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Abstract. We apply a previously obtained ansatz for extremal Kähler metrics
to show that if a manifold admits a Hodge metric with constant scalar curvature,
then the total space of the projectivization of a line bundle with first Chern class
equal to the Kähler class of the metric admits a one-parameter family of extremal
Kähler metrics. This generalizes earlier constructions.
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1. Introduction. The notion of extremal Kähler metrics was introduced by Calabi
[2]. On a compact complex manifold M2m, consider the functional Sð�Þ ¼

R
M s2�m,

where � is a Kähler form in a fixed Kähler class ½�� 2 H2ðM;RÞ, and s is the scalar
curvature of �. Kähler metrics corresponding to critical points of S are called extre-
mal Kähler metrics. If g is a Kähler metric, then g is extremal if and only if grad s is a
real holomorphic vector field. This is equivalent to ð@sÞ] being a holomorphic ð1; 0Þ
vector field (we use ] for raising indices and [ for lowering indices).

In section 2, we review and refine the ansatz for extremal Kähler metrics
obtained in [3]. Proposition 2.1, Theorem 2.4, and Proposition 2.5 in [3] give an
ansatz for extremal Kähler metrics with torus symmetry assuming that the Kähler
quotient metric is of a very special form, namely q ¼ q��ðdx�dx� þ dy�dy�Þ, where
q�� is real. In this work the restriction on the Kähler quotient is removed.

In section 3, we solve the equations from the ansatz in a special case and obtain
the main result which states that if a manifold admits a Hodge metric with constant
scalar curvature, then the total space of the projectivization of a line bundle with
first Chern class equal to the Kähler class of the metric admits a one-parameter
family of extremal Kähler metrics. Note that this result has constructions from [2, 3,
6, 7, 15, 17] as special cases , but it also gives us many more new examples.

In section 4, we restrict our attention to the case m ¼ 2. We then consider the
metrics among the solutions from above which are locally conformal to an Einstein
metric (wherever the scalar curvature does not vanish). These metrics are Bach flat,
which means that they are extremal points of the conformally invariant functional
W defined as the (square of) the L2-norm of the Weyl curvature. We observe that
the metrics give rise to a sequence fgtg of Bach flat metrics on the trivial (product)
ruled surface of any genus such that limt!1 Wð½gt�Þ ¼ þ1.

2. An ansatz for extremal Kähler metrics. In this section, assumingtheexistenceof
a real torus acting through holomorphic isometries on a Kähler manifold, we construct
an ansatz for extremal Kähler metrics.

Glasgow Math. J. 44 (2002) 241–253. # 2002 Glasgow Mathematical Journal Trust.
DOI: 10.1017/S0017089502020050. Printed in the United Kingdom

https://doi.org/10.1017/S0017089502020050 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502020050


2.1. The moment map construction of Kähler metrics. Following [14] we consider
the situation of a real torus TN acting freely on the Kähler manifold M2m through
holomorphic isometries.

Proposition 1 [14] Let ðwijÞ, i; j ¼ 1; . . . ;N be a positive definite symmetric matrix
and ðh��Þ, �; � ¼ 1; . . . ;m � N a positive definite hermitian matrix of smooth functions
on an open set U in C

m�N
� RN with coordinates ð��; ziÞ. Assume that the 2-form

�h :¼

ffiffiffiffiffiffiffi
�1

p

2
h��d�

� ^ d��

is a Kähler form on an open set in Cm�N with corresponding Kähler metric h. Let M be
a TN-bundle over U with connection 1-form ! ¼ ð!1; . . . ; !NÞ. Suppose that

@2h��
@zi@zj

þ 4
@2wij

@��@��
¼ 0; ð1Þ

@wij

@zk
¼

@wik

@zj
ð2Þ

and assume the torus bundle has curvature

Fi ¼

ffiffiffiffiffiffiffi
�1

p

2

@h��
@zi

d�� ^ d�� þ
ffiffiffiffiffiffiffi
�1

p @wij

@��
dz j ^ d�� �

ffiffiffiffiffiffiffi
�1

p @wij

@��
dz j ^ d��: ð3Þ

Then

g ¼ h þ wijdzi dzj þ wij!i!j; ð4Þ

where wij ¼ ðw�1Þij, is a Kähler metric on M. Conversely, any Kähler metric with a
torus acting freely through Poisson commuting holomorphic isometries can locally be
constructed as above.

