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Abstract

We study the existence of various sign and value patterns in sequences defined by multiplicative
functions or related objects. For any set A whose indicator function is ‘approximately multiplicative’
and uniformly distributed on short intervals in a suitable sense, we show that the density of the
pattern n + 1 ∈ A, n + 2 ∈ A, n + 3 ∈ A is positive as long as A has density greater than 1

3 . Using
an inverse theorem for sumsets and some tools from ergodic theory, we also provide a theorem that
deals with the critical case of A having density exactly 1

3 , below which one would need nontrivial
information on the local distribution of A in Bohr sets to proceed. We apply our results first to
answer in a stronger form a question of Erdős and Pomerance on the relative orderings of the
largest prime factors P+(n), P+(n+ 1), P+(n+ 2) of three consecutive integers. Second, we show
that the tuple (ω(n+ 1), ω(n+ 2), ω(n+ 3)) (mod 3) takes all the 27 possible patterns in (Z/3Z)3
with positive lower density, with ω(n) being the number of distinct prime divisors. We also prove
a theorem concerning longer patterns n + i ∈ Ai , i = 1, . . . , k in approximately multiplicative
sets Ai having large enough densities, generalizing some results of Hildebrand on his ‘stable sets
conjecture’. Finally, we consider the sign patterns of the Liouville function λ and show that there
are at least 24 patterns of length 5 that occur with positive upper density. In all the proofs, we make
extensive use of recent ideas concerning correlations of multiplicative functions.

2010 Mathematics Subject Classification: 11N37 (primary); 37A45 (secondary)

1. Introduction

For any function a : N → S with finite range S and any k ∈ N := {1, 2, . . .},
we may define the length k value patterns of a to be the tuples s ∈ Sk that are of
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the form

s = (a(n + 1), a(n + 2), . . . , a(n + k))

for some n ∈ N. (One could also include the n = 0 case here if one wished,
although it will not affect our main results.) We further say that the function a
attains a pattern s with positive lower density (respectively upper density) if the
set

{n ∈ N : (a(n + 1), a(n + 2), . . . , a(n + k)) = s}

has positive lower density (respectively upper density). (For the precise definitions
of the various densities used in this paper as well as for the standard arithmetic
functions and asymptotic notation, see Section 1.6.) In the case S = {−1,+1},
we will refer to value patterns as sign patterns. In this paper, we will mostly be
interested in whether or not a given pattern is attained with positive lower density.

The occurrence of various value patterns for an arithmetic function a has
attracted particular interest in the case where a : N → D is multiplicative, that
is to say a(1) = 1 and a(mn) = a(m)a(n) whenever m and n are coprime natural
numbers. Here, D := {z ∈ C : |z| 6 1} is the unit disc of the complex plane.
Indeed, the interaction of multiplicative functions with their shifts is the subject of
many conjectures, including those of Chowla [4] and Elliott [9, 30]. In particular,
for the Liouville function λ(n) and the Möbius function µ(n), the existence of
various sign or value patterns has been actively studied due to connections to the
aforementioned conjectures.

Chowla’s conjecture [4] for the Liouville function states that the
autocorrelations

1
x

∑
n6x

λ(n + h1) . . . λ(n + hk)

of the Liouville function λ converge to 0 as x → ∞, for any k > 1 and
distinct natural numbers h1, . . . , hk . (Unless otherwise stated, all variables such
as n appearing in summations are understood to be restricted to the natural
numbers, with the exception of variables named p (or p1, p2 and so on) which
are understood to be restricted to the primes.) This conjecture easily implies that
λ(n) attains all the 2k sign patterns in {−1,+1}k for any k infinitely often, and
in fact the conjecture is equivalent to each of these length k patterns occurring
with asymptotic density 2−k . The analogous version of Chowla’s conjecture for
the Möbius function µ implies that the function µ attains every admissible value
pattern in (ε1, . . . , εk) ∈ {−1, 0,+1}k infinitely often, where we call a pattern
admissible if for every prime p, there exists b ∈ [0, p2

−1] such that εp2 j+b = 0 for
all j satisfying 1 6 p2 j + b 6 k. (By using the identities λ(n) =

∑
d2|n µ(n/d

2)
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and µ(n) =
∑

d2|n µ(d)λ(n/d
2) and exploiting the absolute convergence of the

sum
∑

d 1/d2, one can easily show that the Chowla conjectures for the Liouville
and Möbius functions are equivalent if one generalizes the distinct linear forms
n+h1, . . . , n+hk to nonparallel affine forms a1n+h1, . . . , akn+hk ; we omit the
details.) Nevertheless, Chowla’s conjecture (for either λ or µ) remains unsolved
once k > 2, and thus these implications are only conditional. In Section 1.4, we
will give an account of the unconditional results on sign patterns of the Liouville
function as well as state our new result on length 5 patterns.

In this paper, we study the appearance of value patterns in more sequences that
have some multiplicative structure. Let f : N→ D be a completely multiplicative
function and assume that the range f (N) is a finite set so that it is meaningful to
talk about the sign patterns of f . (We say that f is completely multiplicative if
f (mn) = f (m) f (n) for all m, n ∈ N and f (1) = 1.) Then actually f (N) = µm

or f (N) = µm ∪{0} for some m, where µm := {z ∈ C : zm
= 1} is the set of roots

of unity of order m. The case of f (N) = {−1,+1} is rather similar to the case
of the Liouville function λ, and in fact it follows easily from [41, Corollary 1.6;
Proof of Corollary 7.2] that if f is not weakly pretentious, by which we mean that∑

p6x

1− Re( f (p)χ̄(p))
p

�χ log log x

for any Dirichlet character χ , then f attains all the 16 possible length 4 sign
patterns with positive lower density. (In [41], the proof was written only for f = λ,
but the exact same argument works for any completely multiplicative bounded
f that is not weakly pretentious.) At the opposite extreme, the case of f being
pretentious in the sense that∑

p6x

1− Re( f (p)χ̄(p))
p

� 1

for some Dirichlet character χ was recently considered by Klurman and
Mangerel [28]. We also remark that if f (N) ⊂ µm and if f satisfies the
nonpretentiousness condition∑

p6x

1− Re( f (p)d χ̄(p))
p

x→∞
−−−→∞

for all 1 6 d 6 m − 1 and every Dirichlet character χ , then Elliott’s conjecture
[9, 30] on correlations of multiplicative functions would imply that f attains
every value pattern in µk

m with equal asymptotic density m−k . (Indeed, if we use
the expansion 1 f (n)=e(a/m) = 1/m

∑m−1
j=0 f (n) j e(−aj/m), we immediately reduce
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the study of the value patterns of f to bounding its correlations, which can be
shown to be negligible assuming Elliott’s conjecture.) For k = 2 (and if one uses
logarithmic density instead of asymptotic density), this follows unconditionally
from [37, Theorem 1.5], and from [41, Corollary 1.6], we can deduce various
special cases for higher values k > 3 (again using logarithmic density in place of
asymptotic density).

In what follows, we will mostly be studying the case f (N) = {0, 1}, and we
only make the weaker assumption that f is ‘approximately multiplicative’ in a
precise sense defined in Section 1.3 (there we call this notion of approximate
multiplicativity ‘weak stability’). In this case, it is natural to write f (n) =
1A(n) for some set A ⊂ N and to say that the set A itself is ‘approximately
multiplicative’. The occurrence of patterns in such sets is not covered by Elliott’s
conjecture. It turns out that the class of genuinely multiplicative sets of positive
asymptotic density are not a particularly interesting class of sets (a typical
example being the set {n : µ2(n) = 1} of square-free numbers, the patterns
of which are well-understood from basic sieve theory), but the wider class of
approximately multiplicative sets instead does include various interesting sets
related to the largest prime factors of integers or to the number of prime divisors
of an integer. For instance, if P+(n) denotes the largest prime factor of a natural
number n (and P+(1) := 1), the sets

Qα,β := {n ∈ N : nα < P+(n) < nβ} (1.1)

with 0 6 α < β 6 1 turn out to be sufficiently close to being multiplicative
that our results in Section 1.3 apply, and we will present several applications of
our results to patterns in the sets Qα,β . See also Sections 1.1 and 1.2 for more
applications of our results to value patterns of approximately multiplicative sets.

We also investigate the case f (N)= µ3 and, more specifically, the case f (n) :=
e(ω(n)/3), where ω(n) is the number of prime factors of n without multiplicities,
and e(θ) := e2π iθ . In this case, the prior knowledge on length 3 value patterns was
very limited since the fact that f 3

= 1 makes the result in [41, Corollary 1.6]
on 3-point correlations of multiplicative functions inapplicable. The functions
n 7→ e(ω(n)/q) can be thought of as generalizations of the Liouville or Möbius
functions which take values in the qth roots of unity rather than in {−1,+1}, and
their value patterns are in one-to-one correspondence with those of the sequence
ω(n) (mod q). (For q = 2, the function n 7→ (−1)ω(n) is of course not quite
equal to either the Liouville function or the Möbius function but is very closely
connected to both since it takes the value −1 at all the primes.)

Before stating our results on patterns in general approximately multiplicative
sets, we state the corollaries of our results for the sets Qα,β and {n ∈ N :
ω(n) (mod 3)} mentioned above.
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1.1. Comparison of largest prime factors of consecutive integers. In what
follows, let

d−(A) := lim inf
x→∞

|A ∩ [1, x]|
x

denote the lower density of a set A ⊂ N.
In 1978, Erdős and Pomerance [11] studied the orderings of the largest prime

factors of consecutive integers and showed that

d−({n ∈ N : P+(n + 1) < P+(n + 2)}) > c0 > 0 (1.2)

for some explicit c0. They also showed that the set

{n ∈ N : P+(n + 1) < P+(n + 2) < P+(n + 3)} (1.3)

is infinite by looking at the explicit sequence n = p2k p
−2 with kp suitably chosen

for every odd p and raised the problem of proving that also the set

{n ∈ N : P+(n + 1) > P+(n + 2) > P+(n + 3)} (1.4)

corresponding to the opposite ordering was infinite. This was eventually solved by
Balog [2], who showed that there are infinitely many solutions having the specific
form n = m2

− 2. It is clear, however, that both the construction of Erdős and
Pomerance and that of Balog only produce sparse sequences of n 6 x that belong
to the set (1.3) or the set (1.4); for (1.3), we get �

√
x elements up to x (since

certainly we must have kp > 1), and for (1.4), Balog’s proof gives�
√

x elements
up to x .

Our main theorem in Section 1.3 will be seen in Section 6 to imply the
following strengthenings of the above results, in which the sets (1.3) and (1.4)
are shown to have positive lower density, and also give some limited comparison
with P+(n + 4), or with various powers nα, nβ .

THEOREM 1.1 (Orderings of largest prime factors). We have

d−({n ∈ N : P+(n + 1) < P+(n + 2) < P+(n + 3) > P+(n + 4)}) > 0

and

d−({n ∈ N : P+(n + 1) > P+(n + 2) > P+(n + 3) < P+(n + 4)}) > 0.

THEOREM 1.2 (Largest prime factors of three consecutive integers). Let 0 < α <
β < 1 be real numbers such that ρ(1/α)+ ρ(1/β) 6= 1, where ρ is the Dickman
function (see [26]). Then we have

d−({n ∈ N : P+(n + 1) < nα < P+(n + 2) < nβ < P+(n + 3)}) > 0
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and

d−({n ∈ N : P+(n + 3) < nα < P+(n + 2) < nβ < P+(n + 1)}) > 0.

As mentioned above, either of Theorem 1.1 and Theorem 1.2 immediately
imply the new result that both set (1.3) and set (1.4) have positive lower density.
The condition ρ(1/α) + ρ(1/β) 6= 1 should be removable, but this seems to
be beyond the methods in this paper (unless there is substantial progress on
understanding local Fourier uniformity of multiplicative functions or indicator
functions of weakly stable sets).

We remark that the study of the largest prime factors of two consecutive
integers has been taken up by several authors. In particular, the original value
of c0 = 0.0099 in (1.2) by Erdős and Pomerance was improved by de la Bretèche,
Pomerance and Tenenbaum [7] to c0 = 0.05544, and the current record is held
by Wang [43] with c0 = 0.1356. It was conjectured in the correspondence of
Erdős and Turán [35] (and repeated by Erdős in [10]) that the set of n with
P+(n) < P+(n + 1) has asymptotic density equal to 1/2, as one would naturally
expect. In [42], it was shown that the logarithmic density of this set indeed equals
1/2. For orderings of longer strings of consecutive values of P+(n), little is
known, but Wang [43] showed that either of

P+(n + i) < min
j6J
j 6=i

P+(n + j) and P+(n + i) > max
j6J
j 6=i

P+(n + j)

happens with positive lower density for any J > 3. For completely arbitrary
orderings of the largest prime factors at consecutive integers, there is a natural
conjecture of de Koninck and Doyon [6], which states that for any permutation
{a1, . . . , ak} of {1, . . . , k} we have

d({n ∈ N : P+(n + a1) < · · · < P+(n + ak)}) =
1
k!
.

This, however, seems to be far out of reach, and even for k = 2, we only know
lower bounds for the asymptotic density and we know the correct value for the
logarithmic density but do not know that the asymptotic density exists to start
with.

1.2. Patterns of the number of prime factors modulo 3. In Section 6, we
will also utilize our main theorem stated in Section 1.3 to prove the following
result about the sign patterns of ω(n) (mod 3).
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THEOREM 1.3 (Value patterns of ω (mod 3)). The function ω(n) (mod 3) attains
each of the 27 possible length 3 value patterns with positive lower density. In
other words, we have

d−({n ∈ N : ω(n + 1) ≡ a (mod 3), ω(n + 2) ≡ b (mod 3),
ω(n + 3) ≡ c (mod 3)}) > 0

for all a, b, c ∈ Z/3Z. The same holds for Ω(n), the number of prime factors of
n counting multiplicities, in place of ω(n).

