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NEW ESTIMATES OF HILBERT–KUNZ
MULTIPLICITIES FOR LOCAL RINGS OF

FIXED DIMENSION

IAN M. ABERBACH and FLORIAN ENESCU

Abstract. We present results on the Watanabe–Yoshida conjecture for the
Hilbert–Kunz multiplicity of a local ring of positive characteristic. By improv-
ing on a “volume estimate” giving a lower bound for Hilbert–Kunz multiplicity,

we obtain the conjecture when the ring has either Hilbert–Samuel multiplicity

less than or equal to 5 or dimension less than or equal to 6. For nonregular rings

with fixed dimension, a new lower bound for the Hilbert–Kunz multiplicity is
obtained.

§1. Introduction

Let (R,m,K) be a local ring of positive characteristic p. If I is an ideal

in R, then I [q] = (iq : i ∈ I), where q = pe is a power of the characteristic.

For an m-primary ideal I , one can consider the Hilbert–Samuel multiplicity

and the Hilbert–Kunz multiplicity of I with respect to R.

Definition 1.1. Let I be an m-primary ideal in (R,m).

1. The Hilbert–Samuel multiplicity of R at I is defined by e(I) = e(I,R) :=

limn→∞ d!(λ(R/In))/nd. The limit exists and is positive.

2. The Hilbert–Kunz multiplicity of R at I is defined by eHK(I) =

eHK(I,R) := limq→∞ (λ(R/I [q]))/qd. Monsky has shown in [10] that this

limit exists and is positive.

It is known that for parameter ideals I , one has e(I) = eHK(I). The

following sequence of inequalities is also known to hold:

max
{
1,

1

d!
e(I)

}
≤ eHK(I)≤ e(I)

for every m-primary ideal I .
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We call a local ring R formally unmixed if R̂ is equidimensional and

Min(R̂) = Ass(R̂)—that is, if dim(R̂/P ) = dim(R̂) for all its minimal primes

P—and if all associated primes of R̂ are minimal. Nagata [12, p. 82] calls

such rings unmixed. However, throughout this article a local unmixed ring

is a local ring R that is equidimensional, and Min(R) = Ass(R). We also

examine lower bounds for formally unmixed nonregular local rings R of

dimension d and prime characteristic p.

Definition 1.2. For d≥ 1, let md be the real numbers such that

sec(x) + tan(x) = 1+

∞∑
d=1

mdx
d,

where |x|< π/2.

The following conjecture is central to our argument here.

Conjecture 1.3 ([20, Conjecture 4.2]). Let d ≥ 1, and let p > 2. Let

K = F p, and let

Rp,d =
K[[x0, . . . , xd]]

(x20 + · · ·+ x2d)
.

Let (R,m,K) be a formally unmixed nonregular local ring of dimension d.

Then

eHK(R)≥ eHK(Rp,d)≥ 1 +md.

Remark 1.4. The reader should note that the statement eHK(Rp,d) ≥
1 +md is part of the conjecture.

This is known for d≤ 6, due to Yoshida [22, p. 239]. In fact, eHK(Rp,5) =

(17p2 + 12)/(15p2 + 10) >m5 = 17/15, and eHK(Rp,6) = (781p4 + 656p2 +

315)/(720p4 + 570p2 + 270)>m6 = 781/720.

Therefore, the inequality conjectured by Watanabe and Yoshida includes

two inequalities: a stronger one,

(1.1) eHK(R)≥ eHK(Rp,d),

and a weaker one,

(1.2) eHK(R)≥ 1 +md.

As far as we know, the inequality eHK(Rp,d)≥ 1 +md is open for d≥ 7.
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Remark 1.5. Monsky and Gessel in [11] (see also [20, Theorem 4.1]) have

shown that

lim
p→∞

eHK(Rp,d) = 1+md,

for d≥ 2.

Watanabe and Yoshida [22, Theorems 3.1, 4.3] have proved this conjec-

ture in dimensions 3 and 4. The cases d= 1,2 are also known.