Proof. The proof is straightforward and we just make some remarks concerning
the second part of the proposition. Let M be a TN-symmetric Kähler manifold with
metric g, Kähler form �, and complex structure J. Let ðX1; . . . ;XNÞ be the Hamil-
tonian vector fields generated by the torus action, and let dzj ¼ �iXj

� define the
Hamiltonian functions zj. Then the metric is given as in equation (4), where h is a
Kähler metric in the quotient space of each level set of the Hamiltonians. Note that
wij ¼ gðXi;XjÞ and !i ¼ wijX

[
j , so J!i ¼ �wijdzj and � ¼ dzi ^ !i þ�h, where �h is

the Kähler form of the Kähler quotient. As J is integrable, the exterior derivative
d’i of the ð1; 0Þ forms ’i ¼ wijdzj þ

ffiffiffiffiffiffiffi
�1

p
!i must have no ð0; 2Þ part. Also, for g to

be Kähler, we need d� ¼ 0. These conditions are captured by equation (2) and by
the equation d!i ¼ Fi, with Fi as in (3)1. Then equation (1) is just the integrability
condition dFi ¼ 0. &

1To be absolutely precise, the pull-back of Fi with respect to the bundle projection is given by dwi.
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2.2. Extremal Kähler metrics. Now, let ðM2m; gÞ be a TN-symmetric Kähler
manifold as above. We look for the condition on the scalar curvature, s, so that the
metric is extremal. We have that @s ¼ 1

2 ðds � iJdsÞ is given by

@s ¼
@s

@�
� d�

�
þ
1

2

@s

@zk
ðdzk � iwkl!lÞ: ð5Þ

Therefore we get

ð@sÞ] ¼
@s

@�
� ðd�

�
Þ
]
�

i

2

@s

@zk
ðXk � iJXkÞ:

We need to spell out the conditions for the vector field ð@sÞ] to be holomorphic.

Lemma 1. There exist smooth functions Fk� of ð��; zlÞ such that the forms
�k ¼ Fk�d�� þ wkldzl þ i!k together with d��, � ¼ 1; . . . ;m � 1 and k ¼ 1; . . . ;N,
are a local basis of holomorphic ð1; 0Þ-forms.

Proof. We refer to [3] noting that �k is holomorphic if and only if

@Fk�

@zj
� 2

@wkj

@��
¼ 0; ð6Þ

@h��
@zk

þ 2
@Fk�

@�
� ¼ 0: ð7Þ

The integrability condition for system (6) and (7) is satisfied due to (1), (2) and the
fact that h is a Kähler metric. &

We are now ready to prove our ansatz. We refer to Proposition 1 for the
notation.

Theorem 1. Let M2m be a TN-symmetric Kähler manifold of scalar curvature s.
The the metric is extremal if and only if

@ðh�� @s

@�
�Þ

@zk
¼ 0; ð8Þ

@ðh�� @s

@�
�Þ

@�
� ¼ 0; ð9Þ

4h��
@wkl

@��
@s

@�
� þ

@2s

@zk@zl
¼ 0: ð10Þ

Note that if h�� is real, then (8), (9) and (10) are equivalent to (13), (14), (15), (16),
(17), and (18) in Theorem 2.4 of [3].
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Proof of the theorem. The ð1; 0Þ vector field ð@sÞ] is holomorphic if and only if
d��ðð@sÞ]Þ ¼ 2h�� @s

@�
�, and �kðð@sÞ

]
Þ ¼ 2Fk�h

�� @s

@�
� þ @s

@zk are holomorphic functions for
all � and k. &

In order to work with the above ansatz we need an expression for the scalar
curvature.

