region for Rq and R̃q for Δ2. Red
isocontours are enstrophy and blue are kinetic energy. Both isocontour levels are chosen using a percolation
analysis.

eigenframe, or the covariance of the gradient distribution results in an average projection of
the vorticity that is never better than 10 %. The conclusion is that, as hinted in figure 11(a),
the local structure of the gradients is complex enough that a conditional average is never
representative of the individual elements.

Alternatively, it is possible to obtain a local average representative of the filtered velocity
gradients, which are simpler objects. Figures 11(c) and 11(d) show examples of significant
and insignificant regions for Δ2, extracted from the filtered velocity field. We use the
convolution kernel g(x;Δ2) as a filter for the velocity field, which avoids the introduction
of another length scale to the flow. The filtered fields are much simpler and typically
contain one large region of intense kinetic energy, one to three connected regions of strong
enstrophy and one to two regions of strong rate of strain. The procedure we found to
produce the best results for the filtered case is similar to that used by Elsinga & Marusic
(2010), which relies on orienting the flow to the local eigenframe of the rate of strain. In
our case, the rate of strain is a local average. While the rate-of-strain eigenframe sets the
angles of the coordinates, the directions are undetermined, and can be manipulated through
a reflection. The algorithm we used to compute the conditional flow goes as follows.
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(CF1) Take the filtered flow field centred on x0, for a significant/insignificant region. In
the following, the ‘fields’ stands for the fields of velocity, vorticity and rate of
strain.

(CF2) Multiply the fields by g(x; 3Δ), isolating the neighbourhood of the region
(CF3) Compute the average rate of strain of the isolated neighbourhood and rotate the

fields. The fields are now aligned with the rate-of-strain eigenframe.
(CF4) Segment the rotated enstrophy field to identify the strongest enstrophy structure in

the neighbourhood. Compute the average vorticity vector of said structure.
(CF5) Separate the conditional average into three classes, depending on which component

of the vorticity vector has the largest magnitude. Note that the magnitude of each
component is a measure of alignment with each eigenvector of the rate of strain.

(CF6) Use the three free reflections to ensure that (i) the strongest component of the
vorticity vector is positive and (ii) the centre of mass of the vortex is on the positive
semi-space normal to its strongest vorticity component.

The procedure departs from Elsinga & Marusic (2010) at (CF5), as these authors did not
consider different conditionals for different alignments between the vorticity and the strain.
Other differences between our conditional and theirs have to come either from CF6, which
is a different orientation criterion, or from the condition to significance or insignificance.
It should be noted that the flow field belongs to the O(3) symmetry group and, thus, the
same result can be achieved with just one reflection. However, this requires computing
(CF4) and (CF5) before rotating the field, as the directions of the axis need to be known
beforehand. Instead, reflections are computationally cheap once the field is aligned with
the Cartesian grid, and the algorithm is more efficient when the reflections are performed
at the last step.

Table 3 gathers the most relevant averaged information pertaining to the conditional
structures. The first important disparity among the two sets is the discrepancy in the
number of elements for each alignment. The strong vorticity contained in significant
regions is preferentially aligned with the most stretching eigenvalue (66 %) and seldom
aligns with the most compressive (3.4 %). These preferences are also observed in the
insignificant conditionals, but they are noticeably milder (12.2 % for the compressive and
53.6 % for the stretching). It is important to note that these alignments are based on the
average strain of a region of size 3Δ2 and the average vorticity vector of the strongest
enstrophy object of size Δ2 contained in that region. That vorticity aligns preferentially
with the most stretching eigenvalue of the strain at larger (coarse-grained) scales has been
previously established (Leung et al. 2012; Lozano-Durán, Holzner & Jiménez 2016). The
present results provide further insight by highlighting that this preference is accentuated in
strong and significant regions, while weak and insignificant regions show less preferential
alignment. Table 3 also lists the quantifiers qi and ωi, defined as

(
qi

)2 =
∫
Σ

q2
c(x)dx

∫
Σ

(
q′

f

)2
g2(x; 3Δ2)dx

, (6.1)

where (q′
f )

2 is the average kinetic energy of the filtered velocity field, and q2
c(x) is the

kinetic energy of the conditional. They represent the strength of the conditional field
compared with a hypothetical field of uniform average intensity. The quantifiers reinforce
the idea that significant structures have stronger gradients and strong kinetic energy
compared with the insignificant ones, even when they are classified with the amplification.
The data also indicate that the most prevalent significant structure, which is aligned
with the most stretching eigenvector, is the strongest of the three. On the other hand,
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Δ Kind Total Compressive Intermediate Stretching

% qi ωi % qi ωi % qi ωi

Δ2 Significant 3135 3.4 0.47 0.05 31 4.57 0.43 66 9.12 0.75
Insignificant 12.2 0.33 0.11 30.7 0.83 0.28 53.6 1.30 0.37

Random 7.7 0.39 0.08 31.7 1.59 0.34 60.6 2.96 0.53

Δ0 Significant 1966 10.99 0.58 0.10 44.66 2.75 0.48 44.35 2.73 0.46
Insignificant 15.16 0.27 0.08 37.95 0.81 0.24 46.90 0.93 0.29

Random 13.78 0.42 0.10 42.37 1.48 0.36 43.85 1.49 0.35

Table 3. Information about the conditional structures of the amplification of kinetic energy for Δ2 and Δ0.
‘Total’ is the number of events found for each category; ‘%’ is the percentage of the total structures that fall in
each of the three categories; qi and ωi are measures of the total energy and enstrophy of the conditional average
(see the text for more details).