In higher dimensions, it was not known until recently whether or not for

a fixed dimension d there exists a lower bound, say, C(d) > 1, such that

every local formally unmixed nonregular ring R satisfies eHK(R) ≥ C(d).

We have shown the existence of such a lower bound in [1, Theorem 4.12].

Remark 1.6. If R is a complete intersection of dimension d ≥ 1 and

characteristic p > 2, then as the second author and Shimomoto proved in

[5, Theorem 4.6],

eHK(R)≥ eHK(Rp,d).

In the present paper, we develop techniques which will produce improved

estimates for Hilbert–Kunz multiplicities of local rings. In Section 3, we

extend an inequality of Watanabe and Yoshida that gives a lower bound for

the Hilbert–Kunz multiplicity of a local ring R in terms of a volume func-

tion. In Section 4, we apply this inequality to prove the Watanabe–Yoshida

conjecture for rings of Hilbert–Samuel multiplicity at most 5. Section 5 pro-

vides an asymptotic solution to the above-mentioned conjecture for rings

of dimensions 5 and 6. Furthermore, Section 6 sharpens the lower bound

for the Hilbert–Kunz multiplicity of a local ring R provided in [1] in all

dimensions.

Shortly after this paper was posted to the arXiv (see arXiv:1101.5078),

Celikbas, Dao, Huneke, and Zhang in [3] posted a manuscript that obtains

a lower bound of the Hilbert–Kunz multiplicity of a d-dimensional ring that

improves our bound in certain important cases. Their approach starts with

an analysis of radical extensions, comparable to Section 6 of the present arti-

cle; however, it is different from ours and along the way uses new inequalities

that are very interesting in their own right.

§2. Notation, terminology, and background

First, we would like to review some definitions and results that will be

useful later. Throughout the paper, R will be a Noetherian ring containing
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a field of characteristic p, where p is prime. Also, q will denote pe, a varying

power of p.

If I is an ideal in R, then I [q] = (iq : i ∈ I), where q = pe is a power of the

characteristic. Let R◦ =R \
⋃
P , where P runs over the set of all minimal

primes of R. An element x is said to belong to the tight closure of the ideal

I if there exists c ∈ R◦ such that cxq ∈ I [q] for all sufficiently large q = pe.

The tight closure of I is denoted by I∗. By a parameter ideal, we mean here

an ideal generated by a full system of parameters in a local ring R. A tightly

closed ideal of R is an ideal I such that I = I∗.
Let F :R→R be the Frobenius homomorphism F (r) = rp. We denote by

F e the eth iteration of F ; that is, F e(r) = rq, F e :R→R. One can regard R

as an R-algebra via the homomorphism F e. Although as an abelian group

it equals R, it has a different scalar multiplication. We will denote this new

algebra by R(e).

Definition 2.1. We say that R is F-finite if R(1) is module-finite over

R or, equivalently (in the case that R is reduced), if R1/p is module-finite

over R. Also, R is called F-pure if the Frobenius homomorphism is a pure

map—that is, if F ⊗R M is injective for every R-module M .

If R is F-finite, then R1/q is module-finite over R, for every q. Moreover,

any quotient and localization of an F-finite ring is F-finite. Any finitely

generated algebra over a perfect field is F-finite. An F-finite ring is excellent.

Definition 2.2. A reduced Noetherian F-finite ring R is strongly F-

regular if for every c ∈R0 there exists q such that the R-linear map R→R1/q

that sends 1 to c1/q splits over R or, equivalently, that Rc1/q ⊂R1/q splits

over R.

The notion of strong F-regularity localizes well, and all ideals are tightly

closed in strongly F-regular rings. Regular rings are strongly F-regular, and

strongly F-regular rings are Cohen–Macaulay and normal.

Let ER(K) denote the injective hull of the residue field of a local ring

(R,m,K).