Proposition 2 [3] Let M2m be a symmetric Kähler manifold as in Proposition 1
and let u ¼ log det h � log detw. Then the scalar curvature s satisfies

�s ¼ f4
@2u

@��@�
� þ wkl @u

@zk

� �
@h��
@zl

gh�� þ
@

@zl
wkl @u

@zk

� �
:

3. Construction of new extremal Kähler metrics. In this section, we consider the
case N ¼ 1. By solving the differential equations from the ansatz in a special case, we
find new compact extremal Kähler metrics. The work here generalizes the work in
Section 3 of [3] and makes up for the unnecessarily complicated presentation of the
hypotheses in Theorem 3.1 in [3] (see footnote 2).

First, we give the details on the special case in which we solve the equations.
Then, we apply the ansatz from the previous section.

3.1. The assumptions. Let ðB; gBÞ be a ðm � 1Þ-dimensional compact Kähler
manifold with constant scalar curvature sB. Assume that the Kähler form �B is such
that the deRham class ½�B

2�� is contained in the image of H2ðB;ZÞ ! H2ðB;RÞ. Let L
be a holomorphic line bundle such that c1ðLÞ ¼ ½��B

2� �. On the total space M of
ðL � 0Þ !� B, we can form an S1-symmetric Kähler metric

g ¼ zgB þ wdz2 þ w�1!2;

where z, being the coordinate of ða; bÞ � ð0;1�, becomes the moment map of g with
the obvious S1 action on L, w is a positive function depending only on z, and ! is the
connection one-form of the connection induced by g on the S1-bundle

ðL � 0Þ !
ð�;zÞ

B � ða; bÞ:

That is,
d! ¼ �B:

Notice that equations (1) and (2) are satisfied. The complex structure J on M is
given by the complex structure on B and

J! ¼ �wdz:

The Kähler form is given by

In [3], at first glance, it does look as if we are constructing compact metrics on projective bundles over a
product of negative Kähler-Einstein metrics. However, coinidentally, the metrics on each factor were
chosen such that the product was itself a Kähler-Einstein manifold. It was the realization of this fact that
motivated Theorem 3.
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� ¼ z�B þ dz ^ !:

If X is the Hamiltonian vector field generated by the S1 action, then

dz ¼ �ð�X; �Þ ¼ ð�JXÞ
[;

w�1 ¼ gðX;XÞ;

and

! ¼
gðX; �Þ

gðX;XÞ
¼ wX[:

The Ricci form 
 is given by


 ¼ 
B � i@@ logð
zm�1

w
Þ

which implies that the scalar curvature s is given by

s ¼
sB

z
�
ðz

m�1

w Þzz

zm�1
:

If w�1 (by which we mean 1=w) is such that w�1ðaÞ ¼ 0 and ðw�1Þ
0
ðaÞ ¼ 2, then

we can add a copy of B at z ¼ a and extend the Kähler metric g over the zero section
of the bundle L ! B. If, moreover, b < 1, w�1ðbÞ ¼ 0 and ðw�1Þ

0
ðbÞ ¼ �2, then we

can add another copy of B at z ¼ b and extend g to a Kähler metric on the total
space of the CP1-bundle PðO � LÞ. We refer to [9,10] for the details.

3.2. Applying the ansatz. In this special case, the only equation remaining from
the ansatz is

szz ¼ 0:

Integrating and using the above formula for s we get the equation

zm�1

w
¼ PðzÞ;

where

PðzÞ ¼
sB

ðm � 1Þm
zm � C1z

mþ2 � C2z
mþ1 � C3z � C4:

The endpoint conditions on w�1 for compactification are equivalent to the following
conditions on PðzÞ:

Pð1Þ ¼ PðbÞ ¼ 0;

P0ð1Þ ¼ 2;
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P0ðbÞ ¼ �2bm�1:

For convenience, we have assumed that a ¼ 1. This can easily be achieved by
rescaling. These conditions determine the coefficients of PðzÞ. Moreover, since w is a
positive function, we need PðzÞ > 0 in the interval ð1; bÞ. For a given b, the coeffi-
cients C1;C2;C3 and C4 are given as follows:

C1 ¼
n1
d
;

C2 ¼
n2
d
;

C3 ¼ �ðm þ 2ÞC1 � ðm þ 1ÞC2 þ
sB

ðm � 1Þ
� 2;

