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Abstract

Let G be a finite group and let Aut(G) be its automorphism group. Then G is called a A-orbit group if
G has k orbits (equivalence classes) under the action of Aut(G). (For g,h e G, we have g ~ h if
g" — h for some a e Aut(G).) It is shown that if G is a fc-orbit group, then k ^ \G\/p + 1, where p
is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are
classified. It is shown that As is the only insoluble 4-orbit group, and a structure theorem is proved
about soluble 4-orbit groups.

1980 Mathematics subject classification (Amer. Math. Soc): 20 F 28; secondary 20 E 36.

Let G be a finite group and let Aut(G) be its automorphism group. Then G is
partitioned into equivalence classes under the action of Aut(G)—we say that g, h
are equivalent if g" = h for some a e Aut(G). The equivalence classes are called
automorphism orbits. We call G a k-orbit group if it has k automorphism orbits.
The identity constitutes the only 1-orbit group, and it is easy to see that the
(finite) 2-orbit groups are precisely the elementary abelian groups of prime-power
order. In this paper, we prove that if G is a A>orbit group, then k < 1 + \G\/p
where p is the least prime divisor of \G\. We also completely classify the 3-orbit
groups which are not of prime-power order and the insoluble 4-orbit groups. We
also prove a structure theorem about 4-orbit groups which are not of prime-power
order.

NOTATION. The notation is standard (compare Huppert [1]) with the following
additions: ir{G) denotes the set of prime divisors of \G\, Syl/)(G) denotes the set
of Sylow /^-subgroups of G, and N char G denotes that N is a characteristic
subgroup of G.
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We begin with

THEOREM 1. Let G be a finite non-abelian group and let p be the least prime
dividing \G\. Then G has at most \G\/p automorphism orbits.

PROOF. Let r be the number of conjugacy classes of G and k the number of
automorphism orbits. Then k < r. Also G has r irreducible complex characters
of which \G/G'\ are linear and the rest have degree at least p . Hence

\G\>\G/G'\ + (r-\G/G'\)p2

(since the squares of the degrees of the characters all equal |G|). Hence

r<-2[\G\ + (p2-l)\G/G'\\.

If \G'\ > p, then r < p~2[\G\ + (p - 1)\G\] = \G\/p, which proves the result.
Hence we may assume that |G'| = p. In particular, G' < Z(G). If A is an abelian
direct factor of G, say G — A X B, then G has at most \A\m automorphism
orbits, where m is the number of automorphism orbits of B. Hence, by induction,
we may assume that G has no abelian direct factors, and hence that G is
indecomposable.

So we now have: G is an indecomposable />-group, and \G'\ = p. Let G/G'
have type (rx,..., rm), i.e. let G/G' be a direct product of rx cyclic groups of
order p, r2 of order p2,...,rm of order pm. Let Z, = G,(Z(G)) = {z e Z{G) \ zpi

= 1}. Theorem 1 of Sanders [2] states that the group C(G) of central automor-
phisms of G has order n j l^Z, ! ' ' . Hence \C(G)\ > I l^.1 |Z1 | r ' = \Zx\

d, where
d = rx + • • • + rm is the minimal number of generators of G/G' and hence of G.

We call an element g e G small if

\{g'I\a^C(G)}\<\Zl\,

and we call g nearly small if

Let S be the subgroup generated by the small elements. Suppose first that
S = G. Let { s v . . . , sd) be a set of small elements which generate G. Let b be the
rf-tuple (sv:..,sd) and, for a e C(G\ let 6° = ( ^ ° , . . . , ^ ) - Note that for a,
T e C(G), we have ft" = b7 if and only if ar"1 fixes each one of s±,..., sd, and
thus if and only if a = T, since {sv...,sd} generates G. Hence \{b"\a e C(G)}\
= \C(G)\. However, since st is small, \{s°\o e C(G)}\ < \ZX\, and hence \{b"\a
e C(G)}\ < \Zx\

d. This contradicts Sanders' Theorem 1 [2]. Hence S * G.
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S u p p o s e tha t |ZX | 3* p 2 . T h e n we have

<\G\/p.