The value patterns of Ω(n) (mod 2) have of course been an active subject
of study since they are in one-to-one correspondence with sign patterns of the
Liouville function; see [23, 31, 41] for some works studying the number of
these sign patterns. Showing that Ω(n) (mod 3) attains all the value patterns of
length 3 with positive lower density is evidently harder than showing the same
forΩ(n) (mod 2) (which was shown by Matomäki, Radziwiłł and the first author
in [31]) since the number of possible patterns for Ω(n) (mod 3) is 27, meaning
that each pattern should conjecturally have a rather small asymptotic density of
1/27, as opposed to the much larger asymptotic density of 1/8 corresponding to
the patterns of length 3 for Ω(n) (mod 2). Perhaps surprisingly, it is much easier
to deal with the longer patterns (Ω(n + 1) (mod q1), . . . ,Ω(n + k) (mod qk))

for various choices of distinct q j . Namely, if q1, . . . , qk are all pairwise coprime,
the authors showed in [41, Theorem 1.13] that each of the q1 · · · qk possible
patterns occurs with logarithmic density 1/q1 · · · qk . The fact that the patterns
with coprime q j are easier stems from the result towards the Elliott conjecture
in [41], which applies to correlations

1
log x

∑
n6x

g1(n + 1) · · · gk(n + k)
n

(1.5)

of 1-bounded multiplicative functions whenever the product g1 · · · gk is not
‘weakly pretentious’. If we expand 1Ω(n)≡a j (mod q j ) as a linear combination of the
multiplicative functions n 7→ e(bΩ(n)/q j), then the logarithmic density of the
sign pattern can be written as a linear combination of correlations like (1.5), but
without the assumption of the q j being coprime, the result in [41, Corollary 1.6]
on the correlations (1.5) is not directly applicable. Of course, assuming the full
Elliott conjecture and applying the same strategy, one would see that each of the
q1 · · · qk value patterns is attained with asymptotic density 1/(q1 · · · qk) without
any restrictions on the q j , but, needless to say, even for q1 = · · · = qk = 2, proving
this is out of reach.
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1.3. Results on weakly stable sets. Theorems 1.1, 1.2 and 1.3 will all be
deduced from our main results concerning patterns in sets that are ‘approximately
multiplicative’ in a suitable sense. The notion of approximate multiplicativity that
we want to consider is called stability. In what follows, we use the expectation
notation

En∈A f (n) :=
1
|A|

∑
n∈A

f (n)

for any finite, nonempty set A ⊂ N and for any function f : A→ C.

DEFINITION 1.4 [1]. We say that a set A ⊂ N is stable if for every prime p, we
have

lim
x→∞

En6x |1A(n)− 1A(pn)| = 0.

Equivalently, A is stable if and only if d(A4p−1 A) = 0 for every prime p, where
4 denotes the symmetric difference, and p−1 A := {n ∈ N : pn ∈ A}.

An important class of stable sets is given by

Qα,β := {n ∈ N : nα < P+(n) < nβ},

where 0 6 α < β 6 1. By the classical result of Dickman [8], this set has
asymptotic density ρ(1/β)− ρ(1/α) > 0, where ρ is the Dickman function. The
stability of Qα,β then follows easily from the continuity of the Dickman function.

A completely different class of stable sets is

Aα,β :=
{

n ∈ N :
ω(n)− log log n√

log log n
∈ [α, β]

}
for −∞ < α < β < ∞. By the Erdős–Kac theorem, this set has a positive
asymptotic density as well.

Stable sets were first introduced by Balog in [1], where he conjectured that if
A ⊂ N is stable with d−(A) > 0, then the pattern n + 1 ∈ A, n + 2 ∈ A occurs
with positive lower density or, equivalently, that

d−((A − 1) ∩ (A − 2)) > 0.

This conjecture was settled by Hildebrand [22] using an elementary but intricate
method. Hildebrand [25] himself later posed a conjecture that generalizes Balog’s
conjecture to length k patterns.
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CONJECTURE 1.5 (Hildebrand’s stable sets conjecture [25]). Let k > 2 and let
A ⊂ N be any stable set with d−(A) > 0. Then we have

d−((A − 1) ∩ (A − 2) ∩ · · · ∩ (A − k)) > 0.

For higher values of k, Conjecture 1.5 is certainly a deep one since it implies,
for any ε > 0, that both the sets

{n ∈ N : P+(n + j) < nε for all 1 6 j 6 k)} (1.6)

and

{n ∈ N : P+(n + j) > n1−ε for all 1 6 j 6 k)} (1.7)

have positive lower density. Remarkably, Balog and Wooley [3] were able to prove
that the set (1.6) is always infinite, but their construction gives a very sparse set
of such n. For the set (1.7), in turn, it is not even known that it is infinite, except
for k = 2 (which follows from [22]).

It follows from a trivial pigeonholing argument that the stable sets conjecture
holds when d−(A) > 1 − 1/k. Hildebrand [24] extended this range to d−(A) >
1− 1/(k − 1) when k > 3; thus, for instance, he established the k = 3 case of the
conjecture for d−(A) > 1

2 .
We make progress on a variant of the stable sets conjecture for all k > 3, where

we have a somewhat different set of assumptions. First, our theorem applies to k
distinct sets A1, . . . , Ak ⊂ N, whereas the method of Hildebrand in [22] appears
difficult to adapt to this setting. Second, the notion of stability that we need is
weaker than in Definition 1.4; see Definition 1.6. On the other hand, we need
a stronger density assumption for the Ai . It turns out that a stable set is always
uniformly distributed in arithmetic progressions in the sense that

d−(A ∩ {n ∈ N : n ≡ b (mod q)}) =
1
q

d−(A)

for any b, q ∈ N; see [24]. What we need in our main theorem is that a similar
statement holds when A is restricted to almost all short intervals. In all of our
applications, this stronger condition will be satisfied by the Matomäki–Radziwiłł
theorem [29] or some variant thereof.

We now define the precise concepts that we need for the main theorem.

DEFINITION 1.6 (Weakly stable sets). We say that a set A ⊂ N is weakly stable
if for every x > 1, there is a set Bx ⊂ N such that for every prime p, we have

lim
x→∞

En6x
p-n
|1A(n)− 1Bx (pn)| = 0. (1.8)

In addition, we say that the sequence (Bx) corresponds to A.
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It is clear that if A is stable, then A is also weakly stable (with Bx = A in this
case). Importantly for us, the class of weakly stable sets also contains interesting
sets that do not satisfy the usual definition of stability; for example, the sets A =
{n ∈ N : ω(n) ≡ a (mod q)} are weakly stable but not stable for any a ∈ N,
q > 2; the point is that the sets Bx need to be taken here to equal {n ∈ N : ω(n) ≡
a + 1 (mod q)} 6= A. It is because of applications to such sets that we want to
have the condition p - n in (1.8); without that condition, these sets would not be
weakly stable.

Another definition that we need is that of uniform distribution in short intervals.

DEFINITION 1.7 (Uniform distribution in short intervals). We say that a set
A ⊂ N is uniformly distributed in short intervals with asymptotic density δ if we
have

lim
H→∞

lim sup
x→∞

1
x

∫ x

0

∣∣∣∣ |A ∩ [y, y + H ] ∩ (qZ+ b)|
H

−
δ

q

∣∣∣∣ dy = 0

for all b, q ∈ N.

With this notation, we can prove the following results.

THEOREM 1.8 (k = 3 main theorem, large density). Let A1, A2, A3 ⊂ N be
weakly stable and uniformly distributed in short intervals with densities δ1, δ2,

δ3 > 0, respectively. Suppose that δ1 + δ2 + δ3 > 1. Then

d−((A1 − 1) ∩ (A2 − 2) ∩ (A3 − 3)) > 0.

THEOREM 1.9 (k = 3 main theorem, critical density). Let A1, A2, A3 ⊂ N be
weakly stable and uniformly distributed in short intervals with densities δ1, δ2,

δ3 > 0, respectively. Suppose that δ1 + δ2 + δ3 = 1. Then for every c ∈ {0, 1, 2},
we have

d−

( ⋃
c1,c2,c3∈{0,1,2}

c1+c2+c3≡c (mod 3)

(Ac1 − 1) ∩ (Ac2 − 2) ∩ (Ac3 − 3)
)
> 0.

Further, if δ1 6= δ3 and d(A1 ∪ A2 ∪ A3) = 1, then

d−((A1 − 1) ∩ (A2 − 2) ∩ (A3 − 3)) > 0.

THEOREM 1.10 (k > 3 main theorem). Let k > 4 and let A1, . . . , Ak ⊂ N be
weakly stable and uniformly distributed in short intervals with densities δ1, . . . ,
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δk > 0, respectively. Define the constants ck by

c4 :=
3+
√

2
7
= 0.6306 . . .

c5 :=
9+ 2

√
6

19
= 0.7315 . . .

and, more generally, ck ∈ (0, 1) is the largest root of the quadratic equation(
9
2

(
k
3

)
+ (6− 4ak)

(
k
2

))
(1− X)2 + (a2

k − ak)k(1− X)− ak(ak − 1) = 0,

where ak := d(3k + 2)/4e. Suppose that δi > ck for all i 6 k. Then

d−((A1 − 1) ∩ (A2 − 2) ∩ · · · ∩ (Ak − k)) > 0.

REMARK 1.11. Inspecting the proof of Theorem 1.10 in Section 4, we see that it
works equally well for k = 3 with c3 = 1/3. However, since this is a special case
of Theorem 1.8 (namely the case δ1, δ2, δ3 > 1/3), we confine ourselves to k > 4
in Theorem 1.10.

We remark that a routine but tedious calculation yields the asymptotic

ck = 1−
1

k − 4
3 + ηk

,

where ηk goes to zero as k goes to infinity. For instance, one can calculate

η4 = 0.04044 . . .
η5 = 0.05808 . . .
η10 = 0.04143 . . .
η100 = 0.00435 . . .
η1000 = 0.00071 . . . .

The value of ck should be compared with the value 1 − 1/(k − 1), which is the
threshold in Hildebrand’s result about Conjecture 1.5. It turns out that our value
of ck is smaller (or equivalently, that ηk < 1/3) for every k > 4.

When it comes to our applications stated as Theorems 1.2 and 1.3, we want to
apply our main theorems to the triples of sets

{n ∈ N : P+(n) < nα}, {n ∈ N : nα < P+(n) < nβ}, {n ∈ N : P+(n) > nβ}
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or

{n ∈ N : ω(n) ≡ a (mod 3)}, {n ∈ N : ω(n) ≡ b (mod 3)},
{n ∈ N : ω(n) ≡ c (mod 3)}.

In either case, the sum of the densities of these sets will be exactly 1, so we are in
the critical case δ1+δ2+δ3 = 1 where Theorem 1.8 no longer applies. It turns out
that the case δ1+ δ2+ δ3 = 1 is much more delicate than the case δ1+ δ2+ δ3 > 1
since for δ1 + δ2 + δ3 < 1, our method based on the study of sumsets in abelian
groups breaks down. In addition, as soon as δ1 + δ2 + δ3 6 1, all the Ai could
theoretically be ‘local Bohr sets’ in the sense that, for any slowly growing function
H = H(X) tending to infinity, we would have

Ai ∩ [x, x + H ] = {n ∈ [x, x + H ] : nαi,x ∈ Ui}

for almost all x and for some irrational numbers αi,x ∈ R/Z and open sets Ui ⊂

R/Z of measure δi . Such sets are certainly uniformly distributed in short intervals,
and it may happen that (A1+A3)∩2A2 = ∅when δ1+δ2+δ3 < 1 (see Remark 2.5)
so that certainly (A1− 1)∩ (A2− 2)∩ (A3− 3) = ∅. Of course, we do not expect
any such sets to be stable, but even showing that such local Bohr sets cannot be
linear combinations of multiplicative functions appears very difficult. Even in the
special case of A = {n ∈ N : Ω(n) ≡ 0 (mod 2)}, it has not been shown that A
does not correlate with local Bohr sets, as that would amount to showing that

1
X

∫ 2X

X
sup
α∈R
|Ex6n6x+Hλ(n)e(αn)| dx = o(1) (1.9)

for any H = H(X) tending to infinity, which is the Fourier uniformity conjecture
from [38]. See, however, [32] for recent progress on this. The sup norm estimate
(1.9) is open for slowly growing functions H = H(X) = X o(1), and it is in
fact closely connected to Chowla’s conjecture (see [38] for this connection).
Nevertheless, it is still possible to deploy tools from additive combinatorics to
be able to establish results like Theorem 1.9 (and hence Theorems 1.2 and 1.3)
even if the weakly stable sets involved behave like Bohr sets, thus allowing us to
avoid having to establish unproven results such as (1.9).

Both Theorems 1.8 and 1.10 can be applied to the sets Qα,β defined in (1.1),
and they yield the following results about the largest prime factors of consecutive
integers.

THEOREM 1.12 (Consecutive triples with large prime factors). Let γ3 := e−1/3
=

0.7165 . . . . Then for any γ < γ3, we have

d−({n ∈ N: P+(n + 1) > nγ , P+(n + 2) > nγ , P+(n + 3) > nγ }) > 0.
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Here, γ3 is the solution to 1− ρ(1/x) = 1/3, so the set {n ∈ N : P+(n) > nγ3}

has asymptotic density 1/3. In [24], the same was proved with γ3 replaced by the
smaller value e−1/2

= 0.6065 . . . , where this value of γ3 solves 1−ρ(1/x) = 1/2.
We can also prove a result for longer strings of largest prime factors.

THEOREM 1.13 (Consecutive k-tuples with large prime factors). Define

γ4 := 0.5322
γ5 := 0.4804.

Then for k = 4, 5, we have

d−({n ∈ N: P+(n + 1) > nγk , P+(n + 2) > nγk , . . . , P+(n + k) > nγk }) > 0.

Again, Hildebrand [24] proved a similar result with γk replaced by the smaller
value 1/ρ−1(1/k − 1), where ρ−1 is the inverse function of the Dickman ρ

function. Like his result, ours can also be applied for higher values of k, but since
our value of γk behaves asymptotically like Hildebrand’s value as k → ∞, we
omit the cases k > 6 from the theorem.

1.4. Sign patterns of the Liouville function. In Section 7, we will prove a
result on length 5 sign patterns of the Liouville function. This application will not
be based on Theorem 1.8 or Theorem 1.10, but nevertheless, like those theorems,
it will be reduced to results about correlations of multiplicative functions. In
particular, we will use what we called an ‘isotopy formula’ in [41, Section 1]
that implies, in particular, that

Elog
n6xλ(n + h1) · · · λ(n + hk) = Elog

n6xλ(n − h1) · · · λ(n − hk)+ o(1)

for any h1, . . . , hk ∈ N. We will use this to show that there are at least 24 sign
patterns of length 5 for the Liouville function.

THEOREM 1.14 (Length 5 sign patterns of Liouville). There are at least 24 sign
patterns in {−1,+1}5 that are attained by λ with positive upper density, including
the six explicit sign patterns

±(+1,+1,+1,+1,−1),±(+1,+1,+1,−1,−1),±(+1,−1,+1,+1,−1)

and their reversals

±(−1,+1,+1,+1,+1),±(−1,−1,+1,+1,+1),±(−1,+1,+1,−1,+1).
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If we denote by s(k) the number of length k sign patterns that occur infinitely
often in the Liouville function, then Theorem 1.14 implies that s(5) > 24. In
[41, Corollary 7.2], the authors proved that s(4) = 16. For large values of k, our
knowledge on s(k) is rather weak; [41, Remark 1.12] gives the explicit bound
s(k) > 2k + 8, whereas Frantzikinakis and Host [13, Theorem 1.2] proved
that s(k) grows faster than linearly with k. Very recently, this was improved by
McNamara [33] to s(k) � k2. Trivially, if we had Chowla’s conjecture, then
s(k) = 2k would follow.

