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The paper is based on the lecture that I gave on receiving the Nutrition Society’s inaugural
Gowland Hopkins Award for contributions to Cellular and Molecular Nutrition. It reviews
studies on the adipose tissues, brown and white, conducted by the groups that I have led
since entering nutrition research in 1975. The initial focus was on exploring metabolic fac-
tors that underpin the development of obesity using animal models. This resulted in an inter-
est in non-shivering thermogenesis with brown adipose tissue being identified as the key
effector of facultative heat production. Brown fat is less thermogenically active in various
obese rodents, and major changes in activity are exhibited under physiological conditions
such as lactation and fasting consistent with a general role for the tissue in nutritional ener-
getics. My interests moved to white adipose tissue following the cloning of the Ob gene. Our
initial contributions in this area included demonstrating nutritional regulation of Ob gene
expression and circulating leptin levels, as well as a regulatory role for the sympathetic ner-
vous system operating through β3-adrenoceptors. My interests subsequently evolved to a
wider concern with the endocrine/signalling role of adipose tissue. Inflammation is a charac-
teristic of white fat in obesity with the release of inflammation-related adipokines, and we
proposed that hypoxia underlies this inflammatory state. O2-deprivation was shown to
have substantial effects on gene expression and cellular function in white adipocytes.
The hypoxia studies led to the proposition that O2 should be considered as a critical
macronutrient.

Adipokines: Brown adipocyte: Hypoxia: Oxygen: White adipocyte

Background

I am greatly honoured to receive the Gowland Hopkins
Award from the Nutrition Society, and indeed to be
the first recipient. I never met Sir Frederick Gowland
Hopkins OM PRS, who received the Nobel Prize for
Physiology or Medicine in 1929 for the discovery of vita-
mins, being born a year after he died. There is, however,
a tangential link in that my entry into nutrition from a
basic science background in physiology and biochemistry
came through joining the MRC Dunn Nutritional

Laboratory in Cambridge in 1975. The Dunn had been
founded in 1927 when Gowland Hopkins was Professor
of Biochemistry in the University, and the original intent
was that he should be directly involved in its research. In
practice, because of extensive other commitments,
including as President of the Royal Society, his primary
role with respect to the Dunn was as an advisor and
member of the Management Committee. Gowland
Hopkins has, of course, a close association with the
Nutrition Society as one of the principal figures behind
its foundation.
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My research over the past 40+ years since entering
nutrition has centred on the adipose tissues; first brown
and then white. This began following my initial studies
at the Dunn where I had been recruited by Philip
James as a member of the then newly formed Energy
Group (Fig. 1). The group had been established in recog-
nition of obesity beginning to emerge as a public health
problem. At the time, the incidence of obesity was con-
siderably less than now; in 1980, for example, 6 % of
adult males and 8 % of adult females in the UK were
classified as obese(1) on the basis of a BMI ≥30,
while by 2017 the figure was approximately 30% of all
adults (https://www.worldobesitydata.org/country-profiles/).
Obesity is, of course, important primarily because of the
increased risk of several associated diseases, particularly
type-2 diabetes, hypertension, CHD and certain cancers(2,3).

The ethos prevailing when we began in the mid-1970s
was that obesity is the product of ‘gluttony and sloth’,
but our focus was on exploring whether there are import-
ant metabolic factors which underpin the development of
the disorder. My remit was to investigate the fundamen-
tals of the regulation of energy balance using animal
models. The animal of choice was the genetically obese
ob/ob (Lepob/Lepob) mouse, and a colony of the Aston
strain of these mutants was set-up. The attraction of
ob/ob mice, which at the time were the most widely
used animal model in obesity research, was that not
only is the obese state extreme with body weight being
up to three times that of lean siblings but that it is redu-
cible to a mutation in a single recessively inherited
gene(4). The link to a mutant gene meant that the obesity
of ob/ob mice results from a change in just one protein,
and that protein must play a critical role in the regulation
of energy balance.

The ob/ob mouse is not, of course, the only rodent in
which obesity is the result of a single gene mutation,

and we subsequently established colonies of the other
major obese mutants: the Zucker fa/fa (Leprfa/Leprfa)
rat and the diabetic-obese db/db (Leprdb/Leprdb)
mouse(4). We were later able to house colonies of the adi-
pose mouse (Ad), golden hamsters (Mesocricetus auratus)
and Djungarian hamsters (Phodopus sungorus), each as a
specific model within our energy regulation studies. This
was based on the August Krogh Principle that ‘for a
large number of problems there will be some animal of
choice or a few such animals on which it can be most
conveniently studied’(5). As I have noted previously, the
ability to maintain multiple colonies of experimental ani-
mals at the Dunn without direct cost to the investigator
was remarkable(6).