Hence we may assume that \ZX\ — p, and thus that Z(G) is cyclic.
Suppose next that G/G' is not elementary abelian. Let T be the subgroup

generated by the nearly small elements of G. Arguing as above, we find that
|C(G)| < \Zl\

d, and this contradicts Sanders' theorem unless Z(G) = Zv Hence
|Z(G)| > p implies that T =t G, and then we obtain as above, that

Hence we may assume that |Z(G)| = p. But \G'\ = p implies that [x, y]p = 1 for
all x, y e G, and thus that [x, yp] = 1, whence yp e Z(G). Hence 0(G) <
Z(G) = G', and G/G' is elementary abelian.

So the proof is reduced to a consideration of the following situation: G/G' is
elementary abelian and Z(G) is cyclic. Suppose that M is a maximal subgroup of
G and that G = AfZ(G). Let a e Aut(M) and let a0 e Aut(Z(G)) be such that
ao\z(C)nM = a\z(onM- Extend o0 to G by setting o0(m) = a(m) for all m e M,
and by making a0 multiplicative. Then a0 e Aut(G), and so the theorem holds
for G if it holds for M. Hence we may assume that M = G, and thus that
Z(G) = $(G) has order p. But then G is an extraspecial p-group. So Aut(G) is
known (Winter [4]). Suppose \G\=p2n+1. Then Z(G) is composed of two
automorphism orbits (by the Theorem of [4]), and each g £ G\Z(G) is con-
jugate to gz for all z e Z(G). Hence the number of automorphism orbits of G is
at most 2 + p~1(p2n+1 — p) = p2" + 1 with equality if and only if elements in
distinct cosets of Z(G) belong to distinct automorphism orbits. However, by [4,
(3c), page 161], the automorphisms of G which act trivially on G/Z{G) are
precisely the group of inner automorphisms. Since G has an outer automorphism
we conclude that there exist gv g2^ G such that gxZ(G) * g2Z(G), but such
that gj, g2 lie in the same automorphism orbit. (We remark here that Aut(G)
does not transitively permute the non-trivial elements of G/Z(G) in the case
where G has exponent p2(p > 2) by the Theorem of [4].) Hence G has at most
p2" = \G\/p automorphism orbits, and the proof is complete.
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COROLLARY. Let G # 1 be a finite group. Then G has at most 1 + \G\/p
automorphism orbits, where p is the least prime dividing \G\.

PROOF. Using Theorem 1, we may assume that G is abelian. Thus G is the
direct product of cychc groups of prime power orders. Since the cyclic group
C(qk) of prime power order qk has exactly k + 1 automorphism orbits, and since
the direct product of r copies of C(qk) also has exactly k + 1 automorphism
orbits, the result follows immediately except in the case G = Z2 X Z4. But in this
case, G has only 4 automorphism orbits. This completes the proof.

REMARK. We note that the bound in Theorem 1 is attained by the dihedral
group of order 8.

We now consider 3-orbit groups.

THEOREM 2. Let G be a finite group which is not of prime-power order. The
following are equivalent:

(1) G is a 3-orbit group;
(2) |G| = p"q, and G has a normal elementary abelian Sylow p-subgroup P, for

some primes p, q, and for some integer n > 1. Furthermore, p is a primitive root
modq (i.e. q — 1 is the least natural number e with pe = 1 mod^r). Let Q be a
Sylow q-subgroup of G. Then P, regarded as a GF( p)[Q]-module, is a direct sum of
t > 1 copies of the (unique) irreducible GF(p)[Q]-module of dimension q - 1. In
particular \P\ =/?'<"-X).