the most compressive significant structure has relatively weak enstrophy, yet it still falls
into the significant category, possibly due to its high kinetic energy. Values for a random
set extracted from the flow fall between significant and insignificant, further suggesting
that the main characteristic of these sets is their intensity. Finally, we repeated the full
procedure using Δ0, which lies on the dissipative range. Here, viscosity ensures that the
much smaller perturbed regions are reasonably smooth, and contain one to three vortices,
so no filter is needed. The regions are somewhat similar to the filtered structures at sizeΔ2,
although with longer vorticity structures. Table 3 contains the averages for Δ0, showing
similar qualitative characteristics to those of filtered Δ2. The most notable difference is
that significant structures contain proportionally more kinetic energy for Δ2. This is not
remarkable, as large scales have more kinetic energy than small scales, and we have shown
that the relevancy of kinetic energy as a significance marker decays with the size of the
perturbation.

More insight is gained from figure 12, where the six conditional flow fields are shown.
Structures go in pairs of almost identical structures for each alignment. They show one
intense vortex interacting with the background strain, with one or two regions of intense
kinetic energy bracketing the vortex. Strain and vorticity are not collocated, and the strong
strain is associated to an stagnation point in the stretched (c,e) patterns. The conditional
aligned with the intermediate eigenvector is remarkably similar to the unconditional,
unfiltered average of Elsinga & Marusic (2010), which aligns with the intermediate
eigenvector of the unfiltered strain. The dominant pattern (e) shows a vortex that is not
completely parallel to the most stretching eigenvector but inclined towards the intermediate
one. Unlike (c), which is almost two-dimensional and faithfully represented by the figure,
the pattern in (e) is clearly three-dimensional, and the rotation we show represents our
best attempt to display both the stagnation point and the vortex. Lastly, pattern (a), shows
a vortex being compressed by the external strain field, a transient state previously reported
(Verzicco, Jiménez & Orlandi 1995), and less likely for strong gradients.

Aside from the stronger kinetic energy hinted by table 3, patterns (a,c,e) and (b,d, f )
show different topologies, which are further explored in figure 13. It shows the joint p.d.f.
of the invariants of the velocity gradient tensor (Q,R) for the conditionals in figure 12.
Note that the p.d.f.s are computed for the conditionals themselves and not for the elements
that form those fields. Therefore, the amount of data is limited, and the results are
necessarily noisy. The invariants are useful to quantify the local topology of the flow,
and the intensity of the gradients. Figure 13 shows the joint p.d.f.s for the invariants,
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(a) (b)

(c) (d )

(e) ( f )

Figure 12. Flow fields conditioned to the presence of (a,c,e) significant and (b,d, f ) insignificant regions,
as described by algorithm CF. Computed using the relative q̃-norm for q-perturbations of Δ2. (a–f ) Red
isosurfaces are enstrophy, green isosurfaces are strain magnitude and blue isosurfaces are local kinetic energy
magnitude. The thresholds are proportional to the total kinetic energy/enstrophy of each conditional structure,
but are equal in all cases. Grey lines with arrows are streamlines in a frame of reference that moves with the
structure. The coloured axes are the three principal directions of the average rate of strain, magenta is the most
compressive, yellow the intermediate and cyan the most stretching. (a,b) The strongest vorticity is aligned with
the most compressive eigenvector. (c,d) Like (a,b) but for the intermediate eigenvector. (e, f ) Like (a,b) but for
the most stretching eigenvector. The orange scale bar in (a) corresponds to 60η.
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Figure 13. Joint p.d.f. of the invariants of the conditional flow fields in figure 12. Contours contain 80 %
of the probability mass. Green lines are figure 12(a,b), orange lines are figures 12(c,d) and blue are 12(e, f ).
(a) Significant structures. (b) Insignificant structure. (a,b) The black contour is the unconditional joint p.d.f.
for the filtered velocity.

each normalised with the r.m.s. Q′
s of their conditional flow. These joint p.d.f.s can be

compared with the black contours, which represent the unconditional joint p.d.f. for the
filtered velocity field. One key difference between significant and insignificant structures
is that insignificant structures have stronger vorticity (Q > 0) and significant structures
have stronger strain (Q < 0). This is particularly acute for the intermediate and stretching
significant structures, where most of their probability mass falls along the lower right
quadrant (Vieillefosse 1984). In contrast to those, the insignificant structures lean towards
the upper half-plane, which represents vorticity dominated regions. Finally, the figure
helps clarify the behaviour of the structures where vorticity aligns with the compressive
eigenvalue. Because significant structures are dominated by strain, the compressive one
lies in a region of very low unconditional probability, whereas the insignificant one lies
in the more probable upper half-plane. The overall picture is that intense strain-dominated
regions are more sensitive to perturbations than weak vorticity dominated regions.

6.1. Statistics of the structure of significant and insignificant regions
The classifiers in § 4 have shown that the structures within significant regions are just as
important for significance, if not more so, than larger-scale structures. Instead of averaging
out these structures, losing important information, we now provide a statistical description
of them. We obtain them by applying a threshold to the enstrophy and kinetic energy
fields, and segmenting connected strong enstrophy and kinetic energy regions. As before,
the threshold values are chosen independently for the significant and insignificant sets of
regions, following a percolation analysis.