Energy balance and thermogenesis

Hyperphagia is part of the basis for the obesity of the ob/
ob mouse, and indeed that of the other obese mutants,
food intake being greater than in lean siblings(4).
However, studies where young ob/ob mice were either
directly pair-fed to the ad libitum intake of their lean
siblings, or otherwise given restricted amounts of food,
indicated that obesity still develops without hyperpha-
gia(7,8). Our own work, in which full energy balance stud-
ies were performed, clearly illustrates the point; young
ob/ob mice pair-fed to the ad libitum intake of lean sib-
lings at room temperature (23°C) exhibited a rate of
energy deposition 2⋅3 times that of the lean(7). The
study was conducted at four different environmental
temperatures: 33 (thermoneutral for the mouse), 28, 23
and 17°C. At each temperature, the energy gain of the
obese animals was greater than the lean, but the lower
the temperature the higher the excess gain(7).

The capacity for excess energy deposition in the
absence of hyperphagia indicated that one or more com-
ponents of energy expenditure is reduced in the ob/ob
mutants. Of the main components of expenditure, facul-
tative (or adaptive) non-shivering thermogenesis (NST)
was particularly attractive as the key element. Not only
is thermoregulatory thermogenesis a major part of total
expenditure in small mammals in order to maintain
body temperature, but reduced expenditure on thermo-
genesis was also being advocated by Miller and Stock
as a causal factor in the development of obesity(9,10).
Furthermore, some 25 years earlier impaired homo-
eothermy had been noted in ob/ob mice(11). This
appeared counter-intuitive given the improved insulation
provided by the additional body fat of the obese animals,
and was suggestive of a reduced capacity to generate
heat. In our own studies, core temperature fell rapidly,
to as low as 15°C, just 3 h after exposure of ob/ob mice
to 4°C, whereas lean siblings maintained their temperature
above 35°C(12).

Direct measurements of NST from the peak increase
in the RMR at thermoneutrality following the adminis-
tration of noradrenaline indicated that the capacity for
this form of heat production was 2-fold lower in ob/ob
mice than that in lean siblings(12). Furthermore, RMR
expressed ‘per animal’, as should be done in energetic

Fig. 1. (Colour online) ‘Engaging’ with nutrition at the Dunn: Friday
morning group ‘coffee and cake’. Eating and drinking in the
laboratory is, of course, prohibited now, but was normal in my
early years as a scientist.
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studies, was reduced in the obese mice relative to the lean
at every temperature examined below thermoneutrality,
indicating a lower expenditure on NST(12).

Brown adipose tissue

An immediate question raised by these physiological
studies was the nature of the molecular and cellular
mechanisms of NST. Several possibilities were under
consideration at the time, including protein turnover,
the α-glycerophosphate shuttle, Na+ transport across the
plasma membrane mediated by Na+-K+ATPase, and
futile/substrate cycles such as that between fructose-
6-phosphate and fructose-1,6-bisphosphate(13–19); in
practice, most are in effect a form of energy-consuming
substrate cycle. There were, however, substantial reserva-
tions with each of these mechanisms(20) in that it seemed
unlikely that they had the potential to generate sufficient
quantities of heat and to do so acutely without disrupting
normal metabolic control. In addition, there was a central
issue of tissue localisation; several of the mechanisms,
particularly protein turnover and Na+ transport, being
essentially universal rather than restricted to a specific
tissue site.

The question of the tissue basis for NST subsequently
centred on brown adipose tissue (BAT, or brown fat),
which had first been described by Conrad Gessner in
1551. Although different roles had been proposed for
this tissue, including as an endocrine organ, the principal
function was resolved in the early 1960s, as a thermo-
genic organ with heat as the primary product(21). The tis-
sue is prominent in hibernating species, in the newborn of
many mammals (including human subjects) and in
rodents acclimated to the cold(22,23). The quantitative
importance of BAT in adaptive NST in rodents was
demonstrated in influential studies by Foster and
Frydman(24–26). These authors mapped regional blood
flow to different tissues using radioactively-labelled
microspheres in rats in which NST was maximally stimu-
lated following either cold-acclimation or the administra-
tion of noradrenaline. From the measurements of
regional blood flow, together with the cardiac output
and the oxygen extraction across the interscapular
depot, BAT was estimated to account for 60 % of NST
in cold-acclimated rats(25). Our own studies on mice
using the same approach suggested a broadly similar
figure(7).