PROOF. (1) Assume that G is a 3-orbit group and that G is not of prime-power
order. Then |G| = paqb for some primes p, q and integers a > 1, 6 > 1. So G is
soluble. We may thus assume that Op(G) # 1. Since Op(G) char G, and since G is
a 3-orbit group, we thus find that P = Op(G) is a Sylow /^-subgroup of G. Also,
since fi1(Z(/>)) char G, P is elementary abelian. Let Q e Syl(?(G). Since G is a
3-orbit group, it has no element of order pq. Hence Q acts fixed-point-freely on
P, so that Q is cyclic, or q = 2 and Q is (generalized) quaternion [1, V(8.15)].
Since Q must have exponent q, we thus obtain \Q\ = q.

We now regard P as a GF(/>)[£)]-module. We write the operation in P as
addition and the action of Q (by conjugation) as multiplication. By Maschke's
theorem, P = Px e • • • ®Pr, where the Pi are irreducible GF(/?)[Q]-modules.
Also by Huppert [1,11(3.10), page 166], |P,| = pe, where e is the order of p mod q
(i.e. e is the least natural number with pe = 1 modg). If Q = ( a ) , we may
choose a basis for Pt so that a is represented by the companion matrix of its
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minimal polynomial w,(A) on P,. Hence P, is determined up to GF(p)[Q]-
isomorphism by the minimal polynomial w,(X) of a on P,. We now claim that
P1,...,Pr are all isomorphic modules. For suppose that Px is not isomorphic to
P2. Then Wj(X) # m2(X). Let 0 * M, e P, (/ = 1,2). Since G is a 3-orbit group,
there exists a e Aut(G) with u° = u1 + u2. Now a"'1 = akw for some w e P,
and for some fc > 1 with (k,q) = 1. Let g(X) be the minimal polynomial of a*
on Pv Note that deg g = pe. Consider

= u°(g(ctk))" (since P is abelian)

= [ulg(a
k)]' = 0.

Hence (MJ + «2)g(a) = 0. But the minimal polynomial of a on ux + u2 is
m1(X)m2(X) (since ml =£ m2 implies (w^, m2) = 1). Since degg = degw,, we
have a contradiction. So all the P, are isomorphic GF(/>)[(?]-modules.

Next, for any i with (/', q) = 1, there exists T e Aut(G) with aT = a'. Let
0 # « G P. Then the minimal polynomial w(a) such that wn(a) = 0 is also the
minimal polynomial of a on P. But

0 = um(a) = [um(a)]T = urm(ar) = urm(a') (since P is abelian).

Hence m(a') = 0, and thus m(X) divides m(A') (/' = 1,2,...,q — 1). Hence, if w
is a root of w(x) in the algebraic closure of GF(/>), so also is w'. Therefore m(X)
is divisible by the cyclotomic polynomial <bq_1(X). Hence e > q — 1, so that
e = q — 1, and the result follows.

(2) Assume that G satisfies (2). Then Q has no fixed point on P, so G has
elements of order 1, p, q only. We first show that any two elements of order p
are conjugate. Note that P is a homogeneous GF(/7)[Q]-module, so if 0 =£ u e P,
then Po = {uf(a)\f(x) e GF(p)[x]} is an irreducible GF(/>)[(2]-submodule of
order pq~l (using the same notation as above). Let 0 ¥= v e P and let Px =
{o / ( a ) | / (x )eGF( / ) )M} . If Po = Pv then we can write P = P0<$P2 as
GF(/;)[Q]-modules. But then a routine calculation shows that the map a defined
by a" = a, u" = v, and w" = w (w e P2) extends to an automorphism of G.

If Po * Pv then we may write P = Po e Px ffi P2 as GF(/>)[g]-modules. Again
a routine calculation shows that the map T defined by ar = «, uT = v, vT = u,
and H>T = W ( W G P 2 ) extends to an automorphism T of G.