Definition 2.3. A ring R is called F-rational if all parameter ideals are

tightly closed. A ring R is called weakly F-regular if all ideals are tightly

closed. The ring R is F-regular if and only if S−1R is weakly F-regular for

all multiplicative sets S ⊂R.
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Regular rings are (strongly) F-regular. For Gorenstein rings, the notions

of F-rationality and F-regularity coincide (and if, in addition, the ring is

excellent, these coincide with strong F-regularity).

Our work here relies on a number of inequalities that involve the Hilbert–

Kunz multiplicity obtained in [1] via duality theory, so we will state them

all here together.

Theorem 2.4. Let (R,m,K) be a local ring of dimension d and charac-

teristic p, where p is prime.

(i) Assume that R is Cohen–Macaulay of type t. Then

eHK(R)≥ e(R)

e(R)− t+ 1
.

(ii) Assume that R is Gorenstein of embedding dimension ν = μ(m). If R

or R̂ is not F-regular, then

eHK(R)≥ e(R)

e(R)− ν + d
.

(iii) Assume that R is formally unmixed and that d≥ 2.

If

eHK(R)<
e(R)

e(R)− 1
,

then R is Gorenstein. Also, R and R̂ are F-regular.

(iv) If R is Cohen–Macaulay and has minimal multiplicity, that is, ν =

e(R) + d− 1, then

eHK(R)≥ e(R)

2
.

Proof. Part (i) is [1, Corollary 3.3]. Part (ii) is [1, Corollary 3.7]. Part (iv)

is [1, Corollary 3.4].

For part (iii), by a result of Blickle and the second author (see, e.g.,

[2, Remark 1.3]), we obtain that R is Cohen–Macaulay. If the type of R is

greater than 1, then part (i) above gives a contradiction. So, R is Gorenstein,

and then part (ii) finishes the proof, as ν ≥ d+ 1.

§3. Volume estimates for Hilbert–Kunz multiplicity lower bounds

A geometric formula first articulated by Watanabe and Yoshida in [20,

Theorem 2.2] gives a great deal of information, especially in small dimension.

We give an improved version of their formula here.
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For any real number s, set

vs = vol
{
(x1, . . . , xd) ∈ [0,1]d

∣∣∣ d∑
i=1

xi ≤ s
}
.

Here vol denotes the Euclidean volume of a subset of Rd. In fact, an

explicit formula for vs, which is due to Pólya and can be traced to Laplace

(see [4, (16), p. 233]), is

vs =

�s�∑
n=0

(−1)n
(s− n)d

n!(d− n)!
.

Theorem 3.1 ([20, Theorem 2.2]). Let (R,m,K) be a formally unmixed

local ring of characteristic p > 0 and dimension d. Let J be a minimal reduc-

tion of m, and let r be an integer with r ≥ μR(m/J∗). Let s≥ 1 be a rational

number. Then

(3.1) eHK(R)≥ e(R){vs − rvs−1}.

Theorem 3.1 is an improvement over Watanabe and Yoshida’s theorem

when the maximum volume occurs for a value of s > 2. Theorem 3.1 can be

made considerably more general.

Fix an ideal J in an analytically unramified local ring (R,m). For an ele-

ment x ∈ R, set vJ(x) = sup{k | x ∈ Jk}. We can then set fJ(x) =

limn→∞ (vJ(x
n))/n. By work of Rees [14], the number fJ(x) is rational

and is the same for any ideal with the same integral closure as J .

Theorem 3.2. Let (R,m,K) be a formally unmixed local ring of charac-

teristic p > 0 and dimension d≥ 1. Let J be a parameter ideal with e = e(J).

Fix I ⊇ J∗, and let r = μR(I/J
∗). Let z1, . . . , zr be minimal generators of I

modulo J∗, and let ti = fJ(zi). For any rational number s≥ 0, we have

(3.1) eHK(I)≥ e
(
vs −

r∑
i=1

vs−ti

)
.