In order to improve the bound of 24 in Theorem 1.14, one would have to
improve the known bounds on the correlations of the Liouville function. Namely,
if we define

CA := lim
m→∞

Elog
n6xm

∏
j∈A

λ(n + j)

for any finite set A ⊂ N, where the sequence (xm) tending to infinity is chosen so
that all the limits exist (which is possible by a diagonal argument), then from
[41, Proposition 7.1], we have the bound |C{1,2,...,k}| 6 1/2. If this bound was
sharp for k = 4, then we could have the hypothetical scenario

C{1,2,3,4} = C{2,3,4,5} = 1
2 , C{1,2,3,5} = C{1,2,4,5} = C{1,2,3,5} = 0,

in which case one would easily see (using the odd order logarithmic Chowla
conjecture from [41, Theorem 1.1(i)]) that there are no more than 24 sign patterns
of the Liouville function that occur with positive logarithmic lower density. Thus,
one would have to rule out this scenario to be able to improve on the number of
length 5 sign patterns.

1.5. Proof strategy. We briefly describe the ideas that go into the proofs
of Theorems 1.8, 1.9 and 1.10. Consider, for example, Theorem 1.8. By an
elementary argument, one sees that d−((A1 − 1) ∩ (A2 − 2) ∩ (A3 − 3)) > 0
is equivalent to the triple correlation

Elog
x/ω(x)6n6x 1A1(n + 1)1A2(n + 2)1A3(n + 3) (1.10)

being� 1 as x →∞ for every ω(X) 6 X tending to infinity. The functions 1Ai

are not assumed to be multiplicative, but the assumption of weak stability works
as a useful substitute to this since for some sets Bx,i and all primes p, we can
write 1Ai (n) = 1Bx,i (pn) + o(1) for most n 6 x . Using this relation, averaging
(1.10) over primes, and applying the entropy decrement argument from [37, 41],
we conclude that (1.10) is equal to

Elog
p6PE

log
x/ω(x)6n6x 1Bx,1(n + p)1Bx,2(n + 2p)1Bx,3(n + 3p)+ o(1) (1.11)
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with P = P(x) being a medium-sized parameter. Such a double average is
evidently easier to analyse than a single average. The only information that we
will use about the sets Bx,i is that they are uniformly distributed in short intervals
with densities δ1, δ2, δ3 > 0, respectively, as follows easily from the fact that the
Ai have this property.

Appealing to the Furstenberg correspondence principle, the average (1.11)
being �1 will follow from the following ergodic-theoretic statement: For any
measure-preserving system (X, µ, T ) and any measurable sets B1, B2, B3 ⊂ X
satisfying the uniform distribution property

lim
H→∞

∫
X
|Eh6H 1Bi (T

qh x)− δi | dµ(x) = 0 (1.12)

for all q ∈ N and with δi as in Theorem 1.8, we have

Elog
p6P

∫
X

1B1(T
px)1B2(T

2px)1B3(T
3px) dµ(x)� 1. (1.13)

By the generalized von Neumann theorem and the Gowers uniformity of the
primes [18], the bound (1.13) will follow from

Elog
d6P: (d,W )=1

∫
X

1B1(T
d x)1B2(T

2d x)1B3(T
3d x) dµ(x)� 1, (1.14)

where we are now averaging over integers rather than primes and W :=
∏

p6w p
(with w being a slowly growing function of P). This is roughly the conclusion we
reach after Section 2.

In Section 3, we make several ergodic-theoretic reductions to reduce to the
case where X = (R/Z)d × (Z/mZ) for some d,m ∈ N, so that the problem has
essentially been reduced to the same problem on a torus. Now we apply a Pollard-
type inequality from [36] (which can be viewed as a quantitative version of the
inequality µ(A + B) > µ(A) + µ(B) valid for compact subsets A, B ⊂ X of
any compact, connected abelian group, with µ being the Haar measure on X ) to
conclude the proof (it is here that the assumption δ1 + δ2 + δ3 > 1 is crucial).

In the case of Theorem 1.9, we proceed similarly up to the point where
X = (R/Z)d×(Z/mZ). Since δ1+δ2+δ3 is exactly 1, the Pollard-type inequality
is no longer sufficient to conclude, but employing instead an inverse theorem for
it from [39] (see Theorem 3.2), we can deduce that (1.14) holds unless B1, B2,

B3 (or rather their projections to (R/Z)d) are essentially Bohr sets. The case
where B1, B2, B3 are Bohr sets can be dealt with a bit of Fourier analysis, and
we eventually conclude that (1.14) holds then as well under the conditions of
Theorem 1.9.
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For Theorem 1.10, we make a similar reduction to the statement

Elog
p6P

∫
X

1B1(T
px)1B2(T

2px) . . . 1Bk (T
kpx) dµ(x)� 1

with the Bi satisfying (1.12) as before. One easily sees from (1.12) that∫
X 1Bi (x) dµ(x) = δi ,

∫
X 1Bi1

(T i1 px)1Bi2
(T i2 px) dµ(x) = δi1δi2 for 1 6 i1 <

i2 6 k. Using the Pollard-type inequality mentioned above, we can also get a
lower bound for ∫

X
1Bi1

(T i1 px)1Bi2
(T i2 px)1Bi3

(T i3 px) dµ(x)

for 1 6 i1 < i2 < i3 6 k. The question is then, how large δ = mini δi can be under
these constraints if (1.14) fails. This is a combinatorial problem whose solution
gives us the value of ck in Theorem 1.10.

1.6. Notation. We use the following standard arithmetic functions:

• ω(n), defined to equal the number of prime factors of n (not counting
multiplicity);

• Ω(n), defined to equal the number of prime factors of n (counting multiplicity);

• the Liouville function λ(n) = (−1)Ω(n);

• the Möbius function µ(n), defined to equal λ(n) when n is square-free and 0
otherwise;

• the largest prime factor P+(n) of n and the smallest prime factor P−(n) of n
(with the convention P−(1) = P+(1) = 1);

• the Euler totient function ϕ(n), defined to equal the number |(Z/nZ)×| of
primitive residue classes modulo n;

• the von Mangoldt function Λ(n), defined to equal log p when n is a power p j

of a prime p for some j > 1, and equal to zero otherwise;

• the Dickman function ρ(u), defined as the unique continuous solution to the
delayed differential equation uρ ′(u) + ρ(u − 1) = 0 with the initial condition
ρ(u) = 1 for 0 6 u 6 1. As is well known, we have limx→∞ 1/x |{n 6 x :
P+(n) 6 xu

}| = ρ(1/u); we refer to [26] for further properties of this function.
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If A is a finite set, we use |A| to denote its cardinality. If A is a set of natural
numbers, we define the lower density

d−(A) := lim inf
x→∞

|A ∩ [1, x]|
x

, (1.15)

the upper density

d+(A) := lim sup
x→∞

|A ∩ [1, x]|
x

and the asymptotic density

d(A) := lim
x→∞

|A ∩ [1, x]|
x

(if it exists).
If A is a finite nonempty set of natural numbers and f : A → C is a function,

we define the average

En∈A f (n) :=
∑

n∈A f (n)∑
n∈A 1

and the logarithmic average

Elog
n∈A f (n) :=

∑
n∈A f (n)/n∑

n∈A 1/n
.

If we average over the variable p instead of n, the definitions are same, except
that the summation variable is now restricted to be prime.

We utilize the Dickman function ρ(u) that equals to the asymptotic density
d({n ∈ N : P+(n) 6 n1/u

}); see [26] for further properties of this function.
If A is a set, we use 1A to denote the indicator function; thus, 1A(n) = 1 when

n ∈ A and 1A(n) = 0 otherwise. Similarly, if E is a statement, we let 1E denote
the indicator of E ; thus, 1E = 1 when E is true and 1E = 0 when E is false.

We use X � Y , X � Y , X = O(Y ) to denote a bound of the form |X |6 CY for
an absolute constant C ; if we need to allow C to depend on additional parameters,
we denote this by subscripts, thus for instance X = Ok(Y ) denotes the bound
|X | 6 CkY for some Ck depending on k. Given an asymptotic parameter such as
x tending to infinity, we use o(Y ) to denote a quantity bounded in magnitude by
c(x)Y where c(x) goes to zero as x →∞.

We use e(x) := e2π i x for the standard character. We use n (mod q) for the
reduction of n modulo q and (a1, . . . , ak) for the greatest common divisor of
a1, . . . , ak .
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2. A correspondence principle

In this section, we develop a correspondence principle for weakly stable sets,
analogous to the Furstenberg correspondence principle [15], which converts
problems about establishing patterns in such sets with positive lower density to
problems about establishing certain patterns in measure-preserving systems.
The approximately multiplicative structure of weakly stable sets will be
incorporated (via the ‘entropy decrement argument’ [37]) to a certain prime
shift in these latter patterns. This correspondence principle will then be used
in later sections to establish Theorems 1.8, 1.9 and 1.10. We remark that
the analogous correspondence principle with weakly stable sets replaced by
bounded multiplicative functions is essentially contained in the recent work of
Frantzikinakis and Host [12].

We first recall the definition of a measure-preserving system.

DEFINITION 2.1 (Measure-preserving systems). We say that a tuple (X,X , µ,
T ) is a measure-preserving system if X is a sigma algebra on X , µ is a measure
on X and T : X → X is measure-preserving in the sense that T is invertible with
T, T−1 both measurable with µ(T−1 A) = µ(A) for all A ∈ X . We often omit the
sigma algebra X from the notation when it plays no specific role. We further say
that (X,X , µ, T ) is a separable measure-preserving system if the sigma algebra
X is countably generated.

The main result of this section is then as follows.

THEOREM 2.2 (Correspondence principle for weakly stable sets). Let A1, . . . ,

Ak ⊂ N be weakly stable sets. Suppose that there is a finite index set I and for
each α ∈ I , one has a natural number mα, integers hα1 , . . . , hαmα and indices cα1 ,
. . . , cαmα ∈ {1, . . . , k} such that

d−

(⋃
α∈I

mα⋂
i=1

(Acαi − hαi )
)
= 0. (2.1)

Then there exists a separable measure-preserving system (X,X , µ, T ) and
measurable sets B1, . . . , Bk ∈ X such that

lim
P→∞

∑
α∈I

Elog
p6P

∫
X

mα∏
i=1

1Bcαi
(T phαi x) dµ(x) = 0. (2.2)

Furthermore, one can ensure the following additional properties:
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(i) If for each j = 1, . . . , k, A j is uniformly distributed in short intervals with
density δ j ∈ [0, 1], then for every natural number q and i = 1, . . . , k one
has

lim
H→∞

∫
X
|Eh6H 1B j (T

qh x)− δ j | dµ(x) = 0. (2.3)

In particular (by the triangle inequality and shift invariance), each B j has
measure δ j .

(ii) If the A j are disjoint up to sets of density zero, then the B j are disjoint up to
null sets.

(iii) If d(
⋃k

j=1 A j) = 1, then
⋃k

j=1 B j has full measure.

REMARK 2.3. For the application to Theorems 1.8 and 1.10, we are going to
take I to be a singleton and hαi = cαi = i . For Theorem 1.9 in turn, we choose
I = {1, 2, 3} and hαi = i , and as α ranges through I , the tuples (cαi )i63 run through
solutions to cα1 + cα2 + cα3 = c (mod 3).

We remark that by the ergodic theorem, the conclusion (2.3) is equivalent
to 1Bi − δi being orthogonal to the profinite factor of X , defined as the factor
generated by all the periodic functions on X (that is, functions f : X → C
with f (T k x) = f (x) for some natural number k and almost all x ∈ X ). The
presence of the dilation factor p in the shifts T phαi in (2.2) is a key feature
of this principle that is not present in the classical Furstenberg correspondence
principle and is introduced via the entropy decrement argument from [37]. We
remark that the existence of the limit in (2.2) can also be derived from the general
convergence results for multiple ergodic averages along the primes in [14, 44],
and the logarithmically averaged limit Elog

p6P can then be replaced by the ordinary
average Ep6P . In fact, we have a useful formula for the limit; see Proposition 2.6.

We now prove the theorem. Let

S :=
⋃
α∈I

mα⋂
i=1

(Acαi − hαi )

denote the set in (2.1). By hypothesis, we have d−(S) = 0; thus, we can find a
sequence xl tending to infinity such that

En6xl 1S(n) = o(1)

as l → ∞. In particular, if 1 6 ωl 6 xl goes to infinity sufficiently slowly, one
has

ωlEn6xl 1S(n) = o(1)
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which implies in particular that

Elog
xl/ωl6n6xl

1S(n) = o(1).

Since

1S(n) =
∑
α∈I

mα∏
i=1

1Acαi
(n + hαi ),

we thus have

Elog
xl/ωl6n6xl

mα∏
i=1

1Acαi
(n + hαi ) = o(1) (2.4)

for each α ∈ I .
For each j = 1, . . . , k, the set A j is weakly stable by hypothesis. Let Bx, j be

the sets corresponding to A j as per Definition 1.6. Then for each prime p, one has

En6xl 1p-n|1A j (n)− 1Bxl , j (pn)| = o(1)

as l →∞, which for ωl sufficiently slowly growing depending on p implies that

Elog
xl/ωl6n6xl

1p-n|1A j (n)− 1Bxl , j (pn)| = o(1). (2.5)

By a diagonalization argument, one can select ωl so that (2.5) holds for all primes
p (of course, the decay rate will almost certainly not be uniform in p).

Restoring the case p|n, we have

Elog
xl/ωl6n6xl

|1A j (n)− 1Bxl , j (pn)| �
1
p
+ o(1),

and hence also

Elog
xl/ωl6n6xl

|1Acαi
(n + hαi )− 1Bxl ,c

α
i
(pn + phαi )| �

1
p
+ o(1)

for all α ∈ I and i = 1, . . . ,mα. From this, (2.4) and the triangle inequality, we
conclude that

Elog
xl/ωl6n6xl

mα∏
i=1

1Bxl ,c
α
i
(pn + phαi )�

1
p
+ o(1)

for all primes p, all α ∈ I and i = 1, . . . ,mα, where we allow implied constants
in the asymptotic notation to depend on I and the mα. Writing this average in
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terms of pn instead of n (which only impacts the logarithmic average in n by a
negligible amount, other than by now restricting n to multiples of p), we obtain

Elog
xl/ωl6n6xl

mα∏
i=1

1Bxl ,c
α
i
(n + phαi )p1p|n �

1
p
+ o(1).

If we logarithmically average over primes p 6 P , we conclude from the
convergence of

∑
p 1/p2 and the divergence of

∑
p 1/p that

lim
P→∞

lim sup
l→∞

Elog
p6PE

log
xl/ωl6n6xl

mα∏
i=1

1Bxl ,c
α
i
(n + phαi )p1p|n = 0.