In parallel with the identification of BAT as the prin-
cipal locus for NST, the unique bioenergetic properties
of the tissue’s mitochondria were being elucidated.
Heat was shown by Nicholls to be generated by a regu-
lated uncoupling of oxidative phosphorylation, the
energy inherent in the proton gradient across the inner
mitochondrial membrane being dissipated as heat rather
than coupled to ATP synthesis(22). This process is con-
trolled by the 32 000-Mr mitochondrial uncoupling
protein-1 (UCP1) discovered by Ricquier(22,27). Acute
stimulation of BAT thermogenesis leads to an activation
of UCP1, while chronic stimulation results in an increase
in the amount of the protein, through a combination of a

higher concentration in the mitochondria and through
mitochondriogenesis(23). These changes, both acute and
chronic, are primarily driven by the release of noradren-
aline from the extensive sympathetic innervation of BAT,
acting mainly via β3-adrenoceptors

(28,29).
My group at the Dunn, in parallel with several other

groups, began to explore the potential role of BAT in
energy balance and the development of obesity. Two
seminal observations were pivotal; in the first, Himms-
Hagen and Desaultels in Ottawa demonstrated reduced
GDP binding to BAT mitochondria in ob/ob mice rela-
tive to lean siblings, this reflecting a reduction in the
thermogenic proton conductance pathway of the tis-
sue(30). Our own blood flow studies indicated that the
reduced NST and consequent lower energy expenditure
of the obese mutant is entirely due to decreased meta-
bolic activity in BAT(31). In the second key study,
Rothwell and Stock in London proposed that BAT is
the locus of the diet-induced thermogenesis that they
were observing in rats overfed through the provision of
a cafeteria diet(32). In follow-up studies with our group,
key molecular indices of BAT thermogenic activity
were demonstrated in the cafeteria-fed animals; increased
mitochondrial mass and GDP binding, as well as
GDP-sensitive respiration(33).

These initial reports were followed by a series of stud-
ies in which the thermogenic activity of BAT was shown
to be reduced in a variety of obese rodents. They
included other single gene mutants, fa/fa rat and db/db
mouse, and rodents with experimentally-induced obesity
such as that following lesioning of the ventromedial
hypothalamus, the administration of gold thioglucose,
and treatment with corticosteroids(20,34,35). Along
with the studies on obese animals, the role of BAT in
nutritional energetics was further explored in a range of
physiological and pathophysiological situations in
which body fat and energy flux change (Fig. 2). These
included the reproductive cycle (pregnancy and lactation)
hibernation, photoperiod, cancer cachexia and nutri-
tional manipulations such as fasting/refeeding and the
provision of a low protein diet(34,35).

Lactation was a physiological stress of particular inter-
est to us at the Dunn. The energy cost of lactation is high
in small mammals, and energy intake is increased
approximately 3-fold in lactating rats, for example, com-
pared to virgin animals(36,37). Our studies in mice showed
that BAT thermogenesis is suppressed in lactation, the
suppression being maximal in late lactation when milk
production peaks(38–40). Mitochondrial mass and GDP
binding are both markedly reduced in BAT of lactating
mice, the latter to the same level as virgin animals at ther-
moneutrality(38,39). The concentration of UCP1 in the
mitochondria is also reduced relative to that of virgin
mice, with the total UCP1 content of the interscapular
pad at late lactation being <10% of the virgin animals
(Fig. 3)(39). These changes in BAT activity effectively
lead to a substantial energy saving, helping to meet the
high energy cost of milk production. However, this adap-
tation essentially reflects the limited scope for heat dissi-
pation in the face of the high metabolic heat generation
associated with milk synthesis rather than a specific
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energy saving mechanism as such, as convincingly
argued in a recent review on BAT in lactation(40).

Perhaps the strongest illustration of the link between
energy expenditure and BAT thermogenesis comes
from the changes in the tissue that occur when small
rodents are acclimated to the cold. In mice, energy
expenditure and food intake are increased 3-fold between
thermoneutrality and 4°C, reflecting the energy cost of
generating heat for homoeothermy(12,41). In rats accli-
mated at 4°C, the mitochondrial content, mitochondrial
GDP binding and UCP1 concentration were each sub-
stantially higher than in rats acclimated to thermoneu-
trality (29°C), while the total UCP1 content of the
interscapular BAT depot was increased >100-fold(42).

Brown adipose tissue in human subjects

By the beginning of the 1990s, the importance of BAT in
nutritional energetics had been firmly established across
a range of obesity models and under other conditions

in experimental animals in which energy flux is altered.
In the case of human subjects, interest in the tissue had
been driven to a considerable extent by the concept
that reduced thermogenesis is a key factor in the develop-
ment of obesity in human subjects and that BAT is a
potential therapeutic target for the treatment of the
disorder.