Figure 14 shows a sketch of a region of size Δ2, which typically contains a few kinetic
energy objects and several enstrophy objects. The centroids of each segmented object,
calculated using kinetic energy or enstrophy as the mass distribution, are represented
by dots in the sketch. In addition, the average velocity vector, uc, and average vorticity
vector, ωc, are calculated for each region and represented by arrows in the figure.
Finally, the vectors ruω connect the centroids of the largest objects of kinetic energy
and enstrophy. With these definitions, we can study several metrics that separate significant
from insignificant regions and do not directly depend on the intensity of any marker.
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uc

ωc

ruω

Figure 14. Sketch of a segmented region of size Δ2. Red volumes represent enstrophy structures and blue
kinetic energy. A detailed description is included in the main text.

Figure 15 shows several geometric statistics of the significant and insignificant regions.
The p.d.f. of the number of objects is shown in figure 15(a). In agreement with the
examples in figure 11, both significant and insignificant regions show many more enstrophy
objects than kinetic energy ones. Their probability distributions are compatible with
Poisson processes, except for the enstrophy objects in significant regions, which are more
concentrated than Poisson. A Poisson process implies that the existence of additional
objects is independent of existing ones. Thus, the enstrophy objects in significant regions
‘see’ each other, whereas the rest of the objects do not. Insignificant regions essentially
contain only one kinetic energy object, but even in the significant regions, the largest
kinetic energy object contains 90 % of the kinetic energy on average. A similar picture
holds for enstrophy structures in the insignificant regions, where the largest structure
contains 87 % of the enstrophy on average. This is not the case with the significant regions,
were secondary enstrophy structures have volumes comparable to the largest one. The
average volume of their secondary structures is 20 %, with the second largest accounting
for 42 % of the total.

Figures 15(b) and 15(c) show the distances between various objects within the regions.
The objects found within insignificant regions are located close to x0, with distances
measuring a few Kolmogorov units. In contrast, objects within significant regions are
located farther away, with the enstrophy objects located at distances equivalent to the
perturbation radius. The orange lines in figure 15(b) depict the distances for significant
regions, scaled by a factor of four, highlighting that they are similar to those found in
insignificant regions up to a scale factor. However, this similarity is disrupted by the
presence of additional enstrophy objects in significant regions, as shown in figure 15(c).
These objects do not conform to the same scaling factor and, when considering the scaling
factor, they are located much farther away in insignificant regions. This suggests that their
nature is different and potentially unrelated to the local dynamics of insignificant regions.
On the other hand, all enstrophy objects found within significant regions are similar to
one another, both in distances and volumes. Figure 15(d) shows the p.d.f. of the cosine
of the angle between ωc of the strongest enstrophy structure and uc. This angle should
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Figure 15. Geometrical statistics of the significant (orange lines) and insignificant (blue lines) regions for
the relative q-norm for q-perturbations of size Δ2. (a) The p.d.f. of the count of kinetic energy structures
(triangles) and enstrophy structures (circles). The black lines are Poisson distributions. (b) The p.d.f.s of the
distance rou (solid lines) and the distance ruω0 for the strongest enstrophy object (dashed lines). The distances
of the significant objects are divided by four. (c) The p.d.f. of the distance ruω∅ for the enstrophy objects not
in (b). (d) The p.d.f. of the angle between uc and the largest ωc.

not be confused with the point-wise angle of the vorticity and velocity vectors associated
with the depletion of nonlinearity (Kraichnan & Panda 1988), as the vectors here are not
collocated. Instead, this measurement helps interpret the nature of the velocity within the
object. Vorticity induces a velocity that is orthogonal to it, as per the Biot–Savart law.
This scenario is consistent with the significant regions, where the p.d.f. leans towards a
null cosine between the two vectors. In contrast, insignificant regions display a preference
for parallel velocity and vorticity, indicating that most of the velocity is generated by the
flow outside the region, rather than by the local vorticity. Similar insight is provided by
the intersection between enstrophy and kinetic energy objects within each region, as they
only share 11 % of their volume in the significant regions compared with 47 % in the
insignificant regions.

Figures 11(a) and 11(b) suggest that significant regions are inherently more ‘complex’
than insignificant regions. We quantify this complexity by computing the fractal or
box-counting dimension of the kinetic energy and enstrophy segmentations, which is
shown in figure 16 (Moisy & Jiménez 2004). There is little difference between the fractal
dimension of kinetic energy objects for both sets, with a value close to D ≈ 2.4. This value
falls between a surface and a volume and can be thought as a ‘thick’, complex pancake,
as shown in figures 11(a) and 11(b). These figures also give an intuition for the types of
structures associated to the values of the fractal dimension obtained from the enstrophy
objects. The enstrophy objects inside significant regions have a fractal dimension of
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Figure 16. Average box-counting for insignificant (blue) and significant (orange) regions. Dashed lines are
the fractal dimensions from a least-squares fit. (a) Kinetic energy regions. (b) Enstrophy regions.

D ≈ 1.4, between a thread and a surface, and associated with vortex clusters (Moisy &
Jiménez 2004; del Álamo et al. 2006). In contrast to those, insignificant regions contain
enstrophy objects with a fractal dimension of D ≈ 1.9, much closer to vortex sheets (see,
for example, figure 11b).

7. From structures to dynamical relevance

We have identified, classified and analysed significant and insignificant regions. In this last
section we show an example of why knowing their properties gives us relevant information
about the turbulent flow. For this task we do the following experiment. Consider a
simulation of HIT forced with constant energy input, as defined in § 2. This simulation is
used as a reference and labelled as ‘A’. Consider two other simulations, ‘B’ and ‘C’, which
have no forcing other than the condition that some physical subdomain is assimilated at
each time step from ‘A’. This type of experiment is similar to the assimilation experiments
of Wang & Zaki (2022) or the nudging in physical space of Di Leoni et al. (2020).