C4 ¼ �C1 � C2 � C3 þ
sB

ðm � 1Þm
;

where

n1 ¼
sB

ðm � 1Þ
ð
�1

m
b2m þ mbmþ1 þ 2ð

1

m
� mÞbm þ mbm�1 �

1

m
Þ

þ 2ðb2m � mbmþ1 þ mbm�1 � 1Þ;

n2 ¼
sB

ðm � 1Þ
ð
2

m
ðb2mþ1 þ 1Þ � ðm þ 1Þðbmþ2 þ bm�1Þ þ ðm þ 1�

2

m
Þðbmþ1 þ bmÞÞ

þ 2ðð1� b2mþ1Þ þ ðm þ 1Þðbmþ2 � bm�1Þ þ ðm þ 2Þðbm � bmþ1ÞÞ;

and

d ¼ b2mþ2 � ðm þ 1Þ2bmþ2 þ 2mðm þ 2Þbmþ1 � ðm þ 1Þ2bm þ 1:

3.3. Case m=2. When sB > 0, we have Calabi’s extremal Kähler metrics [2] on
(non-trivial) Hirzebruch surfaces. When sB < 0, we have extremal Kähler metrics on
pseudo-Hirzebruch surfaces [17]. The case sB ¼ 0, which appears in Hwang’s con-
struction of extremal Kähler metrics [7], has, to the author’s knowledge, not yet
been considered explicitly for m ¼ 2. In this case, we have

C1 ¼
2ðb þ 1Þ

ðb � 1Þðb2 þ 4b þ 1Þ
;

C2 ¼
�2ðb2 þ 1Þ

ðb � 1Þðb2 þ 4b þ 1Þ
;

C3 ¼
�2bðb2 þ 1Þ

ðb � 1Þðb2 þ 4b þ 1Þ
;

C4 ¼
2b2ðb þ 1Þ

ðb � 1Þðb2 þ 4b þ 1Þ
:

Hence
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PðzÞ ¼
2

ðb � 1Þðb2 þ 4b þ 1Þ
ðz � 1Þðb � zÞððb þ 1Þz2 þ 2bz þ b2 þ bÞ:

Thus, for any given b > 1, PðzÞ satisfies the boundary conditions and is positive in
the interval ð1; bÞ. The geometric picture is as follows. Let gB be a scalar flat Kähler
metric on a compact Riemann surface (of genus one). By rescaling we can assume
that the class ½�B

2�� is integral. Let L be a line bundle on B such that c1ðLÞ ¼ ½��B

2� �.
Any negative line bundle can be obtained in this way. The above calculations show
that the ruled surface PðO � LÞ has a one-parameter family of extremal Kähler
metrics. The parameter b determines the Kähler class, and one can check (using the
same ideas as in [17]) that varying b and rescaling (varying a) sweeps out the whole
Kähler cone. Thus any Kähler class on PðO � LÞ has an extremal Kähler metric.

Theorem 2. Let B be a compact Riemann surface of genus one. Let L be a non-
trivial holomorphic line bundle on B. Then any Kähler class on the ruled surface
PðO � LÞ admits an extremal Kähler metric.

3.4. Case m � 2. We want to find b > 1 such that PðzÞ both satisfies the
boundary conditions and is positive in the interval ð1; bÞ. Given that the boundary
conditions are satisfied, this would hold if P00ðzÞ < 0 on the interval.

Lemma 2. Let the coefficients of PðzÞ be such that the boundary conditions are
satisfied. There exists � > 1 such that for b 2 ð1; �Þ, P00ðzÞ is negative in the interval
½1; b�.