We must now show that the elements of order q form a single orbit under
Aut(G). Since P transitively permutes the Sylow ^-subgroups it suffices, by
Sylow's theorem, to show that, for all / with 1 < i < q — 1, there exists 0 e
Aut(G) with a* = a'.
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Let P = Px ffi •• • ®P, as irreducible GF( /> ) [g ] -modu les and let 0 * «, e P,,
Then each u e Pj is uniquely expressible as Ujf(a) for some /(X) e GF(/>)[X]
with deg/ < 4 - 1. Define a map 6 by a9 = a', «* = u,., and (uy/(a))9 = Ujf(a').

Note that if 0 * u e i> is such that ug(a) = 0 for some g(x) e GF(^ ) [X] ,

then ^_ i (X) divides g(X), and hence it also divides g(X'). So wg(a') = 0. This
proves that the natural extension of 6 to P is well defined. Thus, by a routine
calculation, we see that 6 extends to an automorphism of G. This proves that G is
a 3-orbit group, and so the proof of the theorem is complete.

We next consider 4-orbit groups.

THEOREM 3. Let G be an insoluble 4-orbit group. Then G = A5.

PROOF. Since G is insoluble, it follows that |w(G)| > 3, and hence, since G is a
4-orbit group, that |w(G)| = 3. By the Feit-Thompson theorem, |G| is even. So we
may write IT(G) = (2, p, r). Since G is a 4-orbit group, the only possible orders
for elements of G are 1, 2, p, r. In particular, G has an elementary abelian Sylow
2-subgroup. Let N be a. minimal characteristic subgroup of G. Then N is the
direct product of isomorphic simple groups. Also G/N is at most a 3-orbit group.
Hence G/N is soluble, and thus N is not soluble. So N is a 4-orbit group. Since
N char G, and since G is a 4-orbit group, we must have N = G. Since all elements
of G-{1) have prime order, N is simple. Hence G is simple.

By Walter's classification theorem [3], G is one of the following groups:
(1) PSL2(9), q = ±3 mod 8;
(2) SL2(2"), for some n > 2;
(3) a group of Ree type;
(4) the small Janko group /j.For q odd, PSL2(g) has cyclic subgroups of order

(q + l ) /2 , and thus, since |w(G)| = 3, we must have (q + l ) /2 = 2 in case (1).
Thus q = 5 and G = A5. Again SL2(2") has cyclic subgroups of order 2" + 1,
and so again, since 22" - 1 = 0 mod 3, we have 2" - 1 = 3. This leads in case (2)
to n = 4 and G = SL2(4) = A5. Groups which satisfy (3) or (4) have elements of
nonprime order, and also their orders are divisible by more than three primes. So
(3) and (4) are impossible for G. This proves the theorem.

We now consider the soluble case.

THEOREM 4. Let G be a finite soluble 4-orbit group which is not of prime-power
order. Then \G\ = paqb, and G has a normal Sylow p-subgroup P for some primes p,
q. Let Qbe a Sylow q-subgroup of G. Then one of the following holds:

(1) Q acts fixed-point-freelyy on P, \Q\ = q, and P is a 1-orbit or 3-orbit group;
(2) P is elementary abelian, and Q is cyclic of order q2 or quaternion of order 8;
(3) G = P X Q, where P, Q are elementary abelian.
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PROOF. Let p G m(G) be such that Op(G) ¥= 1. Suppose first that \-n(G)\ = 3.
Let IT(G) = {p,q,r} and suppose that Oq{G/Op(G)) ¥= 1. Let Q <= Syl^G), and
let R G Sylr(G). Let 1 * x e fl and let TV = QOp(G). Since the only possible
orders for elements of G are 1, p, q, r, and since N<G, it follows that x acts
fixed-point-freely on TV. So, by Thompson's theorem on fixed-point-free automor-
phisms of prime order [1, V(8.14)], TV is nilpotent. But then G has an element of
order pq. This is a contradiction. Hence |w(G)| = 2.