Figure 17(a) shows a sketch of the three simulations run. The subdomains highlighted
in orange and blue are assimilated to the simulations ‘C’ and ‘B’ respectively. First, we
compute Q for the filtered velocity field, using g(x,Δ2) as a filter. We saw in figure 13
that relative significance is associated to perturbation-scale dissipation dominating over
perturbation-scale enstrophy, while the opposite can be said about insignificance. Both
states can be identified by the sign of Q. Thus, we choose two constant thresholds for the
second invariant such that, on average, a constant fraction of the volume of the box is below
and above each of them respectively. These are the subvolumes represented in figure 17(a)
for a given instant in blue and orange colours. The former contains the 10 % most positive
Q and the latter the 10 % most negative. Assimilation is achieved by copying the value
of the three velocity components within the subvolume to the subjugate simulations,
correcting for continuity. The main result of this experiment is shown in figure 17(b),
which shows the relative assimilation error,

e2
B(t) =

∫
Ω
(uB(t)− uA(t))2dx∫

Ω
u2

A(t)dx
, (7.1)

and equivalently for ‘C’. The assimilated simulations experience a transient for the first
tu′/LE ≈ 5, but remain stable after that, with the assimilation error oscillating with periods
comparable with the oscillation of the dissipation of ‘A’. The simulation ‘C’ has almost
60 % less error than ‘B’, despite both receiving from ‘A’ the same total fraction of
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Figure 17. (a) Sketch of the assimilation scheme. The reference simulation is on the left, and the 10 %
sub-volume with the most negative Q is in orange, while its converse is in blue. (b) Relative error of the
assimilated simulations. ‘B’ is in blue and ‘C’ in orange.

flow-field volume. Both simulations receive from ‘A’ approximately the same fraction of
the total energy, which is approximately equal to the fraction of volume. Similar, although
somewhat less clear, results are obtained when a vorticity-based measure is used instead
of (7.1). We saw in figure 7 that perturbation growth is associated to the spreading of the
perturbation, rather than local magnitude growth. It thus seems reasonable that coherent
vortices take longer to spread the perturbation than regions of strong strain, resulting in
smaller assimilation errors when the latter are assimilated.

8. Discussion and conclusions

In this work we have extended the Monte Carlo ensembles of Jiménez (2018) to
three-dimensional decaying isotropic turbulence at Reλ ≈ 190. Owing to the multiscale
nature of fully developed turbulence, we have tested the effect of different perturbation
sizes, as well as of different types of perturbations. The evolution of the perturbations is
tracked in time, and the properties of the flow where the perturbations are introduced are
related to their growth using a classification algorithm.

The first part of the analysis dealt with the properties of the perturbations that either
cancel the velocity or the vorticity within a region. We found that perturbations typically
grow as a function of time, the sole exception being weak and small perturbations of sizes
in the dissipative range. We observed two time scales in the evolution of perturbations
in the fluid flow. The first, fast time scale is associated with the growth of small scales
within the perturbed region, which is independent of the perturbation size. The second,
slower time scale corresponds to the growth of the perturbed region itself, which weakly
depends on the perturbation size. Our findings show that the time at which the growth
rate of the perturbations becomes independent of the initial conditions is of the order of
one large-scale turnover. Furthermore, we found that perturbations grow by increasing
in size rather than intensity, leading to small perturbations growing faster but never
overtaking larger ones. On average, the diameter of the perturbations was found to be
almost linear with time. This type of growth is much faster than that of a passive scalar,
highlighting the importance of the active nature of perturbations in the flow for both their
spatial growth and intensity. The 5 % of the perturbations which grow the most or the
least are classified as significant or insignificant, respectively. Our findings indicate that
significant perturbations grow faster than insignificant ones. Their spectra are different
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from the insignificant perturbations in the large scales, which grow for the significant
perturbations but are approximately constant for the insignificant ones. This is due to
significant perturbations displacing or deforming large scale structures from their expected
evolution, while insignificant perturbations affect mostly scales smaller than themselves.

In the second part of our study, we have examined the regions of the fluid flow where
the perturbations are introduced. We investigated which properties of the flow field can
be coarse-grained to the size of the perturbations and still act as reasonable predictors for
future significance. We found that absolute norms, i.e. which perturbation is the strongest
after some time, are strongly conditioned by the initial perturbations. Perturbations that
modify a lot of kinetic energy initially are the most significant in terms of total kinetic
energy error after a while, and a similar statement holds for the enstrophy. We found that
the amplifications, i.e. which perturbations grow the most, depend on the magnitude of
the local gradients. Of these, the markers based on small-scale gradients are better than
those based on perturbation-scale gradients. The simplest interpretation is that the contents
of the region are more important for significance than the ‘inertial’ gradients, except for
the inertial strain magnitude. As a result, isolating the significance of inertial scales may
require the use of strategies such as wavelets to constrain the support of perturbations in
scale space.