On the other hand, by the entropy decrement argument [41, Theorem 3.6], we
have

lim
P→∞

lim sup
l→∞

Elog
p6PE

log
xl/ωl6n6xl

mα∏
i=1

1Bxl ,c
α
i
(n + phαi )(p1p|n − 1) = 0.

We conclude from the triangle inequality that

lim
P→∞

lim sup
l→∞

Elog
p6PE

log
xl/ωl6n6xl

mα∏
i=1

1Bxl ,c
α
i
(n + phαi ) = 0

for all α ∈ I .
Next, let l̃im : `∞(N) → C denote a generalized limit functional, that is to

say a bounded linear functional on `∞(N) that extends the limit functional on
convergent sequences, and such that

lim inf
l→∞

al 6 l̃im(al)l∈N 6 lim sup
n→∞

al

for all bounded real-valued sequences an . The existence of such a generalized
limit functional easily follows from the Hahn–Banach theorem (or from the
existence of nonprincipal ultrafilters on N). Then we have

lim
P→∞

l̃im
(
Elog

p6PE
log
xl/ωl6n6xl

mα∏
i=1

1Bxl ,c
α
i
(n + phαi )

)
l∈N
= 0. (2.6)

Let X denote the product space ({0, 1}k)Z of sequences (xc,m)c∈{1,...,k},m∈Z of
numbers xc,m ∈ {0, 1} with the product sigma algebra X (so, in particular, X is a
compact Hausdorff space with separable sigma algebra X ) and the shift

T (xc,m)c∈{1,...,k},m∈Z := (xc,m+1)c∈{1,...,k},m∈Z.
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We define a probability measure µ on X by requiring that∫
X

∏
β∈J

1xcβ ,mβ=1 dµ(x) = l̃im
(
Elog

xl/ωl6n6xl

∏
β∈J

1Bxl ,cβ
(n + mβ)

)
l∈N

(2.7)

for any finite index set J , any cβ ∈ {1, . . . , k} and any integers mβ . The existence
(and uniqueness) of this measure follows from the Kolmogorov extension
theorem. The measure µ is a probability measure that is invariant under the shift
T since the right-hand side of (2.7) remains invariant when the mβ are replaced
by mβ + 1. Next, we define the measurable sets B j for j = 1, . . . , k by the
formula

B j := {(xc,m)c∈{1,...,k},m∈Z ∈ X : x j,0 = 1};

then one can rewrite the left-hand side of (2.7) as∫
X

∏
β∈J

1Bcβ
(T mβ x) dµ(x). (2.8)

In particular, from (2.6), one has

lim
P→∞

Elog
p6P

∫
X

mα∏
i=1

1Bcαi
(T phαi x) dµ = 0

for all α ∈ I , which gives (2.2).
Now we prove (ii). If A j , A j ′ are disjoint up to zero density sets, then

Elog
xl/ωl6n6xl

1A j (n)1A j ′ (n) = o(1).

Repeating the previous arguments using this bound in place of (2.4), we eventually
arrive at ∫

X
1B j (x)1B j ′

(x) dµ(x) = 0,

and hence B j , B j ′ are disjoint up to null sets. This gives (ii). Similarly, if
⋃k

j=1 A j

has density one, then

Elog
xl/ωl6n6xl

k∏
j=1

(1− 1A j (n)) = o(1),

and then by repeating the previous arguments,∫
X

k∏
j=1

(1− 1B j (x)) dµ(x) = 0,

so that
⋃k

j=1 B j has full measure. This establishes (iii).
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Now we turn to (i). Fix b, q, j , let ε > 0, let Q be sufficiently large (depending
on b, q, ε) and then let H be sufficiently large (depending on b, q, ε, Q). Further,
let p be a prime in [log Q, Q]. Since A j is uniformly distributed in short intervals
with density δ j , we then conclude (if ωl grows slowly enough) that

sup
p∈[log Q,Q]

Elog
xl/ωl6y6xl

||A j ∩ [y/p, y/p+ q H/p] ∩ (qZ+ b p)| − δ j H/p| = o(1),

(2.9)
where p denotes the inverse of p in Z/qZ (this exists since p > log Q > q for Q
large enough). Also, since A j is weakly stable, we have

En6x/p:p-n|1A j (n)− 1Bx, j (pn)| = o(1),

and hence

sup
p∈[log Q,Q]

Elog
xl/ωl6y6xl

Ey/p6n6y/p+q H/p:p-n|1A j (n)− 1Bx, j (pn)| = o(1). (2.10)

From (2.10), we have, in particular, that for each p ∈ [log Q, Q],

Elog
xl/ωl6y6xl

En∈[y/p,y/p+q H/p]∩(qZ+b p):p-n|1A j (n)− 1Bxl , j (pn)| = o(1),

and hence on removing the p - n constraint,

Elog
xl/ωl6y6xl

En∈[y/p,y/p+q H/p]∩(qZ+b p)|1A j (n)− 1Bxl , j (pn)| �
1
p
+ o(1).

Meanwhile, from (2.9), one has

Elog
xl/ωl6y6xl

|En∈[y/p,y/p+q H/p]∩(qZ+b p)(1A j (n)− δ j)| = o(1).

By the triangle inequality, we conclude that

Elog
xl/ωl6y6xl

|En∈[y/p,y/p+q H/p]∩(qZ+b p)(1Bxl , j (pn)− δ j)| � 1/p + o(1)

or, equivalently,

Elog
xl/ωl6y6xl

|En∈[y,y+q H ]∩(qZ+b)(1Bxl , j (n)− δ j)1p|n| �
1
p

(
1
p
+ o(1)

)
.

We can estimate 1/p + o(1) by O(ε) for Q sufficiently large. We then sum in p
and use the triangle inequality to conclude that

Elog
xl/ωl6y6xl

∣∣∣∣En∈[y,y+q H ]∩(qZ+b)(1Bxl , j (n)− δ j)
∑

log Q6p6Q

1p|n

∣∣∣∣� ε log log Q
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for Q sufficiently large. On the other hand, from the Turan–Kubilius inequality
(or a direct second moment calculation), we have

En∈[y,y+q H ]∩(qZ+b)

∣∣∣∣ ∑
log Q6p6Q

1p|n − log log Q
∣∣∣∣2 � ε2(log log Q)2,

and hence by Cauchy–Schwarz,

En∈[y,y+q H ]∩(qZ+b)|1Bxl , j (n)− δ j |

∣∣∣∣ ∑
log Q6p6Q

1p|n − log log Q
∣∣∣∣� ε log log Q.

From the triangle inequality, we thus have

Elog
xl/ωl6y6xl

|En∈[y,y+q H ]∩(qZ+b)(1Bxl , j (n)− δ j)| � ε.

This implies that

lim sup
l→∞

Elog
xl/ωl6n6xl :n=b (q)|Eh6H (1Bxl , j (n + qh)− δ j)| � ε;

averaging in b, this implies

lim sup
l→∞

Elog
xl/ωl6n6xl

|Eh6H (1Bxl , j (n + qh)− δ j)| � ε,

and thus,

lim
H→∞

lim sup
l→∞

Elog
xl/ωl6n6xl

|Eh6H (1Bxl , j (n + qh)− δ j)|
2
= 0.

Using (2.7) and (2.8) and expanding the square, we conclude that

lim
H→∞

∫
X
|Eh6H (1B j (T

qh x)− δ j)|
2 dµ(x) = 0,

and (2.3) follows from the Cauchy–Schwarz inequality. This completes the proof
of Theorem 2.2.

In view of this correspondence principle (taken in the contrapositive),
Theorems 1.8, 1.9 and 1.10 are immediate consequences of the following
ergodic-theoretic counterparts (specialized to the case when F j = 1B j are
indicator functions).

THEOREM 2.4 (Main theorem, ergodic version). Let F1, . . . , Fk : X → [0, 1]
be measurable functions on a measure-preserving system (X,X , µ, T ), and let
δ1, . . . , δk ∈ (0, 1] be such that

lim
H→∞

∫
X
|Eh6H F j(T qh x)− δ j | dµ(x) = 0 (2.11)

for all q > 1 and j = 1, . . . , k.
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(i) (k = 3, large density) If k = 3 and δ1 + δ2 + δ3 > 1, then

lim sup
P→∞

Elog
p6P

∫
X

F1(T px)F2(T 2px)F3(T 3px) dµ(x) > 0.

(ii) (k = 3, critical density, first part) If k = 3 and δ1 + δ2 + δ3 = 1, then

lim sup
P→∞

∑
c1,c2,c3∈{0,1,2}

c1+c2+c3≡c (mod 3)

Elog
p6P

∫
X

Fc1(T
px)Fc2(T

2px)Fc3(T
3px) dµ(x) > 0

for all c = 0, 1, 2.

(iii) (k = 3, critical density, second part) If k = 3, δ1 + δ2 + δ3 = 1, δ1 6= δ3 and
F1 + F2 + F3 = 1 almost everywhere, then

lim sup
P→∞

Elog
p6P

∫
X

F1(T px)F2(T 2px)F3(T 3px) dµ(x) > 0.

(iv) (k > 3) If k > 3 and δ1, . . . , δk > ck (where ck is as in Theorem 1.10), then

lim sup
P→∞

Elog
p6P

∫
X

F1(T px) . . . Fk(T kpx) dµ(x) > 0.

REMARK 2.5. The condition δ1 6= δ3 in part (iii) is necessary. To see this, let X =
(R/Z)×(Z/2Z), equipped with its Haar measure and the measure-preserving map
T (x, n) = (x + α, n + 1) for α irrational. In addition, for 0 < δ2 < 1, define the
intervals

I1 =

[
δ2

2
,

1
2

]
, I2 =

[
0,
δ2

2

)
∪

[
1
2
,

1+ δ2

2

]
, I3 =

[
1+ δ2

2
, 1
)

and the functions Fi(x, n) = 1Ii (x + (n%2)/4), where n%2 equals 0 when
n is even and 1 when n is odd. We then have F1 + F2 + F3 ≡ 1. By
Weyl’s equidistribution theorem, condition (2.11) is satisfied for j = 1, 2, 3
with densities (1 − δ2)/2, δ2, (1 − δ2)/2, respectively. However, for any p, we
have F1(T px)F2(T 2px)F3(T 3px) = 0 since for any x, y ∈ R/Z, we cannot
simultaneously have x + y ∈ I1, x + 2y ∈ I2 ± 1/4, x + 3y ∈ I3.

Analogously, if we define the sets of integers

Ai = {n ≡ 0 (mod 2) : αn ∈ Ii mod 1} ∪ {n ≡ 1 (mod 2) : αn − 1/4 ∈ Ii mod 1}

for i = 1, 2, 3, then A1, A2, A3 are uniformly distributed in short intervals with
densities (1 − δ2)/2, δ2, (1 − δ2)/2, respectively, but n + d ∈ A1, n + 2d ∈ A2,

n + 3d ∈ A3 for d odd never happens.
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To prove this theorem, we will use the following explicit formula for the limit
of multiple ergodic averages along primes, which is essentially implicit in [14].

PROPOSITION 2.6 (Limit formula). Let F1, . . . , Fk ∈ L∞(X) be bounded
measurable functions on a measure-preserving system (X,X , µ, T ). Then

lim
P→∞

Elog
p6P

∫
X

F1(T px) . . . Fk(T kpx) dµ(x)

= lim
w→∞

lim
P→∞

Elog
d6P:(d,W )=1

∫
X

F1(T d x) . . . Fk(T kd x) dµ(x),

where W :=
∏

p6w p.

We remark that the convergence of the inner limit on the right-hand side was
first established by Host and Kra [27]; see also [45] for an alternate proof.

Proof. To abbreviate notation, we write A(d) :=
∫

X F1(T d x) . . . Fk(T kd x) dµ(x).
It suffices to show that

lim
w→∞

lim sup
P→∞

|Elog
p6P A(p)− Elog

d6P:(d,W )=1 A(d)| = 0.

By summation by parts, it will suffice to show that

lim
w→∞

lim sup
P→∞

|Ep6P A(p)− Ed6P:(d,W )=1 A(d)| = 0,

and by dyadic decomposition, it then suffices to show that

lim
w→∞

lim sup
P→∞

|EP6p62P A(p)− EP6d62P:(d,W )=1 A(d)| = 0.

Equivalently, we need to show that

EP6p62P A(p) = EP6d62P:(d,W )=1 A(d)+ o(1)

as P → ∞, if w = w(P) goes to infinity sufficiently slowly as P → ∞. By
splitting into residue classes modulo W , it suffices to show that

EP6p62P:p=b (mod W )A(p) = EP6d62P:d=b (mod W )A(d)+ o(1)

uniformly for all 1 6 b < W coprime to W .
Using the von Mangoldt function Λ and the prime number theorem in

arithmetic progressions, we can write the left-hand side as

EP6d62P:d=b (mod W )

φ(W )

W
Λ(d)A(d),
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so it suffices to show that

EP6d62P:d=b (mod W )

(
φ(W )

W
Λ(d)− 1

)
A(d) = o(1)

or, equivalently, that

EP/W6d62P/W (Λb,W (d)− 1)
∫

X
F1(T W d+bx) · · · Fk(T W kd+kbx) dµ(x) = o(1),

where Λb,W (d) := (φ(W )/W )Λ(W d + b). Replacing x by T n x for n 6 P and
averaging, it suffices to show that

EP/W6d62P/WEn6P

∫
X
(Λb,W (d)− 1)F1(T n+W d+bx) · · · Fk(T n+W kd+kbx) dµ(x) = o(1)

uniformly in b. By the generalized von Neumann theorem in the form of
[40, Lemma 5.2], this will follow from the claim

‖Λb,W (d)− 1‖U k [2P/W ] = o(1),

where the Gowers norm U k is defined, for instance, in [18]. But this follows
from [18, Theorem 7.2] (combined with the main results of [19, 20]).

It will thus suffice to prove the following slightly stronger version of
Theorem 2.4.

THEOREM 2.7 (Main theorem, ergodic version, II). Let F1, . . . , Fk : X → [0, 1]
be measurable functions on a measure-preserving system (X,X , µ, T ), and let
δ1, . . . , δk ∈ (0, 1] be such that

lim
H→∞

∫
X
|Eh6H F j(T qh x)− δ j | dµ(x) = 0 (2.12)

for all q > 1 and j = 1, . . . , k. We allow implied constants to depend on k, δ1,

. . . , δk . Let W be a natural number.

(i) (k = 3, large density) If k = 3 and δ1 + δ2 + δ3 > 1, then

lim sup
P→∞

Ed6P:(d,W )=1

∫
X

F1(T d x)F2(T 2d x)F3(T 3d x) dµ(x)� 1.