Although brown fat was widely recognised to be an
important locus of heat production in the human neonate,
the tissue appeared, on the basis of histological appearance,
to be absent after the first few years of life. The presence of
BAT in adult human subjects was confirmed, however, by
immunological studies identifying UCP1 in fat depots,
including in some elderly subjects(43–45). In addition, expres-
sion of theUCP1 gene was evident through detection of the
encoded mRNA(46). Activation of the tissue in patients
with phaeochromocytoma was also demonstrated(47,48).

Despite the clear evidence for the presence of BAT in
adults, with the capacity for adaptive changes, the pre-
vailing view was that the tissue was of little, or no, sign-
ificance in human energetics other than in neonates and
during the first years of life. Interest in BAT then
declined markedly, with the notable exception of those
groups (particularly that of Cannon and Nedergaard in
Stockholm(23)) whose principal focus was on understand-
ing the fundamental biology of the tissue. Since 2009
there has, however, been renewed interest in BAT in
human subjects following the application of fluorodeoxy-
glucose positron emission tomography(49–51). This has
firmly demonstrated active BAT in adults, activity being
reduced in obesity and with ageing, for example, while
being stimulated on cold exposure and by the administra-
tion of a selective β3-adrenoceptor agonist

(49–55).

White adipose tissue: the discovery of leptin

As interest in BAT declined, my own research focus
changed and abruptly so following the cloning of the
Ob (Lepob) gene and the identification of the encoded
protein(56). Within days of the report in Nature on 1
December 1994, my group at the Rowett in Aberdeen
(where I had relocated in 1988) had designed and vali-
dated oligonucleotide probes to examine Ob gene expres-
sion. This move reflected the fact that some 2 years
earlier a consortium of us in the UK, which included

Fig. 2. (Colour online) Schematic of different physiological and pathological conditions in experimental
animals in which energy flux and/or balance are altered where increases, or decreases, in brown adipose
tissue thermogenesis have been demonstrated. Examples of key situations in which brown fat
thermogenesis changes are shown. DIT, diet-induced thermogenesis; VMH, ventromedial hypothalamus.

Fig. 3. (Colour online) The thermogenic activity and capacity of
brown adipose tissue (BAT) is decreased in lactation (Lact). The
changes in mitochondrial GDP binding, the mitochondrial
concentration of uncoupling protein-1 (UCP1; UCP1 conc) and the
total UCP1 content of the interscapular BAT depot are shown for
mice at late lactation (when milk production is close to maximal)
relative to virgin mice (virgin = 1)(39).
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Michael Stock and John Stirling, had sought funding to
identify the defective genes in the obese mouse mutants.
We were, however, unsuccessful since it was argued (cor-
rectly) that at least one group in the United States was
well-advanced in the goal and that it was unlikely that
we could be competitive. My response was that once
the Ob gene had been identified, our strategy would be
to explore the physiology of the protein product.

TheObgenewas reported tobeexpressed inwhiteadipose
tissue (WAT)and theprotein, initially termed ‘OB’, and then
leptin, to act as a lipostatic signal(56–58). Subsequently, the
hormone was found to be produced by several tissues,
including BAT(59) and the placenta(60), although WAT is
the major source. Similarly, the functions attributed to
leptin quickly expanded and it became regarded as a pleio-
tropic factor(61). The early studies of my group at the
Rowett demonstrated that expressionof theObgene is nutri-
tionally regulated, the mRNA level inWAT of lean rodents
rapidly decreasing on fasting with a restoration on
refeeding(62). The circulating levels of the hormone change
in parallel with the alterations in gene expression(63).

We then showed that acute exposure of mice to cold
led to a strong inhibition of Ob expression, and a fall
in the circulating leptin level, both of which are rapidly
reversed on return to a warm environment(64,65). The
cold-induced reduction in the Ob mRNA level was mim-
icked by the administration of noradrenaline and by the
β-adrenoceptor agonist isoprenaline. From these obser-
vations we proposed that the sympathetic system plays
a key role in the regulation of Ob gene expression(64).
Subsequent observations indicated that this operates pri-
marily through β3-adrenoceptors

(65,66). Further studies

on leptin at the Rowett included the demonstration by
in situ hybridisation that the receptor, and particularly
the long form responsible for signalling, is strongly
expressed in the regions of the hypothalamus, consistent
with being an adipocyte-derived signal for appetite(67).