In addition to the magnitude of observables, we have studied the structure of the
flow in the significant and insignificant regions. Their structure is studied both at the
scale of the perturbations, and of the smaller scales contained in them. We found the
structure of the flow to have a weak dependence on the significance, with only a few
important differences. When compared with a random region, significant ones have larger
tendency to have vorticity aligned with the most stretching eigenvector of the strain,
exhibit larger perturbation-scale strain than vorticity, and have a complex structure that
resembles vortex clusters. In contrast, insignificant ones favour vorticity alignment with
the most compressive eigenvector, have larger perturbation-scale vorticity than strain,
and have a simpler structure reminiscent of vortex sheets. The association of strong or
weak enstrophy to vortex clusters or sheets was already observed in Jiménez et al. (1993).
Meena & Taira (2021) found that strain-dominated regions influence the rest of the flow
field using a completely different method based on graph theory, which is consistent with
our observations. The different fractal dimension of the regions is particularly interesting
because it does not depend on any intensity and is purely geometrical. Aside from their
significance, the only ‘global’ information the fractal dimension has from the flow is the
scale, which is, in principle, equal for both significant and insignificant regions. However,
the local dissipation is different for both sets of perturbations. A reasonable model is that
the local dissipation results in a larger local Reynolds number (Kolmogorov 1962), which,
in turn, results in a more complex structure.

Finally, we show with a quick assimilation experiment that significant and insignificant
regions are related to the flow dynamics. The inertial-scale strain of significant regions
can amplify the perturbations and spread them across the flow, whereas the inertial-scale
vorticity cannot do it so efficiently. Thus, when a simulation receives from another
information about significant regions, it achieves a higher degree of synchronisation
with the latter than when the same volume of the flow is received from insignificant
regions. Thus, significant regions are more relevant for tasks such as assimilation and
control, and algorithms can benefit from this knowledge. For example, the covariance
matrices of Kalman filters could be adjusted depending on the significance of the flow.
These tasks do not require computing the prohibitively expensive significance directly.
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Figure 18. Statistics of the growth of the 95th (P95) and the 5th (P5) percentiles of (a,c,e) ψ ′
q and (b,d, f ) ψ ′

ω

for enstrophy perturbations. (a,b) Significance ratio, defined as the ratio between the percentiles: (c,d) P95;
(e, f ) P5.

Instead, significance can be estimated from the properties of the significant regions
gathered in this paper and still obtain promising results, as in the present work.

One limitation of the present work is the fact that we only attempted one Reynolds
number. The next reasonable step would be to compute a HIT simulation in a 5123 box.
However, considering the spatial and the temporal complexity, this case would be about
16-fold more expensive than the present one, making it extremely challenging with the
present hardware. Computing a lower Reynolds number would not help either, as the
scale separation would be too low. However, we obtained similar qualitative results for all
the perturbation sizes within the inertial range, which gives confidence in the qualitative
results carrying over to other Reynolds numbers. Nevertheless, the question of whether
intermittency effects affect quantitatively our results cannot be addressed with the present
data and will require larger Reynolds numbers simulations.
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Appendix A. Statistics for the vorticity perturbations

Figures 18 and 19 are analogous to figure 4 but are made for vorticity perturbations.
Most of the conclusions extracted from the velocity perturbations carry over to them,
although some differences exist. For example, the significance of the absolute magnitude
is dominated initially by the faster dynamics associated to the vorticity, but after the
transient, their growth rate is comparable to that of velocity perturbations, and both types
of perturbations peak at comparable time delays.

Comparing figures 4(a) and 18(a) shows that the values of significance are about
twofold for the vorticity perturbations, but, at the same time, figures 4(g) and 19(a)
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Figure 19. Statistics of the growth of the 95th (P95) and the 5th (P5) percentiles of (a,c,e) ψ̃ ′
q and (b,d, f ) ψ̃ ′

ω

for enstrophy perturbations. (a,b) Significance ratio, defined as the ratio between the percentiles: (c,d) P95;
(e, f ) P5.

show that the ‘relative’ significance has similar values. Thus, higher values of the
‘absolute’ significance can be traced to the differences in the initial conditions of the
perturbations. Common turbulence knowledge explains this difference by the much higher
intermittency of the vorticity fields, compared with the velocity ones. Not obvious is the
behaviour of Δ0, whose relative velocity significance R̃q is larger for velocity than for
vorticity perturbations. The difference lies in the different behaviour of the P5 velocity
perturbations, which have a considerable delay in their growth, or even contract for some
time. On the other hand, vorticity perturbations always grow, as shown in figure 19(e).
A possible explanation is that while Δ0 ≈ 15η is a small size for velocity structures, is
of the order of a structure for vorticity ones. While a velocity perturbation of that size at
most harms a piece of a larger flow structure, a vorticity perturbation is more likely to
affect a complete vorticity flow pattern. Most of the other remarks about the growth rates
in figure 4 carry over figure 19, even if the perturbations introduced are radically different.

Appendix B. Equations for the growth of the perturbation

Introducing the definition of the perturbed flow field (3.1) into the Navier–Stokes equations
(2.1) and (2.2) gives

∂t (ui + ψi)+ (uj + ψj)∂j (ui + ψi) = −∂ip̃ + ν∂jj (ui + ψi) , (B1)

∂i (ui + ψi) = 0. (B2)

An evolution equation for the perturbation can be obtained by subtracting from (B1) and
(B2) the unperturbed equations

Dtψi = −∂ip̆ − ψj∂jui − ∂j(ψiψj)+ ν∂jjψi, (B3)

∂iψi = 0, (B4)

where Dt ≡ ∂t + uj∂j is the material derivative and p̆ is a pseudopressure that enforces
(B4) in (B3). Multiplying (B3) by ψ ,

1
2

Dtψ
2
i = −∂j

[
ψjp̆ + 1

2
ψjψ

2
i − 2νψiSij

]
− 2νSψij Sψij − ψiSijψj, (B5)
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Figure 20. Cross-classification of the different norms for q-perturbations at size Δ2. From left to right, the
magnitude represented is ψ ′

q, ψ̃ ′
q, ψ ′

ω and ψ̃ ′
ω, respectively. From top to bottom, the norm used to classify

significance changes in the same order. Significant perturbations are in orange and insignificant ones in blue.
Solid lines are the median, and the shaded contour contains 80 % of the probability mass at each time.