(ii) (k = 3, critical density, first part) If k = 3 and δ1 + δ2 + δ3 = 1, then

lim sup
P→∞

∑
c1,c2,c3∈{0,1,2}

c1+c2+c3≡c (mod 3)

Ed6P:(d,W )=1

∫
X

Fc1(T
d x)Fc2(T

2d x)Fc3(T
3d x) dµ(x)� 1

(2.13)
for all c = 0, 1, 2.
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(iii) (k = 3, critical density, second part) If k = 3, δ1 + δ2 + δ3 = 1, δ1 6= δ3 and
F1 + F2 + F3 = 1 almost everywhere, then

lim sup
P→∞

Ed6P:(d,W )=1

∫
X

F1(T d x)F2(T 2d x)F3(T 3d x) dµ(x)� 1.

(iv) (k > 3) If k > 3 and δ1, . . . , δk > ck (where ck is as in Theorem 1.10), then

lim sup
P→∞

Ed6P:(d,W )=1

∫
X

F1(T d x) · · · Fk(T kd x) dµ(x)� 1. (2.14)

A key point here is that the lower bound is independent of W (and of the
system X ).

3. The main theorems for k = 3

In this section, we prove parts (i)–(iii) of Theorem 2.7. We begin with some
standard reductions.

3.1. Reduction to the case of X being ergodic. We claim that to prove any
part of Theorem 2.7, it suffices to do so in the case when the measure-preserving
system X is ergodic (that is to say, all T -invariant subsets of X have measure
zero or full measure). For the sake of discussion, we only present this in the
case (ii) as the other cases are similar. Let X be a separable measure-preserving
system that is not necessarily ergodic. Applying the ergodic decomposition (see,
for example, [17, Theorem 3.42]), one can obtain a disintegration

µ =

∫
Y
µy dν(y), (3.1)

where (Y, ν) is the T -invariant factor of (X, µ), and for ν-almost every y, the
(X, T, µy) are ergodic measure-preserving systems. Assume that Theorem 2.7(ii)
is established whenever X is ergodic. By dominated convergence, (3.1) and (2.12),
we have ∫

Y
lim

H→∞

∫
X
|Eh∈[H ]Fc(T qh x)− δc| dµy(x) dν(y)

= lim
H→∞

∫
Y

∫
X
|Eh∈[H ]Fc(T qh x)− δc| dµy(x) dν(y) = 0.

Thus, for any c = 1, 2, 3, q > 1 and ν-almost every y, we have that
Eh∈[H ]Fc(T qh x) converges in L1(X, µy) norm to δc as H → ∞. Applying
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Theorem 2.7(ii) in the ergodic case, we conclude that for every W and c ∈ Z/3Z,
one has

lim inf
P→∞

∑
c1,c2,c3∈{1,2,3}

c1+c2+c3=c (mod 3)

EP6r62P:(r,W )=1

∫
X

Fc1(T
r x)Fc2(T

2r x)Fc3(T
3r x) dµy(x)� 1

for ν-almost every y. Integrating in y and applying Fatou’s lemma, this implies
that

lim inf
P→∞

∑
c1,c2,c3∈{1,2,3}

c1+c2+c3=c (mod 3)

EP6r62P:(r,W )=1

∫
X

Fc1(T
r x)Fc2(T

2r x)Fc3(T
3r x) dµ(x)� 1,

giving Theorem 2.7(ii) in the general case. (Though it is not strictly necessary,
one could use the results of [15] (see also [27]) to upgrade the limit inferior here
to a limit.) A similar argument works for all other components of Theorem 2.7.

3.2. Reduction to the case of X being a Kronecker system. Next we make
a reduction of parts (i)–(iii) of Theorem 2.7 to the case when X is a Kronecker
system, by which we mean that X is a compact separable abelian group with shift
T given by a translation T : x 7→ x + α; the argument here relies crucially on
the fact that k = 3, and it does not extend to part (iv). Again, we only detail
this reduction for the case (ii). If (X, T, µ) is an ergodic separable measure-
preserving system, then (as is well known, see, for example, [16]) we can form the
Kronecker factor (Z 1, S, ν), which is a Kronecker system together with a factor
map π : X 7→ Z 1 that pushes forward µ to ν and intertwines T and S (with the
measurable functions on Z 1 pulling back to the functions on X generated by the
eigenfunctions of T ). Furthermore, any average of the form

lim
P→∞

Er∈[P]

∫
X

G1(T ar x)G2(T br x)G3(T cr x) dµ

for distinct integers a, b, c will vanish whenever at least one of the functions
G1,G2,G3 ∈ L∞(X) is orthogonal to the Kronecker factor in the sense that the
conditional expectation E(G i |Z 1) vanishes for some i . As such, we see (as in [16])
that the Kronecker factor is characteristic for the average in (2.2), in the sense that
one can replace each of the functions Fc by the conditional expectation E(Fc|Z 1)

without affecting the average. The Kronecker factor is also characteristic for the
ergodic averages in (2.12). Finally, as the functions F1, F2, F3 take values in [0, 1]
and sum to 1, the same is true for E(F1|Z 1),E(F2|Z 1),E(F3|Z 1). As such, we
see that to prove Theorem 2.7(ii) for the functions F1, F2, F3, it suffices to do
so for E(F1|Z 1), E(F2|Z 1), E(F3|Z 1). Thus, Theorem 2.7(ii) for general ergodic
systems will follow from the case of Kronecker systems. Similarly for parts (i) or
(iii) of this theorem.
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3.3. Reduction to the case of X being a Kronecker system corresponding
to a Lie group. We make a further reduction of parts (i)–(iii) of Theorem 2.7
to the case when the Kronecker system is a compact abelian Lie group. Again,
we only discuss the case (ii). It is easy to see that a general Kronecker system
X is expressible as the inverse limit of Kronecker systems Xn that are compact
abelian Lie groups (see also [27] for the generalization of this claim to higher
step). Suppose that Theorem 2.7(ii) has been proven for Kronecker systems
that are compact abelian Lie groups. If F1, F2, F3, X are as in that theorem,
then E(Fc|Xn) will converge in L1(X, µ) norm to Fc for c ∈ Z/3Z. Applying
conditional expectations to (2.12) and using the dominated convergence theorem,
we see that this hypothesis continues to hold if each function Fc is replaced with
E(Fc|Zn). Thus, by hypothesis, we see that for any c ∈ Z/3Z, we have

lim inf
P→∞

∑
c1,c2,c3∈{1,2,3}

c1+c2+c3=c (mod 3)

EP6r62P:(r,W )=1

∫
X
E(Fc1 |Zn)(T r x)E(Fc2 |Zn)(T 2r x)

· E(Fc3 |Zn)(T 3r x) dµ(x)� 1,

with the implied constants uniform in n. Taking limits in n, we obtain
Theorem 2.7(ii) for arbitrary Kronecker systems. Similarly for Theorem 2.7(i) or
Theorem 2.7(iii).

3.4. Main argument. We continue the proof of Theorem 2.7(ii). Henceforth,
X is a Kronecker system that is a compact abelian Lie group. As the translation
map T is ergodic, the system X must (up to isomorphism) take the form X =
G × Z/MZ for some connected compact abelian Lie group (that is, a torus) and
some M > 1, with shift given by T (x, a) := (x + α, a + 1) for some α ∈ G,
such that the translation x 7→ x + α is ergodic on G (and, hence, totally ergodic
since G is connected and so the Pontryagin dual Ĝ is torsion-free). Applying the
hypothesis (2.12) with q = M , we conclude, in particular, that

lim
H→∞

∫
G
|Eh∈[H ]Fc(x + Mαh, a)− δc| dµG(x) = 0

for all c = 1, 2, 3 and a ∈ Z/MZ, where µG is the Haar probability measure on
G. By the ergodic theorem and total ergodicity of the shift x 7→ x + α, we thus
have ∫

G
Fc(x, a) dµG(x) = δc (3.2)

for all c = 1, 2, 3 and a ∈ Z/MZ.
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Next, we expand the left-hand side of (2.13) as

lim inf
P→∞

∑
c1,c2,c3∈{1,2,3}

c1+c2+c3=c (mod 3)

EP6r62P:(r,W )=1Ea∈Z/MZ

∫
G

Fc1(x + rα, a + r)

· Fc2(x + 2rα, a + 2r)Fc3(x + 3rα, a + 3r) dµG(x).

We split r into residue classes modulo MW to write this as

lim inf
P→∞

∑
c1,c2,c3∈{1,2,3}

c1+c2+c3=c (mod 3)

Eb∈[MW ]:(b,W )=1EP6r62P:r=b (mod MW )Ea∈Z/MZ

∫
G

Fc1(x + rα, a + b)Fc2(x + 2rα, a + 2b)Fc3(x + 3rα, a + 3b) dµG(x).

(3.3)

A standard calculation (see [16, Theorem 2.1]) shows that

lim
P→∞

EP6r62P:r=b (MW )

∫
G

Fc1(x + rα, a + b)Fc2(x + 2rα, a + 2b)

· Fc3(x + 3rα, a + 3b) dµG(x)

=

∫
G

∫
G

Fc1(x + y, a + b)Fc2(x + 2y, a + 2b)Fc3(x + 3y, a + 3b) dµG(x) dµG(y),

and so the expression in (3.3) can be simplified to∑
c1,c2,c3∈{1,2,3}

c1+c2+c3=c (mod 3)

Eb∈[MW ]:(b,W )=1Ea∈Z/MZ Ac1,c2,c3(a + b, a + 2b, a + 3b),

where

Ac1,c2,c3(a1, a2, a3) :=

∫
G

∫
G

Fc1(x+y, a1)Fc2(x+2y, a2)Fc3(x+3y, a3) dµG(x) dµG(y).

The condition (b,W ) = 1 clearly implies (r,M,W ) = 1 for any r ∈ Z/MZ
with b = r (M). Conversely, if (r,M,W ) = 1, then from the Chinese remainder
theorem, we see that there are precisely (M,W )φ(W )/φ((M,W )) values of b ∈
[MW ] with (b,W ) = 1 and b = r(M). Thus, the above expression can also be
written as ∑

c1,c2,c3∈{1,2,3}
c1+c2+c3=c (mod 3)

Ea,r∈Z/MZ:(r,M,W )=1 Ac1,c2,c3(a + r, a + 2r, a + 3r).
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Thus, to prove Theorem 2.7(ii), we can assume for the sake of contradiction that

Ea,r∈Z/MZ:(r,M,W )=1 Ac1,c2,c3(a + r, a + 2r, a + 3r) 6 ε (3.4)

for all c1, c2, c3 ∈ Z/3Z satisfying c1 + c2 + c3 = c and some sufficiently
small ε > 0 depending on δ1, δ2, δ3. Similarly, to prove Theorem 2.7(i) or
Theorem 2.7(iii), we may assume for the sake of contradiction that

Ea,r∈Z/MZ:(r,M,W )=1 A1,2,3(a + r, a + 2r, a + 3r) 6 ε. (3.5)

We can now easily dispose of the case (i) by using the following inequality of
‘Pollard-type’ [34].

LEMMA 3.1 (Pollard-type inequality). Let G be a torus of any dimension
equipped with its Haar measureµG and let F1, F2, F3 : G→ [0, 1] be measurable
functions. Set δi :=

∫
G Fi(x) dµ(x) for i = 1, 2, 3 and write δ := min(δ1, δ2, δ3).

Then, for any distinct integers m1,m2,m3, one has∫
G

∫
G

F1(x+m1 y)F2(x+m2 y)F3(x+m3 y) dµG(x) dµG(y) >
1
4

max(δ1+δ2+δ3−1, 0)2

if δ1 + δ2 + δ3 6 1+ 2δ, and∫
G

∫
G

F1(x + m1 y)F2(x + m2 y)F3(x + m3 y) > δ(δ1 + δ2 + δ3 − 1− δ)

if δ1 + δ2 + δ3 > 1+ 2δ.

Proof. We can replace the functions Fi with indicator functions by the following
lifting trick: if we define the subsets Ai of the torus G̃ := G × (R/Z)3 for i = 1,
2, 3 by the formula

Ai := {(x, t1, t2, t3) ∈ G̃ : ti ∈ [0, Fi(x)]},

then we see that δi = µG̃(Ai) and∫
G

∫
G

F1(x + m1 y)F2(x + m2 y)F3(x + m3 y) dµG(x) dµG(y)

=

∫
G̃

∫
G̃

1A1(x̃ + m1 ỹ)1A2(x̃ + m2 ỹ)1A3(x̃ + m3 ỹ) dµG̃(x̃) dµG̃(ỹ). (3.6)

Observe that as (x̃, ỹ) ranges in G̃ × G̃, the triple (x̃ + m1 ỹ, x̃ + m2 ỹ, x̃ + m3 ỹ)
ranges surjectively in the torus

{(z1, z2, z3) ∈ G̃3
: (m3 − m2)z1 + (m1 − m3)z2 + (m2 − m1)z3 = 0},
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and furthermore that the Haar probability measure on G̃ × G̃ pushes forward to
Haar probability measure on this torus. Thus, we can write the expression (3.6) as
a convolution

1(m3−m2)−1 A1 ∗ 1(m1−m3)−1 A2 ∗ 1(m2−m1)−1 A3(0),

where (m3−m2)
−1 A1 := {x̃ ∈ G̃ : (m3−m2)x̃ ∈ A1} has the same measure δ1 as A1

(because the pushforward of Haar probability measure on G̃ by x̃ 7→ (m3−m2)x̃
is also Haar probability measure), and similarly for (m1 − m3)

−1 A2 and (m2 −

m1)
−1 A3. By inner regularity, we may assume that A1, A2, A3 are all compact.

The claim now follows from [36, Corollary 3] (see also [39, Theorem 1.1] for a
closely related inequality).

For any choice of a, r , we see from (3.2), Lemma 3.1 and the hypothesis δ1 +

δ2 + δ3 > 1 of (i) that

A1,2,3(a + r, a + 2r, a + 3r)� 1.

Averaging over a, r , we contradict (3.5) if ε is small enough.
It remains to handle the critical cases (ii), (iii). For this, we use the following

inverse theorem for Lemma 3.1 that is deduced from the recent results in [39].

THEOREM 3.2 (Inverse theorem). Let δ1, δ2, δ3 > 0 be real numbers with δ1+δ2+

δ3 = 1. Let κ > 0, and suppose that ε > 0 is sufficiently small depending on κ . Let
G be a torus with Haar probability measure dµG , and let g1, g2, g3 : G → [0, 1]
be such that

δi − ε
1/2 6

∫
G

gi(x0) dµG(x0) 6 δi + ε
1/2 (3.7)

for i = 1, 2, 3 and such that∫
G

∫
G

g1(x0 + y0)g2(x0 + 2y0)g3(x0 + 3y0) dµG(x0) dµG(y0) 6 ε1/2. (3.8)

Then there exists a nonzero element φ of the Pontryagin dual group Ĝ (thus, φ :
G → R/Z is a continuous homomorphism that is not identically zero) and arcs
I1, I2, I3 in R/Z of lengths exactly δ1, δ2, δ3, such that

g1 ≈κ 1φ−1(I1)

g2 ≈κ 1(2φ)−1(I2)

g3 ≈κ 1φ−1(I3),

where 2φ : G → R/Z is the map (2φ)(x0) := 2(φ(x0)) and g ≈κ h denotes the
estimate ‖g − h‖L1(G,dµG ) � κ .
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Proof. Introduce the sets E1, E3 ⊂ G by the formulae

Ei := {x0 ∈ G : gi(x0) > ε1/8
}

for i = 1, 3. On the one hand, we have the pointwise bound

1Ei > gi − ε
1/8,

and hence from (3.7),
µG(Ei) > δi − O(ε1/8) (3.9)

for i = 1, 3. On the other hand, from the pointwise bound

1Ei 6 ε−1/8gi

and (3.8), we have∫
G

∫
G

1E1(x0 + y0)g2(x0 + 2y0)1E3(x0 + 3y0) dµG(x0) dµG(y0)� ε1/4

or equivalently (writing x0 + 2y0 = z0)∫
G

g2(z0)1E1 ∗ 1E3(2z0) dµG(z0)� ε1/4.