Proof. We can write P00ðzÞ ¼ zm�2SmðzÞ where

SmðzÞ ¼ �C1ðm þ 2Þðm þ 1Þz2 � C2mðm þ 1Þz þ sB:

Recall the general formula for the coefficients C1 and C2 and consider n1; n2 and d as
functions of b. Firstly, observe that

dð1Þ ¼ d 0ð1Þ ¼ d 00ð1Þ ¼ d 000ð1Þ ¼ 0

and

d 0000ð1Þ > 0:

Secondly, observe that

n1ð1Þ ¼ n01ð1Þ ¼ n001ð1Þ ¼ 0

and

n0001 ð1Þ > 0:

Setting h ¼ mn2 þ ðm þ 2Þn1 we also have that
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hð1Þ ¼ h0ð1Þ ¼ h00ð1Þ ¼ 0

and

h000ð1Þ > 0:

Finally, setting f ¼ �ðm þ 1Þh þ sBd, we have that

fð1Þ ¼ f 0ð1Þ ¼ f 00ð1Þ ¼ 0

and
f 000ð1Þ < 0:

From the above we see that there exists a � > 1 such that if b 2 ð1; �Þ, then d > 0,
C1 > 0, h > 0, and f < 0. In this case, Sm is concave down and the apex

z ¼
1

2

�mC2

ðm þ 2ÞC1
¼
1

2

�mn2
ðm þ 2Þn1

is less than 1
2. Moreover,

Smð1Þ ¼ �C1ðm þ 2Þðm þ 1Þ � C2mðm þ 1Þ þ sB ¼
f

d
< 0:

This tells us that there are no roots to the right of z ¼ 1 and consequently for
b 2 ð1; �Þ, SmðzÞ < 0 for z � 1. In particular, Sm and P00ðzÞ are negative in the inter-
val ½1; b�. &

Thus we have the following result.

Theorem 3. Let B be a compact Kählerian manifold which admits a Hodge metric
with constant scalar curvature. Let L be a holomorphic line bundle on B such that that
first Chern class of L is given by (�) the Kähler class of the metric. Then the total
space M of PðO � LÞ ! B admits an extremal Kähler metric.

Notice that a manifold satisfying the conditions in Theorem 3 must be a pro-
jective algebraic manifold.

Proof of the theorem. If ~ggB is a Hodge metric with ~ssB ¼constant, then ½ ~��B� sits
in the image of H2ðB;ZÞ ! H2ðB;RÞ. By setting gB ¼ 2� ~ggB, we have that

c1ðLÞ ¼ ½� ~��B� ¼ ½
��B

2�
�:

Since PðO � LÞ ffi PðO � L�1Þ, we may assume that

c1ðLÞ ¼ ½
��B

2�
�:

Now let � be as in Lemma 2. For b 2 ð1; �Þ, z 2 ð1; bÞ, zm�1

w ¼ PðzÞ, and PðzÞ satisfying
the boundary conditions, the metric
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g ¼ zgB þ wdz2 þ w�1!2

is an extremal Kähler metric on the total space of ðL � 0Þ ! B which extends
smoothly to an extremal Kähler metric on the total space of PðO � LÞ. &

The scalar curvature of the metric is given by

s ¼ ðm þ 1Þððm þ 2ÞC1z þ mC2Þ:

For b 2 ð1; �Þ, where � is as in the proof of Lemma 2, we have that C1 > 0, and, at
the point z ¼ 1, s ¼ h

d > 0. Thus s is positive on M.
If ðB; gBÞ is a product of non-negative Kähler-Einstein manifolds, then these

metrics have been constructed by Hwang [7], (generalizing Calabi’s construction [2]
for B ¼ CPm�1). See also Guan’s paper [6]. If ðB; gBÞ is a Kähler-Einstein manifold
with sB ¼ �2ðm � 1Þ, then the metrics were constructed in [3]2. However, the above
theorem includes many more new examples. For instance, ðB; gBÞ could be a product
of Kähler-Einstein manifolds, not necessarily with the same sign of curvature.

Let B be a projective algebraic manifold. Assume that H2ðB;RÞ ¼ H1;1ðB;RÞ.
Then H2ðB;QÞ is dense in H1;1ðB;RÞ. The set of Kähler classes of extremal Kähler
metrics on B is open in H1;1ðB;RÞ [12]. Thus, if there exists a constant scalar curva-
ture Kähler metric on B, then there exists an extremal Kähler metric on B whose
Kähler class sits in H2ðB;QÞ. By a suitable rescaling, we have an extremal Hodge
metric. If B does not have any non-trivial holomorphic vector fields of gradient type,
this metric has constant scalar curvature.