where Sψij is the rate of strain of the perturbation field. Integration of (B5) over the whole
volume gives

1
2

Dtψ
′
q = −2ν

∫
Σ

Sψij Sψij −
∫
Σ

ψiSijψj. (B6)

The only term responsible for the production of error isψiSijψj, which needs to be negative
on average for the perturbation to grow. For perturbations that zero the kinetic energy,
ψ0 ≈ −u0, which suggests that the term uiSijuj should be related to the significance. The
terms under the divergence operator in the right-hand side of (B5) do not produce net
growth but can spread the perturbation through the flow field (Tsinober 2001).

Appendix C. Relation between the different norms

In this appendix we show the relation between the four different norms with more detail
than in the main manuscript. Figure 20 shows significant perturbations and insignificant
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Figure 21. Intersection ratios for the cross-classifications of figure 20. Orange lines are the
significant–significant intersection, blue lines are the insignificant–insignificant intersection, and green
lines are the sum of the insignificant–significant intersection and its converse.

ones classified under one norm represented using a different one. Thus, plots in the
diagonal are represented in the same norm used to classify them, and provide no additional
information. More interesting are the off-diagonal plots. The two absolute norms separate
each other sets very well, as seen in the plots (c,i) of the 4 × 4 tiling. A similar story holds
for the two relative norms among themselves. The classification using an absolute norm
stays relevant from the point of view of the associated relative norm, albeit at an earlier
time, as shown in plots (b,l). This implies that relative significance precedes absolute
one. The same effect can be observed at later times in figure 20(e). For q-norms, it is
able to fully separate significants from insignificants by the end of our time window. The
worst cross-classifier is the relative ω-norm, which is almost unrelated to either absolute
norm, and we recall that it was almost impossible to classify with any flow marker. The
other three norms have reasonable agreement among themselves, which show why similar
results are obtained by looking at either of the three.

That significant perturbations and insignificant ones are separated from each other in
figure 20 does not imply that they are equivalent to their definitions under other norms;
only that their classifications are not too far apart. Figure 21 shows the difference between
classifications by means of the intersection of the significant and insignificant sets under
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Figure 22. Classification of significant/insignificant regions. (a) Example of a good classifier (log 〈u2〉 for
q-perturbations at size Δ3) and the norm R5

ω. (b) Example of a bad classifier for the same case (log 〈ω〉)
(c–g) Classification score for different perturbations and significance criteria. The abscissa is always the
score associated to R5

q. Colours are the classifier of the ordinate, (blue) R5
q, (green) R5

ω and (red) R̃ω.
(c) Classification of q-perturbations at Δ2. (d) Classification of q-perturbations at Δ3. (e) Classification of
q-perturbations at Δ0. ( f ) Classification of ω-perturbations at Δ2. (g) Classification of ω-perturbations at Δ0.

pairs of norms. Only the upper triangular plots need to be considered, as the tiling is
symmetric respect to the diagonal and the latter only shows that the self-intersection
is always one. The green line represents the misclassification, and contains the sum of
significant events being classified as insignificant and its converse. In agreement with the
previous figure, ψ̃ ′

ω is the only norm giving appreciable misclassification, specially at
earlier times. The conclusion is that times of the order of one turnover are probably too
large for a metric that measures the amplification of gradients, which have a much faster
time scale.

Finally, figure 22 shows the classification scores for both enstrophy-based norms, and it
should be compared with figure 8. First, the green squares represent the absolute ω-norm
Rω Essentially, classification by the gradient markers improves with respect to the absolute
q-norm, and classification by the kinetic energy worsens slightly, although the effect is
marginal. The most notable effect is the increase in the effectiveness of the indicators of
small-scale gradients (〈∇2〉, 〈∇̇2〉). Small perturbations (Δ0) have almost identical scores
for both absolute norms, probably because they contain essentially one scale. Lastly, the
amplification of gradients, shown in red diamonds, is notoriously hard to classify, and
almost every marker has low score, probably because R̃ω evolves at a faster time scale.

965 A20-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.407


M.P. Encinar and J. Jiménez

REFERENCES

DEL ÁLAMO, J.C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R.D. 2006 Self-similar vortex clusters in the
logarithmic region. J. Fluid Mech. 561, 329–358.

AURELL, E., BOFFETTA, G., CRISANTI, A., PALADIN, G. & VULPIANI, A. 1996 Growth of noninfinitesimal
perturbations in turbulence. Phys. Rev. Lett. 77 (7), 1262.

AURELL, E., BOFFETTA, G., CRISANTI, A., PALADIN, G. & VULPIANI, A. 1997 Predictability in the large:
an extension of the concept of Lyapunov exponent. J. Phys. A: Math Gen. 30 (1), 1.

BATCHELOR, G.K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
BEEBEE, H., HITCHCOCK, C. & MENZIES, P. 2009 The Oxford Handbook of Causation. Oxford University

Press.
BERMEJO-MORENO, I., PULLIN, D.I. & HORIUTI, K. 2009 Geometry of enstrophy and dissipation, grid

resolution effects and proximity issues in turbulence. J. Fluid Mech. 620, 121–166.
BOSER, B.E., GUYON, I.M. & VAPNIK, V.N. 1992 A training algorithm for optimal margin classifiers. In

Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. Association
for Computing Machinery.