In particular, if we let F denote the set of points x0 ∈ G such that 1E1 ∗ 1E3(x0) >
ε1/8, then ∫

G
g2(z0)1F(2z0) dµG(z0)� ε1/8. (3.10)

Applying [39, Corollary 1.2] and (3.9), we have

µG(F) > µG(E1)+ µG(E3)− O(ε1/16) > δ1 + δ3 − O(ε1/16). (3.11)

If one sets F ′ := {z0 : 2z0 ∈ F}, then (as G is a torus) F ′ has the same measure
as F ; thus,

µG(F ′) > µG(E1)+ µG(E3)− O(ε1/16) > δ1 + δ3 − O(ε1/16). (3.12)

In particular, since δ1 + δ2 + δ3 = 1, we obtain∫
G\F ′

g2(z0) dµG(z0) 6 1− µG(F ′) 6 δ2 + O(ε1/16).

On the other hand, from (3.10), one has∫
F ′

g2(z0) dµG(z0)� ε1/8. (3.13)
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From (3.7) and (3.13), we get∫
G\F ′

g2(z0) dµG(z0) = δ2 + O(ε1/16). (3.14)

From

δ2 − O(ε1/2) 6
∫

G
g2(z0) dµG(z0) 6

∫
F ′

g2(z0) dµG(z0)+ µG(G \ F ′)

and (3.12), (3.13), we get

µG(F ′) = δ1 + δ3 − O(ε1/16). (3.15)

Finally, from (3.9) and (3.12), we get

µG(E1) = δ1 + O(ε1/16), µG(E3) = δ3 + O(ε1/16). (3.16)

By (3.15), we have µG(G \ F ′) = δ2 + O(ε1/16), which, together with (3.13) and
(3.14), implies that

‖g2 − 1F ′‖L1(G) � ε1/16.

From (3.16), we have for i = 1, 3 that∫
Ei

gi(x0) dµG(x0) 6 δi + O(ε1/16);

but by definition of Ei , we have∫
G\Ei

gi(x0) dµG(x0)� ε1/8.

Now, by (3.7) actually∫
Ei

gi(x0) dµG(x0) = δi + O(ε1/16).

Comparing the two previous formulae with (3.16), we conclude that

‖gi − 1Ei‖L1(G) � ε1/16. (3.17)

As F has the same measure as F ′, we see from (3.15) and (3.16) that

µG(F) = µG(E1)+ µG(E2)− O(ε1/16).
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Applying [39, Theorem 1.5], there exists a nontrivial element φ ∈ Ĝ and arcs
I1, I3 ⊂ R/Z such that

µG(E14φ
−1(I1)), µG(E34φ

−1(I3)) 6 κ2, (3.18)

where 4 denotes symmetric difference. (See also [5, 21] for closely related
results.) (Note from the connectedness of G that φ(G) must be all of R/Z,
and hence φ pushes forward µG to Haar probability measure on R/Z. The
same claim then holds for 2φ.) Moreover, from (3.16), we see that necessarily
µG(Ii) = δi + O(ε1/16), and since ε is small enough in terms of κ , we may in
fact add or remove a segment from Ii so that its length becomes exactly δi while
keeping (3.18) true (with possibly 2κ2 in place of κ2).

Combining (3.18) with (3.17), we see that

‖gi − 1φ−1(Ii )‖L1(G) � κ2

for i = 1, 3. From (3.8), we conclude that∫
G

∫
G

1φ−1(I1)(x0)g2(x0 + y0)1φ−1(I3)(x0 + 2y0) dµG(x0) dµG(y0)� κ2

or equivalently ∫
G

g2(z0)1φ−1(I1) ∗ 1φ−1(I3)(2z0) dµG(z0)� κ2.

Let J be the interval I1+ I3, shrunk on both sides by κ . Then J is an arc of length
δ1 + δ3 − 2κ and

1φ−1(I1) ∗ 1φ−1(I3)(x0)� κ

for x0 ∈ φ
−1(J ). We conclude that∫

G
g2(z0)1φ−1(J )(2z0) dµG(z0)� κ.

If we let I2 denote the complement of I1 + I3, then I2 is an arc of length δ2 that
differs from the complement of J by two arcs of total length κ , and thus∫

G\(2φ)−1(I2)

g2(z0) dµG(z0)� κ.

Also ∫
(2φ)−1(I2)

g2(z0) dµG(z0) 6 µG(φ
−1(I2)) = δ2.
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Combining this with (3.7), we see that∫
(2φ)−1(I2)

g2(x0) dµG(x0) = δ2 + O(κ),

so
‖g2 − 1(2φ)−1(I2)‖L1(G) � κ,

and the claim follows.

Let κ > 0 be a small absolute constant to be chosen later, and suppose ε > 0
is sufficiently small depending on κ . Suppose first that (3.4) holds for some c ∈
Z/3Z. By Markov’s inequality, this implies that for 1 − O(ε1/2) of the pairs of
(a, r) ∈ Z/MZ× Z/MZ with (r,M,W ) = 1, and any c1, c2, c3 ∈ {1, 2, 3} with
c1 + c2 + c3 = c (mod 3), one has

Ac1,c2,c3(a + r, a + 2r, a + 3r)� ε1/2.

Applying Theorem 3.2, we conclude that for such pairs (a, r), there exists a
nontrivial element φa,r;c1,c2,c3 ∈ Ĝ and arcs Ia,r;c1,c2,c3,i ⊂ R/Z for i = 1, 2, 3
and any c1, c2, c3 ∈ {1, 2, 3} with c1 + c2 + c3 = c (mod 3), one has

Fc1(·, a + r) ≈κ 1φ−1
a,r;c1,c2,c3

(Ia,r;c1,c2,c3,1)

Fc2(·, a + 2r) ≈κ 1(2φa,r;c1,c2,c3 )
−1(Ia,r;c1,c2,c3,2)

Fc3(·, a + 3r) ≈κ 1φ−1
a,r;c1,c2,c3

(Ia,r;c1,c2,c3,3)
.

From (3.2), we see that the arc Ia,r;c1,c2,c3,i has length δi + O(κ) for i = 1, 2, 3.
Now we start removing the dependence of φa,r;c1,c2,c3 on the various parameters

a, r, c1, c2, c3. The key lemma is the following.

LEMMA 3.3. Let 0 < σ < 1/2, and suppose that δ > 0 is sufficiently small
depending on σ . Let φ1, φ2 ∈ Ĝ be nontrivial and let I1, I2 ⊂ R/Z be arcs of
length between σ and 1 − σ . Suppose that 1φ−1

1 (I1)
≈δ 1φ−1

2 (I2)
. Then we have

φ2 = ±φ1.

Proof. By hypothesis, we have∫
G

1φ−1
1 (I1)

1φ−1
2 (I2)

dµG = µG(φ
−1
1 (I1))+ O(δ) = m(I1)+ O(δ) (3.19)

and similarly for φ2 and I2, where m denotes the Lebesgue measure on R/Z. In
particular, m(I2)= m(I1)+O(δ). By Fourier inversion, the left-hand side of (3.19)
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is equal to ∑
n,m∈Z

nφ1+mφ2=0

1̌I1(n)1̌I2(m),

where
1̌I1(n) :=

∫
R/Z

1I1(α)e(−nα) dα

and similarly for 1̌I2(m). On the other hand, as G is connected, the Pontryagin dual
Ĝ is torsion-free, so for each n, there is at most one m such that nφ1 + mφ2 = 0
and vice versa. If φ1 is not an integer multiple of φ2, then we may omit the n = 1
terms and conclude from Cauchy–Schwarz that( ∑

n∈Z\{1}

|1̌I1(n)|
2

)1/2(∑
m∈Z

|1̌I2(m)|
2

)1/2

> m(I1)+ O(δ).

On the other hand, from the Plancherel identity, one has∑
m∈Z

|1̌I2(m)|
2
= m(I2)

and (by explicit computation of 1̌I1(1))∑
n∈Z\{1}

|1̌I1(n)|
2
= m(I1)− |1̌I1(1)|

2 6 m(I1)− cσ

for some quantity cσ > 0 depending only on σ . For δ small enough, this leads to a
contradiction. Thus, φ1 is an integer multiple of φ2, and, similarly, φ2 is an integer
multiple of φ1; thus, φ2 = ±φ1 as claimed.

From this lemma, we see that for each c1 ∈ Z/3Z and a ∈ Z/MZ, there is at
most one nontrivial φa;c1 ∈ Ĝ up to sign such that Fc1(·, a) ≈κ 1φ−1

a,c(Ic1 )
for some

arc Ic1 of length δc1 . Select such a φa;c1 for each a, c1 (or select φ arbitrarily if no
such Ic1 exists). Then for 1 − O(ε1/2) of the pairs of (a, r) with (r,M,W ) = 1,
and any c1, c2, c3 with c1 + c2 + c3 = c, we have

φa,r;c1,c2,c3 = ±φa+r;c1

2φa,r;c1,c2,c3 = ±φa+2r;c2

φa,r;c1,c2,c3 = ±φa+3r;c3 .

In particular, for such a pair (a, r), we have

φa+r;c1 = ±φa+3r;c3
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for any c1, c3 ∈ {1, 2, 3} (choosing c2 to be congruent to c − c1 − c3 modulo 3),
which implies, in particular, that φa+r;c1 does not depend on c1 up to sign. Thus,
we can actually find a nontrivial φa ∈ Ĝ for all a ∈ Z/MZ, such that one has

φa+r = ±φa+3r ; 2φa+r = ±φa+2r

for 1 − O(ε1/2) of the pairs of (a, r) with (r,M,W ) = 1. Replacing (a, r) by
(a − r, r) and (a + 2r,−r), we also see that for 1 − O(ε1/2) of such pairs, we
simultaneously have

φa = ±φa+2r ; 2φa = ±φa+r

and
φa+r = ±φa−r ; 2φa+r = ±φa,

which implies, in particular, that

4φa = ±φa.

But this is impossible since Ĝ is torsion-free and φa is nontrivial. This proves
Theorem 2.7(ii).

Now we turn to Theorem 2.7(iii). With κ and ε as above, we now assume
instead that δ1 6= δ3 and that (3.5) holds. Again using Markov’s inequality
followed by Theorem 3.2, we now conclude that for 1 − O(ε1/2) of the pairs
of (a, r) ∈ Z/MZ × Z/MZ with (r,M,W ) = 1, one has a nontrivial element
φa,r ∈ Ĝ and arcs Ia,r;i ⊂ R/Z for i = 1, 2, 3 such that

F1(·, a + r) ≈κ 1φ−1
a,r (Ia,r;1)

F2(·, a + 2r) ≈κ 1(2φa,r )−1(Ia,r;2)

F3(·, a + 3r) ≈κ 1φ−1
a,r (Ia,r;3)

.

From (3.2), we see that the arc Ia,r;i has length δi + O(ε1/2) for i = 1, 2, 3.
Applying Lemma 3.3, we conclude that one can find nontrivial characters

φ(i)a ∈ Ĝ for a ∈ Z/MZ, i = 1, 2, 3 such that for 1 − O(ε1/2) of the pairs of
(a, r) ∈ Z/MZ× Z/MZ with (r,M,W ) = 1, we have

φa,r = ±φ
(1)
a+r (3.20)

2φa,r = ±φ
(2)
a+2r (3.21)

φa,r = ±φ
(3)
a+3r , (3.22)

so in particular
φ
(2)
a+2r = ±2φ(1)a+r .
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Replacing a by a − r , we conclude that for 1− O(ε1/2) of the above pairs (a, r),
we have

φ(2)a+r = ±2φ(1)a .

This implies that for 1−O(ε1/2) of the triples (a, r, r ′) ∈ Z/MZ×Z/MZ×Z/MZ
with (r,M,W ), (r ′,M,W ) = 1, we have

φ(2)a+r = ±2φ(1)a

and
φ(2)a+r = ±2φ(1)a+r−r ′,

which implies (by the torsion-free nature of Ĝ) that

φ
(1)
a+r−r ′ = ±φ

(1)
a .

Iterating this two more times, we see that for 1 − O(ε1/2) of the septuples
(a, (ri)

6
i=1) ∈ (Z/MZ)7 with (ri ,M,W ) = 1 for 1 6 i 6 6, one has

φ(1)a+r1−r2+r3−r4+r5−r6
= ±φ(1)a .

For any h ∈ Z/MZ, the number of sextuples (ri)
6
i=1 ∈ (Z/MZ)6 with r1 − r2 +

r3 − r4 + r5 − r6 = 2h and (ri ,M,W ) = 1 for 1 6 i 6 6 can be computed using
the Chinese remainder theorem to be comparable (up to absolute constants) to
the quantity 1/M((φ((M,W ))/(M,W ))M)6. (The factor of 2 here is needed to
avoid the parity obstruction that r1 − r2 + r3 − r4 is necessarily even if (M,W )

is even.) On the other hand, the number of representations of r1 − r2 + r3 − r4 +

r5 − r6 = 2h, where ri ∈ (Z/MZ) and (ri ,M,W ) = 1, and r1 (say) belongs to
an exceptional set of size O(ε1/2

|{r ∈ Z/MZ : (r,M,W ) = 1}|) is bounded by
� ε1/21/M((φ((M,W ))/(M,W ))M)6. (The validity of this bound follows from
the fact that the number of representations −r2 + r3 − r4 + r5 − r6 = h′ with ri ∈

Z/MZ and (ri ,M,W ) = 1 is uniformly� 1/M((φ((M,W ))/(M,W ))M)5.)
From this and a double counting argument, we see that for 1 − O(ε1/2) of the

pairs (a, h) ∈ (Z/MZ)2, we have

φ
(1)
a+2h = ±φ

(1)
a .