In order to prove Theorem 3.2, we need the following result (where, for

any nonnegative real number α, we define Iα = I�α�).
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Lemma 3.3 ([18, Lemma 2.3]). Let (R,m,K) be a formally unmixed local

ring of characteristic p > 0 with d= dimR≥ 1. Let J be a parameter ideal

of R. Then for any rational number s with 0≤ s≤ d, we have

lim
q→∞

λ(R/Jsq)

qd
=

e(J)sd

d!
and lim

q→∞
λ(R/(Jsq + J [q]))

qd
= e(J)vs.

Theorem 3.1 follows from Theorem 3.2 by taking I = m, J a minimal

reduction of m, and noting that for any minimal generator of m, the valua-

tion is at least 1.

Proof of Theorem 3.2. We can apply [8, Theorem 8.17(a)] to observe that

λ((B∗)[q]/B[q]) =O(qd−1).

Let us note that I = (z1, . . . , zr) + J∗.
The proof now follows from an examination of the inequality

λ
( R

I [q]

)
≥ λ

( R

(z1, . . . , zr)[q] + Jsq + (J∗)[q]

)
= λ

( R

(z1, . . . , zr)[q] + J [q] + Jsq

)
− λ

(I [q] + (J∗)[q] + Jsq

I [q] + J [q] + Jsq

)
= λ

( R

(z1, . . . , zr)[q] + J [q] + Jsq

)
+O(qd−1)

≥ λ
( R

Jsq + J [q]

)
−
(r−1∑
i=0

λ
((z1, . . . , zi+1)

[q] + Jsq + J [q]

(z1, . . . , zi)[q] + Jsq + J [q]

))
+O(qd−1)

≥ λ
( R

Jsq + J [q]

)
−
(r−1∑
i=0

λ
( R

(Jsq + J [q]) : zqi+1

))
+O(qd−1).

For N = 1,2, . . . , let εN = 1/pN , and choose q0 > pN such that for all

q ≥ q0, we have ∣∣∣vJ(zqi+1)

q
− ti+1

∣∣∣< εN .

Fix N . For q ≥ q0, we then have vJ(z
q
i+1)≥ 	(ti+1 − εn)qi
, and so zqi+1 ∈

J�(ti+1−εn)q	 = J�ti+1q	−εnq.

It follows that zqi+1J
(s−ti+1)q ⊆ Jsq−εNq, and hence that zqi+1J

sq ⊆
J (s−εN+ti+1)q.

https://doi.org/10.1215/00277630-2335204 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2335204


66 I. M. ABERBACH AND F. ENESCU

Therefore,

λ
( R

(Jsq + J [q]) : zqi

)
≤ λ

( R

(J (s−ti+1+εN )q + J [q])

)
.

So,

λ
( R

I [q]

)
≥ λ

( R

Jsq + J [q]

)
−
(r−1∑
i=0

λ
( R

(J (s−ti+1+εN )q + J [q])

))
+O(qd−1).

Dividing each term in the last inequality obtained by qd, taking lim-

its as q → ∞, and applying Lemma 3.3 to each term plus the fact that

limε→0 vs−ε = vs yields (3.1).

Remark 3.4. This result also extends [20, Fact 2.4].

§4. Lower bounds for rings with small

Hilbert–Samuel multiplicity

In this section, we apply Theorem 3.2 to provide lower bounds for the

Hilbert–Kunz multiplicity of formally unmixed local rings of Hilbert–Samuel

multiplicity less than or equal to 5.

We note that

1+m3 =
4

3
, 1+m4 =

29

24
, 1+m5 =

17

15
, 1+m6 =

781

720
= 1.0847.

Theorem 4.1. Let (R,m,K) be a Cohen–Macaulay local ring such that

e(R) = 3 and such that R is not a complete intersection. Then eHK(R) ≥
13/8.

Proof. We may immediately complete the ring R. Let d= dimR, and let

k = embdim(R) − dim(R). It is known that k ≤ e − 1 = 2. Since R is not

a complete intersection, then k > 1, so R is a ring of minimal multiplicity.