Adipokines and the secretory function of white
adipocytes

Leptin quickly became a major area in research on obes-
ity and its associated disorders. One of the key outcomes
of the discovery of the hormone was a radical change in
perspective on the functions of white adipocytes and
therefore of WAT itself. Adipocytes were recognised as
endocrine cells with WAT as a major signalling
organ(68–71). Although secreted protein factors had been
identified previously, this had not led to the conceptual-
isation of white adipocytes as endocrine and signalling
cells. The secreted proteins known prior to leptin were
adipsin (complement factor D)(72), which is a serine pro-
tease, the cytokine TNFα(73), and lipoprotein lipase.
Lipoprotein lipase is, of course, released from adipocytes
to catalyse the breakdown of circulating TAG to enable
the uptake of fatty acids into adipocytes; it was not, how-
ever, regarded as a fat cell secretory protein as such.

The secretome of adipocytes, and of WAT as a whole, is
extensive (Fig. 4). Quantitatively, fatty acids are the lar-
gest secretory product, but there are several other lipid
groups released from the cells. Some, such as specific pros-
taglandins and the endocannabinoid anandamide, are
synthesised de novo within adipocytes, while others,

Fig. 4. (Colour online) The secretome of white adipocytes. Fatty acids and other lipids are
secreted, together with a multiplicity of adipokines (proteins); examples of some of the lipids and
key adipokines are shown. The major adipocyte hormones, leptin and adiponectin, are
highlighted. angptl4, angiopoietin-like protein-4; CETP, cholesteryl ester transfer protein; DPP4,
dipeptidyl peptidase-4; IGF, insulin-like growth factor-1; LPL, lipoprotein lipase; MCP-1,
monocyte chemoattractant protein-1; MIC-1, macrophage inhibitory cytokine-1; MIF,
macrophage migration inhibitory factor; MMP, matrix metalloproteinase; NGF, nerve growth
factor; PAI-1, plasminogen activator inhibitor-1; RBP4, retinol binding protein-4; TGFβ,
transforming growth factor-β; VEGF, vascular endothelial growth factor; ZAG,
zinc-α2-glycoprotein.
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including cholesterol and vitamin A, are taken up, stored
and subsequently released(61). A question raised by the dis-
covery of leptin was whether there are a range of protein
hormones and signals synthesised and secreted by fat
cells. The answer is very much in the affirmative and
one of the earliest of these adipokines, as they are termed,
identified was another major adipocyte hormone, adipo-
nectin, whose functions encompass insulin sensitising,
angiogenic and anti-inflammatory actions (Fig. 3)(74–78).

The search for novel adipokines became a core focus of
my group, both at the Rowett and later at the University
of Liverpool to where I moved in 2002. Among the several
adipokines that we discovered were: the neurotrophic sig-
nal nerve growth factor(79); specific metallothioneins(80),
these having metal binding actions, and the lipolytic/cach-
ectic factor zinc-α2-glycoprotein

(81,82). Nerve growth fac-
tor was found to be linked to the inflammatory response
in WAT, secretion of the protein being strongly stimulated
by TNFα(79). As in mice, zinc-α2-glycoprotein expression
increased substantially in WAT of patients with cachexia
associated with gastrointestinal cancer(83).

Anextensive range of individual adipokines has nowbeen
identified, and proteomic studies and in silico analysis sug-
gest that there are several hundred in total(84–86). The wide-
ranging secretory function of white adipocytes established
over the past two decades has in part served as a model for
other cell types which were not previously regarded as hav-
ing a significant endocrine or signalling function.
Myocytes, for example, are now known to release a range
of protein signals, myokines(87,88), while another example
is hepatocytes which secrete multiple hepatokines(89).

The identification of a multiplicity of protein signals
and factors from adipocytes indicated that WAT is
involved in a range of physiological and regulatory pro-
cesses(61,70,90–92). While some adipokines are endocrine in
function, signalling to tissues and organs distant to the
adipose depots, others have local paracrine and/or auto-
crine actions. The processes in which various adipokines
play a role include appetite and energy balance, lipid
metabolism, vascular haemostasis, blood pressure,
angiogenesis and insulin sensitivity (see(61,91)). A number
of adipokines are linked to immunity and inflammation,
these including classical cytokines and chemokines such
as IL-1β, IL-6, IL-10 and monocyte chemoattractant
protein-1; they also include inflammation-related factors,
examples being vascular endothelial growth factor
(VEGF), serum amyloid A and adiponectin (see(61,70,91).

Inobesity,WATexhibits chronicmild inflammationwith
increased production and release of inflammatory adipo-
kines. There is a notable exception to this in that the synthe-
sis and release of adiponectin, with its anti-inflammatory
action, falls(93,94). Inflammation in expanded WAT is aug-
mented by the infiltration and activation of macrophages
in particular, but also of other immune cells(92,95–97).