We conclude that there exists a nonzero element φ of Ĝ such that

φ
(1)
2a = ±φ

for 1 − O(ε1/2) of a ∈ Z/MZ. Inserting this back into (3.20), (3.21) and (3.22)
and double counting, we conclude that

φ
(2)
2a = ±2φ
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and
φ
(3)
2a = ±φ

for 1 − O(ε1/2) of a ∈ Z/MZ. This implies that for 1 − O(ε1/2) of a ∈ Z/MZ,
we can find arcs Ia;1, Ia;2, Ia;3 in R/Z such that

F1(·, a) ≈κ 1φ−1(Ia;1)

F2(·, a) ≈κ 1(2φ)−1(Ia;2)

F3(·, a) ≈κ 1φ−1(Ia;3).

Fix such an a. From (3.2), we see that each arc Ia;i has length δi + O(κ) for
i = 1, 2, 3. As F1 + F2 + F3 = 1, we have

1 ≈κ 1φ−1(Ia;1) + 1(2φ)−1(Ia;2) + 1φ−1(Ia;3).

Since φ pushes forward µG to Haar measure m on R/Z, we conclude that∫
R/Z
|1Ia;1(θ)+ 1Ia;2(2θ)+ 1Ia;3(θ)− 1| dm(θ)� δ,

which implies that the set Ia;1 ∪ Ia;3 differs by at most O(δ) in measure from the
set {θ ∈ R/Z : 2θ 6∈ Ia;2}. But since Ia;2 is an arc length δ2 + O(κ), the set {θ ∈
R/Z : 2θ 6∈ Ia;2} is the union of two arcs of length (1− δ2)/2+ O(κ), separated
from each other by distance δ2/2 + O(κ). Since δ1 6= δ3 and δ1 + δ2 + δ3 = 1,
δ1 and δ3 are both distinct from (1− δ2)/2. As Ia;1 and Ia;3 are arcs of length
δ1 + O(κ) and δ3 + O(κ), this leads to a contradiction for κ small enough. This
proves Theorem 2.7(iii).

4. The main theorem for k > 4.

We now prove Theorem 2.7(iv). By reducing the functions Fi by an appropriate
scalar multiple, we may assume that δ1 = · · · = δk = δ for some δ > ck . From
(2.12) and the triangle inequality, we have

lim
P→∞

Ed6P:(d,W )=1

∫
X

Fi(T id x) dµ(x) = δ

for any 1 6 i 6 k, and also

lim
P→∞

Ed6P:(d,W )=1

∫
X

Fi(T id x)Fi ′(T i ′d x) dµ(x) = δ2
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for any 1 6 i < i ′ 6 k (this can be seen by first changing variables from x to T id x ,
pulling the d sum inside the integral and using (2.12) and the triangle inequality).
This implies that

lim
P→∞

Ed6P:(d,W )=1

∫
X
(1− Fi(T id x)) dµ(x) = 1− δ (4.1)

and

lim
P→∞

Ed6P:(d,W )=1

∫
X
(1− Fi(T id x))(1− Fi ′(T i ′d x)) dµ(x) = (1− δ)2. (4.2)

Now, we bound triple correlations.

LEMMA 4.1. For 1 6 i < i ′ < i ′′ 6 k, one has

lim
P→∞

Ed6P:(d,W )=1

∫
X
(1−Fi (T id x))(1−Fi ′(T i ′d x))(1−Fi ′′(T i ′′d x)) dµ(x) 6

3
4
(1−δ)2.

Proof. By inclusion–exclusion, it suffices to show that

lim
P→∞

Ed6P:(d,W )=1

∫
X
(1−Fi(T id x))(1−Fi ′(T i ′d x))Fi ′′(T i ′′d x) dµ(x) >

1
4
(1−δ)2.

By repeating the arguments of the previous section, to prove this, it suffices to do
so when X = G × Z/MZ with G a torus with shift T (x, a) = (x + α, a + 1).
(Here, it is essential that there are only three factors in the average considered
here so that the average is of ‘complexity one’ and can thus be controlled by the
Kronecker factor. The same is not true for the original average (2.14), but we will
not need to directly pass to characteristic factors for that average.) It then suffices
to establish the lower bound∫

G

∫
G
(1−Fi,a+ir (x+iy))(1−Fi ′,a+i ′r (x+i ′y))Fi ′′,a+i ′′r (x+i ′′y) dµG(x)dµG(y)>

1
4
(1−δ)2

for all a, r ∈ Z/MZ, where the Fi,a : G → [0, 1] are measurable functions of
mean δ. But this follows from Lemma 3.1 (noting that δ > ck > 1/2 and hence
(1− δ)+ (1− δ)+ δ − 1 6 1+ 2 min(δ, 1− δ)).

Let X̃ be the space X × [0, 1]k with the product measure dµdt1 . . . dtk , and for
each 1 6 i 6 k, let Ei ⊂ X̃ denote the set

Ei := {(x, t1, . . . , tk) ∈ X̃ : ti > Fi(x)},

then from the above lemma, we have

lim
P→∞

Ed6P:(d,W )=1

∫
X̃

1Ei (T
id x, t)1Ei ′

(T i ′d x, t)1Ei ′′
(T i ′′d x, t) dµ(x)dt 6

3
4
(1− δ)2.

https://doi.org/10.1017/fms.2019.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.28


Value patterns of multiplicative functions 43

Hence, if N (d, x, t) denotes the counting function

N (d, x, t) :=
k∑

i=1

1Ei (T
id x, t),

then on summing the preceding assertion in i, i ′, i ′′, we obtain

lim
P→∞

Ed6P:(d,W )=1

∫
X̃

(
N (d, x, t)

3

)
dµ(x) dt 6

(
k
3

)
3
4
(1− δ)2.

Applying similar arguments to (4.1) and (4.2), we obtain

lim
P→∞

Ed6P:(d,W )=1

∫
X̃

(
N (d, x, t)

2

)
dµ(x) dt =

(
k
2

)
(1− δ)2

and

lim
P→∞

Ed6P:(d,W )=1

∫
X̃

(
N (d, x, t)

1

)
dµ(x) dt =

(
k
1

)
(1− δ).

On the other hand, if (2.14) fails, then

lim
P→∞

Ed6P:(d,W )=1

∫
X̃

1N (d,x,t)=0 dt � ε

for any given ε.
Next, note that for any integer 1 6 a 6 k, we have the inequality

(N (d, x, t)− 1)(N (d, x, t)− a)(N (d, x, t)− a + 1)) > 0

whenever N (d, x, t) 6= 0 since N (d, x, t) is then an integer from 1 to k. On using
the identities

x3
= 6

(
x
3

)
+ 6

(
x
2

)
+

(
x
1

)
,

x2
= 2

(
x
2

)
+

(
x
1

)
,

this gives

6
(

N (d, x, t)
3

)
+ (6− 4a)

(
N (d, x, t)

2

)
+ (a2

− a)
(

N (d, x, t)
1

)
− a(a − 1) > 0.

(More generally, one has xn
=
∑n

k=1 k!S(n, k)
(x

k

)
, where S(n, k) are the Stirling

numbers of the second kind.) Averaging in d, x, t and using the previous
estimates, we conclude that(

9
2

(
k
3

)
+(6−4a)

(
k
2

))
(1−δ)2+(a2

−a)k(1−δ)−a(a−1) > −Ok(ε). (4.3)

https://doi.org/10.1017/fms.2019.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.28


T. Tao and J. Teräväinen 44

We take a = ak = d(3k + 2)/4e here (this turns out to be the optimal choice).
Then this becomes exactly the same quadratic equation as in the definition of ck

in Theorem 1.10, which gives the desired contradiction if ε is small enough. This
concludes the proof of Theorem 2.7(iv).

5. Obstructions for higher values of k

In this section, we give some limitations as to how much the value ck =

1 − 1/(k − 4
3 + o(1)) appearing in Theorem 2.7(iv) may be lowered for large

values of k.

LEMMA 5.1. Let m > 3 be a natural number. Then there exist shifts a1, . . . ,

am2 ∈ R/Z such that the ‘strips’

Si :=

{
(x, y) ∈ (R/Z)2 : x + iy ∈ ai +

[
0,

2
m

]
mod 1

}
for i = 1, . . . ,m2 cover the entire torus (R/Z)2.

Proof. We set a1 = · · · = am = 0. Then for any y ∈ [1/m, 2/m],
the strips S1, . . . , Sm intersect the circle {(x, y) : x ∈ R/Z} in arcs
{(x, y) : x ∈ [0, 2/m] − iy}. These m arcs have length 2/m, with consecutive
arcs intersecting in an arc of length at most 1/m. The union of these m arcs is
then an arc of length at least 1 and thus covers the whole circle. Thus, we have
the inclusion

(R/Z)×
[

1
m
,

2
m

]
⊂ S1 ∪ · · · ∪ Sm .

By applying a ‘Galilean transformation’, we conclude that for any 1 6 j < m, if
we define a jm+i := ( j/m)i for i = 1, . . . ,m, then for y ∈ j/m + [1/m, 2/m] =
[( j + 1)/m, ( j + 2)/m], the strips S jm+1, . . . , S jm+m intersect the circle {(x, y) :
x ∈ R/Z} in overlapping arcs of total length at least 1 so that

(R/Z)×
[

j + 1
m

,
j + 2

m

]
⊂ S jm+1 ∪ · · · ∪ S jm+m .

Taking the union over all j = 0, . . . ,m − 1, we obtain the claim.

COROLLARY 5.2. Let k > 9. In Theorem 2.7, one cannot replace ck with any
quantity lower than 1 − 2/b

√
kc. (For 3 6 k < 9, this conclusion is vacuously

true.)
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Proof. Set m := b
√

kc so that m > 3 and m2 6 k. Let a1, . . . , am2 ∈ R/Z be
as in the preceding lemma, set ai arbitrarily for m2 < i 6 k and let Ii be the
complement of ai+[0, 2/m] mod 1 in R/Z for i = 1, . . . , k. By the above lemma,
we have

k∏
i=1

1Ii (x + iy) = 0

for all x, y ∈ R/Z. If we then set X to be the unit circle R/Z with Haar measure
and an irrational shift T : x 7→ x+α for some irrational α ∈ R/Z, and set Fi := 1Ii ,
we obtain the claim (with δi = 1− 2/m = 1− 2/b

√
kc for i = 1, . . . , k).

Clearly, any quantitative improvement in the covering construction in
Lemma 5.1 would lead to a stronger lower bound on the optimal value of ck

in Corollary 5.2. We do not know, however, whether the optimal value behaves
like 1− 1/k, like 1− 1/

√
k or has some intermediate behaviour.

6. Proofs of the applications

Proof of Theorem 1.2. Consider the sets Qα,β = {n ∈ N : nα < P+(n) < nβ}
with 0 6 α < β 6 1. These sets are always stable since for any prime p, we
have 1Qα,β

(pn) = 1Qα,β
(n) + O(1P+(n)∈[nα ,(pn)α ]∪[nβ ,(pn)β ]) + O(1p>nα ) and after

taking expectations over n 6 x , the O(·) term becomes negligible (as follows, for
instance, from the continuity of the Dickman function). Also, Qα,β is uniformly
distributed in short intervals with density ρ(1/β) − ρ(1/α) since for x/ log x 6
n 6 x , we have

1Qα,β
(n) = 1P+(n)6xβ − 1P+(n)6xα + O(1P+(n)∈[(x/ log x)α ,xα ]∪[(x/ log x)β ,xβ ]),

and the O(·) term is negligible, whereas 1P+(n)6xα is a real-valued multiplicative
function, so by [42, Lemma 3.4], we have∫ x

0
|Ey6n6y+H,n=b (mod q)1P+(n)6xα − ρ(1/α)| dy = o(1),

and the same holds with α replaced by β. Now, since d(Q0,α) + d(Qα,β) +

d(Qβ,1) = 1, d(Q0,α ∪ Qα,β ∪ Qβ,1) = 1 and

d(Q0,α) = ρ(1/α) 6= 1− ρ(1/β) = d(Qβ,1)

by hypothesis, we conclude from Theorem 1.9 that

d−((Q0,α − 1) ∩ (Qα,β − 2) ∩ (Qβ,1 − 3)) > 0
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whenever ρ(1/α) 6= 1 − ρ(1/β), and the positivity of the first density in
Theorem 1.2 follows. The positivity of the second density is proven completely
symmetrically.

Proof of Theorem 1.12. We know from the proof of Theorem 1.2 that {n ∈ N :
P+(n) > nγ } is a stable set that is uniformly distributed in short intervals with
density 1−ρ(1/γ ). Thus, as long as 3(1−ρ(1/γ )) > 1, we can apply Theorem 1.8
to obtain the desired conclusion. But 3(1 − ρ(1/γ )) > 1 holds exactly when
γ < e−1/3, as wanted.

Proof of Theorem 1.13. Employing Theorem 1.10, we only need to show that if
ck are as in that theorem, then 1− ρ(1/γk) > ck for k = 4, 5, and this is true by a
numerical computation.

Proof of Theorem 1.1. By applying Theorem 1.2 for any α, β satisfying
ρ(1/α) 6= 1− ρ(1/β), we already know that

d−(n ∈ N : P+(n + 1) < P+(n + 2) < P+(n + 3)) > 0,
d−(n ∈ N : P+(n + 1) > P+(n + 2) > P+(n + 3)) > 0.

(6.1)

We prove the positivity of the first density in Theorem 1.1; the second one is
proven completely symmetrically. We follow the strategy of [31, Corollary 2.8].
Suppose, for a contradiction, that we had

lim
l→∞

En6xl 1P+(n+1)<P+(n+2)<P+(n+3)>P+(n+4) = 0

for some sequence (xl)l∈N tending to infinity. Let

S := {n ∈ N : P+(n + 1) < P+(n + 2) < P+(n + 3)}.

Then as l →∞, we have

En6xl 1n∈S,n+1 6∈S = o(1).

Iterating this, for any H ∈ N, we see that for almost all n 6 xl , we have

En6xl 1n∈S1n+1 6∈S or n+2 6∈S or...or n+H 6∈S = o(1).

In particular, this yields

En6xl 1n 6∈S + En6xl 1n+1,...,n+H∈S > 1− o(1)

as l →∞. By (6.1), we must then have

En6xl 1n+1,...,n+H∈S > c − o(1)
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for some c > 0 independent of H and for all large enough l. However, for any
ε > 0, we have

(S − 1) ∩ · · · ∩ (S − H)
⊂ {n ∈ N : P+(n + 1) 6 nε} ∪ {n ∈ N : P+(n + h) > nε for all 2 6 h 6 H}.

(6.2)

The density of the first set on the right-hand side of (6.2) over n 6 xl is ρ(1/ε)+
o(1), whereas by the Matomäki–Radziwiłł theorem, the density of the second set
is 6 ε + o(1) as soon as H is large enough in terms of ε. Thus,

En6xl 1n,n+1,...,n+H∈S 6 ρ(1/ε)+ ε + o(1)

for all large enough H , and letting ε→ 0, we get the desired contradiction.