BROWN, G.L. & ROSHKO, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid
Mech. 64, 775–816.

CARDESA, J.I., VELA-MARTÍN, A. & JIMÉNEZ, J. 2017 The turbulent cascade in five dimensions. Science
357 (6353), 782–784.

CHOI, H., MOIN, P. & KIM, J. 1994 Active turbulence control and drag reduction in wall-bounded flows.
J. Fluid Mech. 262, 75–110.

CHONG, M.S., PERRY, A.E. & CANTWELL, B.J. 1990 A general classification of three-dimensional flow
fields. Phys. Fluids A 2, 765–777.

DI LEONI, P.C., MAZZINO, A. & BIFERALE, L. 2020 Synchronization to big data: nudging the Navier–Stokes
equations for data assimilation of turbulent flows. Phys. Rev. X 10 (1), 011023.

DUAN, P., YANG, F., CHEN, T. & SHAH, S.L. 2013 Direct causality detection via the transfer entropy
approach. IEEE Trans. Control Syst. Technol. 21 (6), 2052–2066.

ECKMANN, J.-P. & RUELLE, D. 1985 Ergodic theory of chaos and strange attractors. In The Theory of Chaotic
Attractors (ed. B.R. Hunt, T.Y. Li, J.A. Kennedy & H.E. Nusse), pp. 273–312. Springer.

ELSINGA, G.E. & MARUSIC, I. 2010 Evolution and lifetimes of flow topology in a turbulent boundary layer.
Phys. Fluids 22 (1), 015102.

FRISCH, U., SULEM, P.L. & NELKIN, M. 1978 A simple dynamical model of intermittent fully developed
turbulence. J. Fluid Mech. 87, 719–736.

FRISCH, U. & VERGASSOLA, M. 1993 A prediction of the multifractal model: the intermediate dissipation
range. In New Approaches and Concepts in Turbulence (ed. T. Dracos & A. Tsinober), Monte Verita,
pp. 29–34. Springer.

GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W.H. 1991 A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids A 3 (7), 1760–1765.

GRANGER, C.W.J. 1969 Investigating causal relations by econometric models and cross-spectral methods.
Econometrica 37 (3), 424–438.

HORIUTI, K. & TAKAGI, Y. 2005 Identification method for vortex sheet structures in turbulent flows. Phys.
Fluids A 17 (12), 121703.

HOSOKAWA, I., OIDE, S. & YAMAMOTO, K. 1997 Existence and significance of ‘soft worms’ in isotropic
turbulence. J. Phys. Soc. Japan 66 (10), 2961–2964.

HUNT, J.C.R., WRAY, A.A. & MOIN, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In
Proc. 1988 Summer Program, pp. 9–14. NASA and Center for Turbulence Research.

IYER, K.P., SREENIVASAN, K.R. & YEUNG, P.K. 2020 Scaling exponents saturate in three-dimensional
isotropic turbulence. Phys. Rev. Fluids 5, 054605.

JAMES, R.G., BARNETT, N. & CRUTCHFIELD, J.P. 2016 Information flows? A critique of transfer entropies.
Phys. Rev. Lett. 116 (23), 238701.

JIMÉNEZ, J. 2018 Machine-aided turbulence theory. J. Fluid Mech. 854, R1.
JIMÉNEZ, J. 2020a Computers and turbulence. Eur. J. Mech. B/Fluids 79, 1–11.
JIMÉNEZ, J. 2020b Dipoles and streams in two-dimensional turbulence. J. Fluid Mech. 904, A39.
JIMÉNEZ, J. 2020c Monte Carlo science. J. Turbul. 21 (9–10), 544–566.
JIMÉNEZ, J., WRAY, A.A., SAFFMAN, P.G. & ROGALLO, R. 1993 The structure of intense vorticity in

isotropic turbulence. J. Fluid Mech. 255, 65–90.
KAWAHARA, G. & KIDA, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle

and burst. J. Fluid Mech. 449, 291–300.

965 A20-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.407


Causally significant features in 3-D isotropic turbulence

KIM, J., MOIN, P. & MOSER, R.D. 1987 Turbulence statistics in fully developed channel flow at low Reynolds
number. J. Fluid Mech 177, 133–166.

KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNSTADLER, P.W. 1967 The structure of turbulent
boundary layers. J. Fluid Mech. 30, 741–773.

KOLMOGOROV, A.N. 1941 Local structure of turbulence in an incompressible fluid at very high Reynolds
numbers. Dokl. Akad. Nauk SSSR 30, 9–13.

KOLMOGOROV, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence
in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 82–85.

KRAICHNAN, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 1417–1423.
KRAICHNAN, R.H. & PANDA, R. 1988 Depression of nonlinearity in decaying isotropic turbulence. Phys.

Fluids 31 (9), 2395–2397.
LEE, M. & MOSER, R.D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ ∼ 5200.

J. Fluid Mech. 774, 395–415.
LEUNG, T., SWAMINATHAN, N. & DAVIDSON, P.A. 2012 Geometry and interaction of structures in

homogeneous isotropic turbulence. J. Fluid Mech. 710, 453–481.
LOZANO-DURÁN, A., BAE, H. & ENCINAR, M.P. 2020 Causality of energy-containing eddies in wall

turbulence. J. Fluid Mech. 882, A2.
LOZANO-DURÁN, A., HOLZNER, M. & JIMÉNEZ, J. 2016 Multiscale analysis of the topological invariants

in the logarithmic region of turbulent channels at a friction Reynolds number of 932. J. Fluid Mech.
803, 356–394.