Hypoxia and the metabolic response to oxygen
deprivation in adipocytes

Inflammation in WAT has been considered a key factor
in the development of the major obesity-associated

disorders, particularly insulin resistance and the other
components of the metabolic syndrome(3,70,98,99). The
question that intrigued me in the early 2000s was why
does inflammation develop as adipose tissue mass
expands? A ‘News’ article in Science on how cells endure
low oxygen(100) encouraged me to consider the possibility
that hypoxia might be a key. This was presented as a
hypothesis in a Horizons article in the British Journal
of Nutrition in 2004(90). I am particularly proud of this
paper: not only does it describe the hypoxia hypothesis,
but it is my most highly cited publication (>1400 cita-
tions in the Web of Science; >2450 citations in Google
Scholar) as well as being the fourth most highly cited art-
icle in the Nutrition Society’s flagship journal (or indeed
in all of its journals).

The hypothesis proposed that as adipose tissue mass
expands with the development of obesity, areas within
the tissue become relatively hypoxic as the enlarging
adipocytes become more distant from the vasculature,
this leading to major adaptive changes involving the
hypoxia-inducible transcription factor-1 (HIF-1). The
recruitment of HIF-1 was hypothesised to lead to
increased expression of a series of hypoxia-sensitive
genes linked to inflammation and the inflammatory
response in WAT. The proposition was based on the fol-
lowing: (i) hypoxia occurs in situations such as ischaemic
injury, wound healing and solid tumours leading to exten-
sive metabolic changes(90), (ii) blood flow to WAT is not
increased in obese subjects, despite the higher mass of
the tissue(101–104), (iii) in contrast to lean subjects, blood
flow to WAT does not increase post-prandially in the
obese(104–106), (iv) large adipocytes (which may be up to
200 μm diameter(107)) are further from the vasculature
than the normal diffusion distance for O2 (100 μm)(108).
These observations refer to local hypoxia, but the provi-
sion of O2 on a whole-body level is reduced in specific
environmental and pathological situations, such as high
altitude, deep sea dives, lung diseases and obstructive
sleep apnoea(61,108).

In 2007, studies using two separate techniques
reported that WAT depots in different types of obese
mice are hypoxic, with the O2 tension being 2- to
3-fold lower than in lean mice(109,110). Subsequent studies
on mice were consistent with these observations(111). In
contrast, although some human studies have indicated
that WAT depots are relatively hypoxic(103,112) others
have reported either the same or an increase in pO2 (par-
tial pressure of oxygen)(106,113). The issue remains unre-
solved, but there is evidence that differences in the way
in which O2 is delivered in terms of vascularisation and
utilisation may occur(106,113,114).

From 2004 the focus of my group in Liverpool was
on examining the direct effects of hypoxia on gene expres-
sion and cellular function in adipocytes. Almost all of our
studies were conducted on human adipocytes, differen-
tiated in culture from fibroblastic preadipocytes. The ini-
tial priority was to examine whether incubation under a
low O2 tension leads to increased expression and release
of inflammation-related adipokines consistent with our
initial hypothesis. A candidate gene approach was
employed and increased production of several adipokines
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was observed, including IL-6, VEGF and leptin(115).
Raised production of VEGF and leptin, as well as of
specific matrix metalloproteinases, had been reported earl-
ier in 3T3-F442A adipocytes (a mouse cell line), reflecting
a pro-angiogenic response to hypoxia(116).

The key cellular adaptation to O2 deficiency is a switch
from aerobic to anaerobic metabolism. Mitochondrial
oxidative phosphorylation cannot, of course, continue
when O2 is severely limited, and there is instead increased
anaerobic glycolysis. As expected, adipocytes exhibit
greater glucose uptake under hypoxic conditions, as
demonstrated by 2-deoxy-D-glucose uptake studies(117)

and by measurement of glucose in the culture
medium(116). This is mediated through increased synthe-
sis of the GLUT1 facilitative glucose transporter, driven
by a marked stimulation of GLUT1 gene expression(117).
The expression of several genes encoding glycolytic
enzymes is also raised, glucose-6-phosphate isomerase
and phosphofructokinase, for example(118,119). Lactate
release is augmented in hypoxic adipocytes(116,120),
reflecting the increased glucose utilisation and glycolytic
flux, this being mediated by increases in the synthesis of
the monocarboxylate transporter, MCT1(120).

While our initial exploration of the effects of hypoxia
on gene expression in human adipocytes probed selective
candidate genes, in subsequent studies more comprehen-
sive approaches were taken. In the first of these, PCR
arrays for eighty-four genes linked to the hypoxia-
signalling pathway were employed. The expression of a

number of the genes changed, with one particular gene
exhibiting dramatically increased expression(121). The
gene in question was MT3, which encodes a member of
the metallothionein family, metallothionein-3 (also
known as growth inhibitory factor). This protein binds
zinc and copper, and linked to its marked induction by
O2-deprivation has been implicated as an angiogenic fac-
tor and to protect against hypoxic damage(122,123).