By [16, Theorem 1.1], we can write R = S/I , where S =K[[x1, . . . , xd+2]].

The same result implies that I is a 3-generated ideal of R and that the

Hilbert–Burch theorem applies, so I is the ideal of minors of a 3×2 matrix,

say, [aij ], where aij ∈ (x1, . . . , xd+2)S.

Consider the ring R1 = K[[y11, . . . , y32, x1, . . . , xd+2]]/I2([yij ]). Then

dimR1 = 4+ d+ 2= d+ 6.

Clearly, R1/(yij−aij | 1≤ i≤ 3,1≤ j ≤ 2)∼=R. Since dimR1−dimR= 6,

the equations form a regular sequence, so eHK(R)≥ eHK(R1), and

eHK(R1) = eHK

(
K[[y11, . . . , y32]]/I2

(
[yij ]

))
= 13/8.
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(The ring R1 is isomorphic to the Segre product S2,3, and so [6, Theorem 3.3]

gives the value 13/8.)

Case of a local ring of Hilbert–Samuel multiplicity 3

Let (R,m) be a formally unmixed local ring of multiplicity e = 3 and

characteristic p > 2. We can assume that R is complete and unmixed.

If eHK(R)< e/(e− 1) = 1.5, then we have that R is Gorenstein by Theo-

rem 2.4(iii). In this case, by Theorem 4.1, if R is not a complete intersection,

then eHK(R)≥ 13/8. Otherwise, eHK(R)≥ eHK(Rp,d) by the second author

and Shimomoto in [5, Theorem 4.6]. This shows that the Watanabe–Yoshida

conjecture is settled for local rings of multiplicity 3.

Case of a local ring of Hilbert–Samuel multiplicity 4

Let (R,m) be a formally unmixed local ring of multiplicity e = 4 and

characteristic p > 2. We can complete, and assume that R is complete and

unmixed. Let k = embdim(R)− dim(R).

If eHK(R)< 1+1/(4−1) = 4/3, then R is Gorenstein by Theorem 2.4(iii).

Since k ≤ e− 1 = 3, then if R has minimal multiplicity (k = 3), eHK(R)≥
4/2 = 2 by Theorem 2.4(iv). If k = 2, by considering the minimal free resolu-

tion of R over S, we see that R is a complete intersection. The case k = 1 also

leads to R being a complete intersection. In both cases, eHK(R)≥ eHK(Rp,d)

by [5, Theorem 4.6]. This shows that the Watanabe–Yoshida conjecture is

settled for local rings of multiplicity 4.

Case of a local ring of Hilbert–Samuel multiplicity 5

Let (R,m) be a formally unmixed local ring of multiplicity e = 5 and

characteristic p > 2. We can complete, and we assume that R is complete

and unmixed. Let d= dim(R).

We can assume that R is Gorenstein if eHK < 1.25 by Theorem 2.4(iii).

Let us assume that R is Gorenstein, and set k = embdim(R)− dim(R).

If k = e − 1, then R has minimal multiplicity, and then Theorem 2.4(iv)

gives eHK(R)≥ e/2 = 2.5. So we can assume that k ≤ e− 2 = 3. In fact, the

cases k = 1,2 both imply that R is a complete intersection. (The case k = 2

follows from a theorem of Serre as in [15, Theorem 1.2, p. 69].)

If k = 3, then write R as S/I , where S = K[[x1, . . . , xd+3]] is complete

local regular and I is a height 3 Gorenstein ideal with I ⊂ n2, where n =

(x1, . . . , xd+3). By the Buchsbaum–Eisenbud structure theorem (see [15,

Theorem 1.5, p. 72]), the ideal I is given by the set of Pfaffians of a 5× 5
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antisymmetric matrix with entries in S. The upper right corner has at most

10 nonzero entries denoted aij ,1≤ i < j ≤ 5. These elements belong to n.