Let ir(G) = {p,q}, let P e Syl^G), and let Q G Syl^G). Suppose that P is
not normal in G. Then since S21(Z(O/J(G))) is characteristic in G, and since G is a
4-orbit group, Op{G) is elementary abelian. Furthermore, QOp(G) and G/Op(G)
are 3-orbit groups. By Theorem 2, firstly Q is cyclic of order q, and secondly Q is
elementary abelian of order q'(p~l) (for some / S* 1) and I-P/C^G)! = />. Hence
f = /> - 1 = 1, so that /> = 2 and G/Op{G) is dihedral of order 1q. The only
possible orders for the elements in the four automorphism orbits of G are 1,2, q,
2 or 1, 2, #, 4. The first possibility implies that P is abelian and hence that
P < Cc(Op(G)) = Op(G). Hence P has exponent 4, and each element of P -
Op(G) has order 4. Now QOp(G) is characteristic in G, and by the Frattini
argument, we have G = Op(G)NG(Q). Hence NG(Q) contains a 2-element /? £
O2(G). Let Q = <a>. Then [a, /?2] G £), and 1 * 02 G O2(G). Hence [a, 02] = 1,
and aft2 is an element of order 2q. This is a contradiction. So P is normal in G,
as required.

Next, if P is not elementary abelian, then P is a 3-orbit group. Hence every
element outside P has order q and acts fixed-point-freely on P. Thus |<2| = g.
Suppose then that P is elementary abelian. If the automorphism orbits of G are
represented by elements of orders 1, p, p, q, then again conclusion (1) holds.
Suppose these orders are 1, p, q, q or 1, p, q, q2. Then Q acts fixed-point-freely
on P, so either Q is cyclic of order q or q2, or Q is a (generalized) quaternion
group. Since Q has exponent at most q2, this implies that if Q is non-cyclic, then
Q must be quaternion of order 8.

The only remaining possibility is that G has elements of orders 1, p, q, pq.
Then Q is elementary abelian. For each maximal subgroup A of Q, let CA be the
centralizer in P of A. If Oq(G) =£ 1, then Op(G) X O?(G) is a characteristic
4-orbit subgroup of G. So it equals G, and (3) holds.

Suppose then that Oq{G) = 1, so that Q acts faithfully on P. By Maschke's
theorem, P is the direct sum of irreducible GF(/?)[<2]-modules. Let W < P be an
irreducible GF(/?)[@]-module. If A: is the kernel of Q on W, then Q/K is cyclic,
and thus K is a maximal subgroup of Q. Since the set of nonidentity elements of
P forms one automorphism orbit, it follows that, for each 1 # x G P, Ce(;t) has
index # in Q. Also, the elements of order q form one automorphism orbit, so that
\cp(y)\ = Pc f°r a n 1 * y G 2 (for some c > 0 independent of >>). Let 1̂ 1 = p a
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and let \Q\ = qb. We now count the number of elements of G of order pq. Note
that if w G G has order pq, then w = xy, where x has order p, y has order q,
and xy = yx; moreover, this representation is unique. Now each \ + y ^ Q has
\P\/pc conjugates (which belong to distinct Sylow ^-subgroups), and y commutes
with pc — 1 elements of order p. Hence the number of elements of order pq is

(qb - l)pa(pc - l)/pc=pa'c(pc ~ l)(qh - 1).

On the other hand, each 1 ¥= x e P commutes with the \Q\/q = qb~l elements of
Q. Each of these except for the identity has p"~c conjugates (which belong to
distinct Sylow ^-subgroups). Hence the number of elements of order pq is

A comparison of the two counts yields

If b > 1, we thus have

(pa - \)/{pc - 1) = (qb - \)/{qb-1 - 1) = m, say.

Now q - 1 < m < q, and pa~c - 1 < m < pa~c, so that q - 1 < pa~c < m + 1
< q + 1. Thus pa"c = q, which gives a contradiction. Hence b = 1, as asserted.
The proof is complete.
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