PCR arrays are themselves limited in terms of the num-
ber of genes whose expression can be screened and a
specific pathway or metabolic system needs to be selected.
DNA microarrays offer an unbiased approach in which
all, or almost all, the genes expressed in a tissue or cell
can be probed simultaneously. Our microarray studies at
Liverpool, in collaboration with colleagues at Unilever,
indicated that the expression of >1300 genes was altered
in human adipocytes cultured under hypoxic conditions,
stringent criteria being used to evaluate changes(119). Of
these genes, the expressions of approximately half were
up-regulated and half down-regulated under low pO2.
Bioinformatic analysis showed that a number of metabolic
pathways and functions are altered in human adipocytes
by hypoxia, these including lipolysis, lipid oxidation, glu-
cose utilisation, cell to cell signalling and cell death(119).

It is evident from these and other studies that hypoxia
results in extensive changes in gene expression in adipo-
cytes. Several important functional changes have been
described, in addition to increased anaerobic glycolysis
(Fig. 5). These include the rapid induction of insulin

Fig. 5. (Colour online) Schematic representation of the central cellular responses to hypoxia in
white adipocytes. The effect of low partial pressure of O2 on gene expression, glucose uptake
and utilisation, and the production of selected key adipokines is shown. angptl4,
angiopoietin-like protein-4; FA, fatty acid; GLUT1, facilitative glucose transporter 1; HIF-1,
hypoxia-inducible factor-1; MCT1, monocarboxylate transporter-1; MIF, macrophage migration
inhibitory factor; MMP, matrix metalloproteinase; MT-3, metallothionein-3; PAI-1, plasminogen
activator inhibitor-1; TF, transcription factors (other than HIF-1); VEGF, vascular endothelial
growth factor. Modified from(131).
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resistance through the direct inhibition of insulin signal-
ling(124,125), and the disruption of the extracellular matrix
within WAT that characterises fibrosis(126,127). With respect
to fibrosis, hypoxia leads to changes in the expression of
collagens released as components of the extracellular
matrix, as well as matrix metalloproteinases(116,126) involved
in tissue remodelling. The overall cellular response to low
O2 is regulated by a series of hypoxia-responsive transcrip-
tion factors of which HIF-1, consisting of two subunits
(HIF-1α and HIF-1β), is the best characterised(108,128,129).

Our studies, like most that examine the response of cells
to hypoxia, were undertaken by comparing 1 to 20% O2
(95% air/5% CO2; ‘normoxia’). However, this is an
extreme, effectively representing a comparison between
ambient air (higher than arterial pO2) and marked hyp-
oxia. A question that interested me was whether there is
a critical point at which adaptation to reduced O2 is
initiated in adipocytes, or if there is a gradual response
to falling O2 tension. Experiments in which human adipo-
cytes were incubated with a range of O2 levels between 20
and 1% clearly demonstrated a dose-dependent response
to lowering O2 tension with differences being observed
between 21 and 15% and between 15 and 10% O2

(130).
This was true for the expression and secretion of several
adipokines, including leptin and VEGF, as well as
2-deoxy-D-glucose uptake and GLUT1 gene expression.
Nevertheless, changes tended to be more marked between
10 and 5% O2. Since the pO2 in WAT of lean mice is
equivalent to about 7% O2 while in obese mice it is
about 2%, it is evident that there are responses to
O2-deprivation over physiologically relevant differences
in tissue oxygenation between the phenotypes(91).

These experiments on the effects of a range of O2 levels
demonstrate that while the customarily employed proto-
cols in hypoxia studies offer proof of principle, they lead
to an exaggerated view of the scale of the cellular
response to relative O2 lack under normal physiological
conditions. This raises a question of the extent to which
our understanding of cellular processes has been condi-
tioned, or even distorted, by the routine use of 20 % O2
as the gas phase in cell culture and other in vitro experi-
ments. It is intriguing that careful attention is paid to the
pH (7⋅4), temperature (37°C) and the concentration of
glucose and other nutrients in cell culture to ensure
physiological conditions’ (except for when they are the
parameters under investigation), but the O2 tension
employed is quite unphysiological and indeed reflects
overt hyperoxia.