Theorem 4. Let B be a compact projective algebraic manifold such that
H2ðB;RÞ ¼ H1;1ðB;RÞ. Assume that B has no non-trivial holomorphic vector fields of
gradient type. If B admits a constant scalar curvature Kähler metric, then there exists
a holomorphic line bundle L on B such that the total space of PðO � LÞ ! B admits an
extremal Kähler metric.

Example 1. A Kähler surface which satisfies the conditions in the above theorem
can be obtained by blowing-up a ruled surface of genus at least two sufficiently
many times [11].

4. Bach flat metrics. In this section, we restrict our attention to the case where
the complex dimension is equal to two and discuss the metrics among the solutions
from the last section which are locally conformal to an Einstein metric (apart from
where the scalar curvature vanishes).

4.1. Case m=2 revisited. Let m ¼ 2 and consider the extremal Kähler metrics
constructed in the previous section. In this case, B is a compact Riemann surface of
constant scalar curvature sB. When sB 6¼ 0, then c1ðLÞ ¼

2
sB

c1ðKÞ, where K is the
canonical bundle over B. If sB > 0, then the possible values of sB are sB ¼ 4

k, where
k 2 N. Then L ¼ K

k
2 ¼ Oð�kÞ. If sB < 0, we will, for simplicity, assume that sB ¼ �4

k ,
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k 2 N. Thus c1ðLÞ ¼ �kðg� 1Þ, where g denotes the genus of B, and L ¼ K
�k
2 up to

diffeomorphism.
If sB � 0, then for any b > 1, that is, in any Kähler class [17], we have an

extremal Kähler metric

g ¼ zgB þ
z

PðzÞ
dz2 þ

PðzÞ

z
!2;

where

PðzÞ ¼
sB

2
z2 � C1z

4 � C2z
3 � C3z � C4;

C1 ¼

sB

2 ð1� bÞ þ 2ðb þ 1Þ

ðb � 1Þðb2 þ 4b þ 1Þ
;

C2 ¼
sBðb

2 � 1Þ � 2ðb2 þ 1Þ

ðb � 1Þðb2 þ 4b þ 1Þ
;

C3 ¼ �4C1 � 3C2 þ sB � 2;

and

C4 ¼ �C1 � C2 � C3 þ
sB

2
:

If sB < 0, then there exists a ~bb > 1 such that for any b, 1 < b < ~bb, we have an
extremal Kähler metric as above [17]. The bound ~bb is the unique solution, greater
than one, of the equation

~bb4 � 4ðk2 þ 3k þ 1Þ ~bb3 þ 2ð3� 2k2Þ ~bb2 � 4ðk2 � 3k þ 1Þ ~bb þ 1 ¼ 0:

One checks easily that ~bb > 6 for any k 2 N.

4.2. ExtremalKählermetrics which are locally conformal toEinsteinmetrics. Let g
be an extremal metric as in the above subsection. It is well known, [5], that if

s2 � 6s�s � 12jdsj2 ¼ 0;

then the metric s�2g is an Einstein metric on M n fs ¼ 0g. Since s ¼ 6ð2C1z þ C2Þ,
this equation reduces to the equation

4C1C4 ¼ C2C3;

which in turn becomes an equation in b:

s2Bð�b4 þ b3 þ b � 1Þ þ 4sBðb
4 � 2b3 þ 2b � 1Þ þ 4ð�b4 þ 4b3 þ 6b2 þ 4b � 1Þ ¼ 0:

ð11Þ
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For each solution b̂b to equation (11), we have a corresponding metric ĝg of the type
described in subsection 4.1 such that ŝs�2ĝg is Einstein where defined.

4.2.1. Case sB=0. In this case equation (11) becomes

12b2 � ðb � 1Þ4 ¼ 0;

and b̂b ¼ 1þ
ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffiffiffi
12

pp
� 5:275 solves the equation.

4.2.2. Case sB>0,sB 6¼ 2. Since the left hand side of equation (11) is positive at
b ¼ 1 and the limit as b goes to þ1 is equal to �1, there exists a b̂b > 1 solving (11).
Moreover, limsB!0 b̂b ¼ 1þ

ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffiffiffi
12

pp
.