Proof of Theorem 1.3. We prove the theorem for ω(n); the case ofΩ(n) is similar
(and in fact slightly simpler). We first note that the sets Aa := {n ∈ N : ω(n) ≡
a (mod 3)} are weakly stable; indeed, for any prime p - n, we have

1Aa (n) = 1Aa+1(pn).

Also, we can represent 1A(n) as a linear combination of 1-bounded multiplicative
functions by the Fourier expansion

1A(n) =
1
3

2∑
j=0

ζ−ajζ ω(n) j , (6.3)

where ζ := e( 1
3 ). The constant function 1/3 is certainly uniformly distributed

in short intervals with density 1/3. The multiplicative function n 7→ ζ ω(n)

is uniformly distributed in short intervals with density 0, thanks to [30,
Theorem A.1], since

inf
|t |6x

∑
p6x

1− Re(ζ ω(p)χ(p)pi t)

p
�χ log log x (6.4)

for every Dirichlet character χ by the Vinogradov–Korobov zero-free region for
Dirichlet L-functions. Thus, Aa itself is uniformly distributed in short intervals
with density 1/3.

Our objective is to show that (Aa1 − 1) ∩ (Aa2 − 2) ∩ (Aa3 − 3) has positive
lower density for any a1, a2, a3 ∈ Z/3Z. By modifying the first part of the proof
of Theorem 2.2, it suffices to show that for every function 1 6 ω(X) 6 X tending
to infinity, we have

Elog
x/ω(x)6n6x 1Aa1

(n + 1)1Aa2
(n + 2)1Aa3

(n + 3)� 1. (6.5)
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The left-hand side of (6.5) can be expanded using (6.3) as

1
27

∑
j1, j2, j3∈{0,1,2}

ζ−(a1 j1+a2 j2+a3 j3)C j1, j2, j3, (6.6)

where
C j1, j2, j3 := Elog

x/ω(x)6n6xζ
j1ω(n+1)+ j2ω(n+2)+ j3ω(n+3).

Clearly C0,0,0 = 1. From [37, Theorem 1.3] and (6.4), we also have C j1, j2, j3 =

o(1) when one or two of the j1, j2, j3 vanish. Finally, from the weak form of the
logarithmic Elliott conjecture from [41, Corollary 1.6] combined with (6.4), we
also see that C j1, j2, j3 = o(1) whenever j1+ j2+ j3 6= 0 (mod 3). Finally, we have
C2,2,2 = C1,1,1. Putting all this together, we can write the left-hand side of (6.5) as

1
27 (1+ 2Re(ζ−a1−a2−a3C1,1,1))+ o(1). (6.7)

For c ∈ {0, 1, 2}, let

δc := Elog
x/ω(x)6n6x 1ω(n+1)+ω(n+2)+ω(n+3)≡c (mod 3).

Then (6.7) can be rewritten as

1
27 (1+ 2Re(ζ−aδ0 + ζ

−a+1δ1 + ζ
−a+2δ2)+ o(1)), (6.8)

where a := a1 + a2 + a3 (mod 3). Since Re(ζ−a) = 1 if a ≡ 0 (mod 3) and
Re(ζ−a) = −1/2 otherwise, using δ0 + δ1 + δ2 = 1, we can rewrite this as

1
27 (3δ3−a + o(1)).

Thus, in order to show that (6.8) is� 1, what remains to be shown is that δ0, δ1,

δ2 � 1. But since the sets Ai are weakly stable and uniformly distributed with
densities 1/3 each, by Theorem 1.9, we have

d−

( ⋃
c1,c2,c3∈{0,1,2}

c1+c2+c3=c (mod 3)

(Ac1 − 1) ∩ (Ac2 − 2) ∩ (Ac3 − 3)
)
> 0,

or in other words,

d−({n ∈ N : ω(n + 1)+ ω(n + 2)+ ω(n + 3) ≡ c (mod 3)}) > 0

for every c ∈ Z/3Z, which, by partial summation, implies δc > 0 for each c. The
proof is now complete.

https://doi.org/10.1017/fms.2019.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.28


Value patterns of multiplicative functions 49

7. Sign patterns of the Liouville function

Before proving Theorem 1.14, we present a few lemmas. In what follows,
ω(x) 6 x will be an arbitrary function tending to infinity. By modifying the first
part of the proof of Theorem 2.2, it suffices to show that

lim sup
x→∞

Elog
x/ω(x)6n6x 1λ(n+1)=ε1 · · · 1λ(n+5)=ε5 > 0

for at least 24 choices of (ε1, . . . , ε5) ∈ {−1,+1}5 and that the patterns listed in
Theorem 1.14 are among these 24 patterns.

LEMMA 7.1. Let k > 1 and let h1, . . . , hk ∈ N. Let 1 6 ω(X) 6 X be any
function tending to infinity. Extend the Liouville function arbitrarily to negative
integers. Then we have

Elog
x/ω(x)6n6xλ(n + h1) · · · λ(n + hk) = Elog

x/ω(x)6n6xλ(n − h1) · · · λ(n − hk)+ o(1).

Proof. This is a direct corollary of the ‘isotopy formula’ [41, Theorem 1.2(iii)].

LEMMA 7.2. Let k > 1 be an integer and let 1 6 ω(X) 6 X be any function
tending to infinity. Then we have

lim sup
x→∞

|Elog
x/ω(x)6n6xλ(n + 1) · · · λ(n + k)| 6 1

2 .

Proof. This is a simple generalization of [41, Proposition 7.1]. By the triangle
inequality, we have

|Elog
x/ω(x)6n6xλ(n + 1) · · · λ(n + k)+ λ(n + 2) · · · λ(n + k + 1)|

6 Elog
x/ω(x)6n6x |λ(n + 1) · · · λ(n + k)+ λ(n + 2) · · · λ(n + k + 1)|

= Elog
x/ω(x)6n6x |λ(n + 1)+ λ(n + k + 1)|.

Here, the first expression is equal to 2|Elog
x/ω6n6xλ(n + 1) · · · λ(n + k)| + o(1) by

the shift invariance of logarithmic averages. But since (λ(n + 1), λ(n + k + 1))
takes each sign pattern in {−1,+1}2 with density 1/4 + o(1) with respect to the
density Elog

x/ω6n6x , by [37, Theorem 1.2], we get

2|Elog
x/ω(x)6n6xλ(n + 1) · · · λ(n + k)| 6 1

2 |1+ 1| + 1
2 |1− 1| + o(1) = 1+ o(1),

as required.
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LEMMA 7.3. We have

lim sup
x→∞

|Elog
x/ω(x)6n6xλ(n + 1)λ(n + 2)λ(n + 4)λ(n + 5)| < 1.

Proof. Suppose the contrary. Then there exists a sign ε0 ∈ {−1,+1} and an
infinite sequence xl →∞ such that

Elog
xl/ω(xl )6n6xλ(n + 1)λ(n + 2)λ(n + 4)λ(n + 5) = ε0 + o(1).

Consequently, we have

Elog
xl/ω(xl )6n6x 1λ(n+1)λ(n+2)λ(n+4)λ(n+5)=ε0 = 1+ o(1). (7.1)

Shifting by one, we also have

Elog
xl/ω(xl )6n6x 1λ(n+2)λ(n+3)λ(n+5)λ(n+6)=ε0 = 1+ o(1).

Putting the last two equations together, we obtain

Elog
xl/ω(xl )6n6x 1λ(n+1)λ(n+3)λ(n+4)λ(n+6)=1 = 1+ o(1).

Shifting by one again, we have

Elog
xl/ω(xl )6n6x 1λ(n+2)λ(n+4)λ(n+5)λ(n+7)=1 = 1+ o(1). (7.2)

Finally, putting (7.1) and (7.2) together yields

Elog
xl/ω(xl )6n6x 1λ(n+1)λ(n+7)=ε0 = 1+ o(1),

and therefore,

Elog
x/ω(x)6n6xλ(n + 1)λ(n + 7) = ε0 + o(1).

This, however, is in contradiction with the two-point logarithmic Chowla
conjecture [40, Theorem 1.2].

Proof of Theorem 1.14. Let us define

CA := l̃im
(
Elog

xl/ω(xl )6n6xl

∏
j∈A

λ(n + j)
)
`∈N
,

where l̃im is any generalized limit functional. Using the identity 1λ(n)=ε =
(1+ ελ(n))/2 for ε ∈ {−1,+1} and expanding, we have

32 l̃im(Elog
xl/ω(xl )6n6xl

1λ(n+1)=ε1 · · · 1λ(n+5)=ε5)`∈N = 1+
∑
A⊂[5]
A 6=∅

CA

∏
j∈A

ε j . (7.3)
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It suffices to show that there are at least 24 sign patterns (ε1, . . . , ε5) for which
(7.3) is > 0, regardless of which generalized limit l̃im we choose, including the
six explicit patterns listed in the theorem and their reversals. (It is this part of the
argument that results in us obtaining a positive upper density result rather than
a positive lower density result. Indeed, we show that for every generalized limit
l̃im, there are at least 24 sign patterns (ε1, . . . , ε5) for which (7.3) is > 0, but,
theoretically, the choice of these 24 sign patterns could depend on the choice of
l̃im, thus leading only to a lim sup result. However, for each of the explicit patterns
listed in Theorem 1.14, we do obtain a lower density result by showing that (7.3)
is always > 0 for these sign patterns.)

By the odd order logarithmic Chowla conjecture [41], all the odd order
correlations are 0, and by the two-point logarithmic Chowla conjecture
[37, Theorem 1.2], all the two-point correlations are 0 as well. Thus, if we
denote the average on the left-hand side of (7.3) by Pε1,...,ε5 , then

32Pε1,...,ε5 = 1+ ε1ε2ε3ε4ε5(ε1C[5]\{1} + · · · + ε5C[5]\{5}).

If we denote C[5]\{1} := a, then by shift invariance also C[5]\{5} = a. Furthermore,
by Lemma 7.1, if C[5]\{2} = b, then C[5]\{4} = b. Finally, denote C[5]\{3} = c. We
conclude that

32Pε1,...,ε5 = 1+ ε1ε2ε3ε4ε5((ε1 + ε5)a + (ε2 + ε4)b + ε3c). (7.4)

Next, we split into several cases.
Case a = b = 0. When this holds, by Lemma 7.3, we have

32Pε1,...,ε5 > 1− |c| > 0

for each of the 32 patterns.
Case c 6= 0, exactly one of a, b 6= 0. Suppose that a 6= 0, b = 0; the other case

is symmetric. Then

32Pε1,...,ε5 = 1+ ε1ε2ε3ε4ε5((ε1 + ε5)a + ε3c).

Since |a| 6 1
2 and |c| < 1 by Lemmas 7.2 and 7.3, respectively, the only

way that the probability can be zero is if ε1 = ε5, ε1sgn(a) = ε3sgn(c) and
ε1ε2ε4ε5sgn(c) = −1. This happens for 32 · 1

23 = 4 sign patterns, so there are
32− 4 = 28 sign patterns having positive probability.

Case c = 0, exactly one of a, b 6= 0. Suppose that a 6= 0, b = 0; the opposite
case is symmetric. Then

32Pε1,...,ε5 = 1+ (ε1ε2ε3ε4 + ε2ε3ε4ε5)a,
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and the only way this can be zero is if ε1ε2ε3ε4 = ε2ε3ε4ε5 = −sgn(a), which
happens for exactly 32 · 1

22 = 8 patterns. Thus, there are 32−8 = 24 patterns with
positive density.

Case c = 0, both a, b 6= 0. Then we have

32Pε1,...,ε5 = 1+ ε1ε2ε3ε4ε5((ε1 + ε5)a + (ε2 + ε4)b).

Now, consider εi satisfying

ε1ε2ε3ε4ε5 = +1,
ε1 = ε5 = −sgn(a)
ε2 = ε4 = −sgn(b),

which can always be found. The resulting probability is nonnegative, so

1− 2|a| − 2|b| > 0,

so |a| + |b| 6 1
2 . Therefore, since a, b 6= 0, the only way that Pε1,...,ε5 = 0 can

happen is if ε1 = ε5, ε2 = ε4 and ε1sgn(a) = ε2sgn(b). This happens for 32· 1
23 = 4

patterns, so there must be at least 32− 4 = 28 patterns for which the probability
is positive.

Case a, b, c 6= 0. Now suppose that Pε1,...,ε5 = 0 and consider the
transformations of (ε1, . . . , ε5) given by

(ε1, ε2, ε3, ε4, ε5) 7→ (−ε1, ε2, ε3, ε4,−ε5)

(ε1, ε2, ε3, ε4, ε5) 7→ (ε1,−ε2, ε3,−ε4, ε5)

(ε1, ε2, ε3, ε4, ε5) 7→ (−ε1,−ε2, ε3,−ε4,−ε5).

Since a 6= 0, b 6= 0, each of the first two transformations changes the probability
in (7.4), in particular, making it nonzero. The third transformation also changes
the probability in (7.4), unless (ε1 + ε5)a + (ε2 + ε4)b = 0, in which case
32Pε1,...,ε5 = 1 + ε3c > 0, contrary to our assumption. Thus, the patterns
(ε1, . . . , ε5) can be grouped into groups of four where each group is closed under
the above three transformations and has at most one pattern with zero probability.
Hence, there are at least 32− 32

4 = 24 patterns having nonzero probability.
Since the above considerations exhaust all cases, we have now shown that there

are at least 24 sign patterns of length 5 having positive upper density. We still
need to show that the specific patterns mentioned in Theorem 1.14 are among
the patterns having positive upper density. The existence of the patterns having
exactly one plus or exactly one minus follows directly from the proof strategy
of [31, Corollary 2.8] together with the fact that each length 4 pattern occurs in
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the Liouville function with positive lower density. When it comes to the remaining
patterns, consider (+1,+1,±1,−1,−1): the others are similar. This pattern has
probability

32Pε1,...,ε5 = 1± c > 0

by Lemma 7.3. This completes the proof.
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(2018), 343–379.

[44] T. D. Wooley and T. D. Ziegler, ‘Multiple recurrence and convergence along the primes’,
Amer. J. Math. 134(6) (2012), 1705–1732.

[45] T. Ziegler, ‘Universal characteristic factors and Furstenberg averages’, J. Amer. Math. Soc.
20(1) (2007), 53–97.

https://doi.org/10.1017/fms.2019.28 Published online by Cambridge University Press

https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://terrytao.wordpress.com/2011/12/26/
https://doi.org/10.1017/fms.2019.28

	Introduction
	Comparison of largest prime factors of consecutive integers
	Patterns of the number of prime factors modulo 3
	Results on weakly stable sets
	Sign patterns of the Liouville function
	Proof strategy
	Notation

	A correspondence principle
	The main theorems for k=3
	Reduction to the case of X being ergodic
	Reduction to the case of X being a Kronecker system
	Reduction to the case of X being a Kronecker system corresponding to a Lie group
	Main argument

	The main theorem for k>3
	Obstructions for higher values of k
	Proofs of the applications
	Sign patterns of the Liouville function
	References