Oxygen: an overlooked macronutrient

A corollary of our studies on hypoxia is that they under-
score that O2 is a key nutrient at the cellular level.
Indeed, investigation of hypoxia is in effect exploration
of the molecular and metabolic consequences of the
deficiency of a nutrient. However, O2 is not considered
as a nutrient as such in the context of nutritional science.
Textbooks of nutrition do not contain sections on O2,
and reference to it is generally restricted to discussion
of metabolic rate and respiratory quotient. I have argued

recently that O2 should be included alongside the other
elements/molecules/macromolecules that are defined as
nutrients(131,132).

O2 undoubtedly meets dictionary definitions of a nutri-
ent; for example, ‘as a substance that provides nourish-
ment for the maintenance of life and for growth’
(Oxford English Dictionary). The central reason why O2
is not considered as part of nutritional science is because
of the route of entry; the nose/lungs in higher terrestrial
animals, rather than the mouth/gastrointestinal tract.
However, I argue that the route of entry should not be
the critical determinant of whether O2 is, or is not, con-
sidered a nutrient, but rather its function and essential-
ity(132). O2 is, of course, critical to all aerobic species
without which mitochondrial oxidative phosphorylation
cannot take place.

Early organisms developed under anoxic conditions,
the level of O2 in the atmosphere being just one part in
a million soon after the Earth was formed some 4⋅54 bil-
lion years ago(133,134). It was only after the initiation of the
‘Great Oxidation Event’ some 2⋅45 billion years ago that
considerable amounts of O2 began to appear in the atmos-
phere(134–136), the present level of 21% being essentially
stable over the past 600 million years(134). The availability
of O2 in abundance in the atmosphere was critical to the
evolution of life as we know it.

Conclusions

An odyssey with the adipose tissues that began for me
over 40 years ago has provided much by way of riches
and changed perspectives. The unique bioenergetic prop-
erties of BAT mitochondria, through the presence of the
cell-specific UCP1, were initially thought to generate
heat only in relation to temperature regulation.
Subsequently, the link to energy balance was established
and the tissue has provided a theoretical target for the
treatment of obesity. BAT is also implicated in metabolic
regulation more broadly than was originally envisaged,
through roles in glucose homoeostasis and TAG clear-
ance(55,137–140). Whether it is a realistic target for the
treatment of obesity and the metabolic syndrome, as
many propose(55,137–140), remains a matter of continuing
debate; my own view, as noted recently, is that there are
formidable barriers to this concept(141).

Perspectives on the physiological role of WAT have
changed radically since the discovery of leptin. An
organ that appeared confined to fuel storage, a view rein-
forced by the histological structure with a single lipid
droplet taking up most of the volume of mature white
adipocytes, has emerged as having major endocrine and
signalling functions. For specific adipose tissue depots
there is good evidence of local impact in relation to the
organs and tissues with which they abut(142); examples
are the epicardial fat, postulated to play a role in
CVD(143,144), and dermal adipose tissue which is impli-
cated in hair cycling and wound healing(145,146). A
specific role in relation to cancer and tumour microenvir-
onment is also evident for some depots(147,148).
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My research has centred throughout on what are trad-
itionally considered to be BAT and WAT, both of which
are defined by their respective signature cells. However, a
third type of adipocyte is now recognised, namely the
beige or brite cell(149,150). Beige adipocytes have some,
though not all, the characteristics of brown fat cells, and
in particular are thermogenic through the presence of
UCP1. Beige adipocytes are found predominantly within
what are regarded as WAT depots and a number of factors
lead to their recruitment, particularly cold exposure and
β-adrenergic stimulation(151,152). The complexity and diver-
sity of fat cells may be even greater with a recent study
reporting four distinct human adipocyte subtypes(153).

Although work on hypoxia has focused on WAT, with
substantial changes in gene expression and function
being demonstrated in white adipocytes, a deficiency in
O2 availability can also occur with BAT. BAT has an
exceptionally high O2 demand in order to fuel thermo-
genesis and hypoxia has been noted in the tissue of nor-
mal mice exposed to cold(154). Hypoxia is not evident,
however, in mice acclimated to a warm environment
(30°C), and studies on Ucp1 knockout animals indicate
that it occurs only with thermogenesis(154). Obese mice
exhibit vascular rarefaction and a substantial reduction
in pO2 in BAT compared with lean mice, leading to a
‘whitening’ of the tissue together with mitochondrial dys-
function and loss(155).

From the effects on hypoxia on white adipocytes, it
was stressed earlier that as cells are customarily incu-
bated under hyperoxic conditions (20 % O2) we may
have obtained a somewhat distorted view of cellular pro-
cesses. This may be true for many types of cells, includ-
ing brown adipocytes. Finally, one of the implications
with the response of white adipocytes to graded levels
of O2 is that cells carefully titrate small changes in the
concentration of this critical nutrient and this results,
as with other nutrients, in the continuous modulation
of cellular function.
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