4.2.3. Case sB=2. Equation (11) has no solutions greater than one.

4.2.4. Case sB<0. Since the left hand side of equation (11) is positive at b ¼ 1
and negative at b ¼ 6, there exists a b̂b solving (11) such that 1 < b̂b < 6 < ~bb. Again,
limsB!0 b̂b ¼ 1þ

ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffiffiffi
12

pp
.

We conclude with the following proposition.

Proposition 3. Let B be a compact Riemann surface of genus g.
(1) [1, 4, 8] If g ¼ 0, then on any complex manifold of the type

M ¼ PðO � OðkÞÞ ! B, k 2 N n f2g, there exists an extremal Kähler metric ĝg of the
type described in subsection 4.1 such that ŝs�2ĝg is an Einstein metric on M n fs ¼ 0g.

(2) If g ¼ 1, then on any complex manifold of the type M ¼ PðO � LÞ ! B,
where L is a non-flat holomorphic line bundle, there exists an extremal Kähler metric ĝg
of the type described in subsection 4.1 such that ŝs�2ĝg is an Einstein metric on
M n fs ¼ 0g.

(3) If g � 2, then on any complex manifold of the type M ¼ PðO � LÞ ! B,

where L is a holomorphic line bundle such that L ffi
C1

K
�k
2 , k 2 N and K is the canonical

line bundle on B, there exists an extremal Kähler metric ĝg of the type described in
subsection 4.1 such that ŝs�2ĝg is an Einstein metric on M n fs ¼ 0g.
Notice that fs ¼ 0g is a real smooth submanifold of M. Unless g ¼ 0 and k ¼ 1 (and
ŝs�2ĝg is the Page metric [4]) this submanifold is never the empty set.

The fact that ĝg is extremal and locally conformally Einstein implies that it is also
strongly extremal [8, 16].

4.3. Bach flat metrics. Case 1 in the above proposition is well known [1, 4, 8],
and case 3 was considered in [3]. However, one does not have to end the story there.
As is well known, [5], the above metrics ĝg have vanishing Bach tensor. This means
that they are extremal points of the functional Wð½g�Þ :¼

R
M jjWjj2d� defined over all

conformal structures on M, where W denotes the Weyl curvature of g. Since the sig-
nature of M vanishes, we see thatWð½g�Þ ¼ 2

R
M jjWþjj2d�, where Wþ is the self-dual
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part of the Weyl curvature. If g is a Kähler metric, we have that 2
R
M jjWþjj2

d� ¼ 1
12

R
M s2d�, which, for any g as in subsection 4.1, is given by

��2degL
s2Bðb

2 � 1Þ

ðb2 þ 4b þ 1Þ
þ

sBðb
4 þ 3b3 þ 10b2 þ 3b þ 1Þ

ðb2 þ 4b þ 1Þ2
þ

8ðb4 � 1Þ

ðb � 1Þ2ðb2 þ 4b þ 1Þ

� �
:

For sB ¼ 0, recall that ĝg corresponds to b̂b ¼ 1þ
ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffiffiffi
12

pp
. It is easy to see that

lim
deg L!�1

Wð½ĝg�Þ ¼ lim
deg L!�1

1

12

Z
M

ŝs2 ^d�d� ¼ þ1:

For sB 6¼ 0, recall that degL ¼ 4
sB
ðg� 1Þ and limsB!0 b̂b ¼ 1þ

ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffiffiffi
12

pp
. Hence,

lim
k!þ1

Wð½ĝg�Þ ¼ lim
sB!0

Wð½ĝg�Þ ¼ þ1:

For each B, there are exactly two diffeomorphism classes for the manifolds
M ¼ PðO � LÞ ! B: the product manifold and another one. If deg L is even, then

M ffi
C1

B � S2. If deg L is odd, then M is in the other diffeomorphism class (see for
example Example 4.26 in [13]). The above observations can then be interpreted in
the following way.

Proposition 4. For each compact Riemann surface B, we have a sequence fgtg of
Bach-flat metrics on the 4-manifold B � S2 such that

lim
t!1

Wð½gt�Þ ¼ þ1:

The same statement is true for the other diffeomorphism class of PðO � LÞ ! B.
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