LUMLEY, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio
Wave Propagation (A.M. Yaglom & V.I. Tartarsky), pp. 166–177.

MEENA, M.G. & TAIRA, K. 2021 Identifying vortical network connectors for turbulent flow modification.
J. Fluid Mech. 915, A10.

MENEVEAU, C. & SREENIVASAN, K.R. 1991 The multifractal nature of energy dissipation. J. Fluid Mech.
224, 429–484.

MOISY, F. & JIMÉNEZ, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid
Mech. 513, 111–122.

MOTOKI, S., KAWAHARA, G. & SHIMIZU, M. 2018 Maximal heat transfer between two parallel plates.
J. Fluid Mech. 851, R4.

NAGATA, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from
infinity. J. Fluid Mech. 217, 519–527.

ONSAGER, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6 (2), 279–287.
ORSZAG, S.A. & PATTERSON, G.S. 1972 Numerical simulation of turbulence: statistical models and

turbulence. Lect. Not. Phys. 12, 127–147.
OSELEDETS, V.I. 1968 A multiplicative Ergodic theorem. Lyapunov characteristic numbers for dynamical

systems. Trans. Moscow Math. Soc. 19, 197–231.
PASTOR, R., VELA-MARTÍN, A. & FLORES, O. 2020 Wall-bounded turbulence control: statistical

characterisation of actions/states. In J. Phys. Conf. Ser., vol. 1522, p. 012014. IOP Publishing.
PEARL, J. 2009 Causality. Cambridge University Press.
PRINGLE, C.C.T. & KERSWELL, R.R. 2010 Using nonlinear transient growth to construct the minimal seed

for shear flow turbulence. Phys. Rev. Lett. 105 (15), 154502.
RICHARDSON, L.F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A

110 (756), 709–737.
ROGALLO, R. 1981 Numerical Experiments in Homogeneous Turbulence, vol. 81315. National Aeronautics and

Space Administration.
SHE, Z.S., JACKSON, E. & ORSZAG, S.A. 1991 Structure and dynamics of homogeneous turbulence: models

and simulations. Proc. R. Soc. Lond. A 434 (1890), 101–124.
SIGGIA, E.D. 1981 Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid

Mech. 107, 375–406.
SPALART, P.R. 1987 Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid Mech.

187, 61–98.
SUGIHARA, G., MAY, R., YE, H., HSIEH, C., DEYLE, E., FOGARTY, M. & MUNCH, S. 2012 Detecting

causality in complex ecosystems. Science 338 (6106), 496–500.
TSINOBER, A. 2001 An Informal Introduction to Turbulence, vol. 63. Springer Science & Business Media.
TSINOBER, A. 2019 Essence of Turbulence as a Physical Phenomenon: With Emphasis on Issues of

Paradigmatic Nature, 3rd edn. Springer.

965 A20-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.407


M.P. Encinar and J. Jiménez

VELA-MARTÍN, A., ENCINAR, M.P., GARCÍA-GUTIÉRREZ, A. & JIMÉNEZ, J. 2021 A low-storage method
consistent with second-order statistics for time-resolved databases of turbulent channel flow up to Reτ =
5300. J. Comput. Sci. 56, 101476.

VELA-MARTÍN, A. & JIMÉNEZ, J. 2021 Entropy, irreversibility and cascades in the inertial range of isotropic
turbulence. J. Fluid Mech. 915, A36.

VERZICCO, R., JIMÉNEZ, J. & ORLANDI, P. 1995 On steady columnar vortices under local compression.
J. Fluid Mech. 299, 367–388.

VIEILLEFOSSE, P. 1984 Internal motion of a small element of fluid in an inviscid flow. Physica A 125 (1),
150–162.

VINCENT, A. & MENEGUZZI, M. 1991 The spatial structure and statistical properties of homogeneous
turbulence. J. Fluid Mech. 225, 1–20.

WALLACE, J.M., ECKELMANN, H. & BRODKEY, R.S. 1972 The wall region in turbulent shear flow. J. Fluid
Mech. 54, 39–48.

WANG, W., CHU, X., LOZANO-DURÁN, A., HELMIG, R. & WEIGAND, B. 2021 Information transfer
between turbulent boundary layers and porous media. J. Fluid Mech. 920, A21.

WANG, Q., HASEGAWA, Y. & ZAKI, T.A. 2019 Spatial reconstruction of steady scalar sources from remote
measurements in turbulent flow. J. Fluid Mech. 870, 316–352.

WANG, M. & ZAKI, T.A. 2022 Synchronization of turbulence in channel flow. J. Fluid Mech. 943, A4.
YAMADA, M. & OHKITANI, K. 1988 The inertial subrange and non-positive Lyapunov exponents in

fully-developed turbulence. Prog. Theor. Phys. 79 (6), 1265–1268.
YOSHIDA, K., YAMAGUCHI, J. & KANEDA, Y. 2005 Regeneration of small eddies by data assimilation in

turbulence. Phys. Rev. Lett. 94 (1), 014501.

965 A20-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.407

	1 Introduction
	2 Numerical experiments
	3 Characteristics of the perturbations
	4 From perturbations to significance
	5 From significance to flow markers
	6 From flow markers to structures
	6.1 Statistics of the structure of significant and insignificant regions

	7 From structures to dynamical relevance
	8 Discussion and conclusions
	A Appendix A. Statistics for the vorticity perturbations
	B Appendix B. Equations for the growth of the perturbation
	C Appendix C. Relation between the different norms
	References