Let A= (yij) be an antisymmetric matrix of indeterminates of size 5× 5,

and set

R1 =K[[yij , x1, . . . , xd+3 : 1≤ i < j ≤ 5]]/
(
Pf(A)

)
,

where (Pf(A)) is the ideal generated by the Pfaffians of A.

We note that dim(R1) = 7+d+3= 10+d. Also, the elements yij−aij ,1≤
i < j ≤ 5 form a regular sequence in R1 since R1/(yij − aij ,1≤ i < j ≤ 5)�
R, and the dimension drops exactly by 10.

Therefore,

eHK(R)≥ eHK(R1) = eHK

(
K[[yij : 1≤ i < j ≤ 5]]

)
/
(
Pf(A)

)
,

and the former is a Gorenstein ring of dimension 7 and multiplicity 5.

So, it remains to examine 7-dimensional Gorenstein rings of multiplicity 5.

Let J be an ideal generated by a system of parameters. Since μ(m) = d+3

and d= dim(R), we get 3≥ μ(m/J)≥ μ(m/J∗).
Using the notation from Theorem 3.2, we note that e(vs−μ(m/J∗)vs−1)≥

e(vs − 3vs−1).

Now apply Theorem 3.2 with e = 5 and s= 3.32, and get eHK(R)≥ 1.112.

(We used Mathematica to compute the volume functions.)

§5. Watanabe–Yoshida conjecture for rings of dimensions 5 and 6

In this section, we show how to use Theorem 3.2 to prove the Watanabe–

Yoshida conjecture in dimensions 5 and 6 for large-enough p.

We note that

m5 =
17

15
, m6 =

781

720
= 1.0847.

We need results of Goto and Nakamura [7, Theorems 1.1 and 1.2].

Theorem 5.1. Let (R,m,K) be a homomorphic image of a Cohen–

Macaulay ring. Assume that R is equidimensional.

Then for every parameter ideal I in R, we have

e(I)≥ λ(R/I∗).

In fact, under the assumption that R is a homomorphic image of a Cohen–

Macaulay ring and that Ass(R) = Assh(R), if

e(I) = λ(R/I∗),

for some parameter ideal I, then R is Cohen–Macaulay and F -rational.
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We can prove the following.

Theorem 5.2. Let (R,m,K) be a formally unmixed local nonregular ring

of dimension d and positive prime characteristic p > 2. Then

(i) if d= 5,

eHK(R)≥ eHK(Rp,d)≥
17

15
= 1+m5;

(ii) if d= 6,

eHK(R)≥ eHK(Rp,d)≥
781

720
= 1+m6.

Proof. We can complete R and enlarge the residue field of R so that it is

infinite. The associativity formula for the Hilbert–Kunz multiplicity shows

that, for an unmixed ring R, eHK(R)< 2 implies that R is a domain (as in

[1, Remark 2.6]). Therefore, we can assume that R is a domain.

Let x be a minimal reduction for m. Set J = (x). Note that we are in the

case where R is both complete and a domain. Set e = e(R).

We claim that either R has minimal multiplicity or μ(m/J∗)≤ e− 2.

If R is not F -rational, then e(J)> λ(R/J∗). So, e = e(J)> 1+λ(m/J∗)≥
1 + μ(m/J∗). In other words, e− 1> μ(m/J∗) or e− 2≥ μ(m/J∗).

Now let us assume that R is Cohen–Macaulay and F-rational. Then e =

e(J) = λ(R/J) = λ(R/J∗). In conclusion, λ(m/J∗) = e−1. Since μ(m/J∗)≤
λ(m/J∗) ≤ e − 1, we see that μ(m/J∗) > e − 2 is possible only when

μ(m/J∗) = λ(m/J∗). Recall that J∗ = J . So we get μ(m/J) = λ(m/J). But,

μ(m/J) = dim(m/m2 + J) = λ(m/m2 + J). Hence, μ(m/J) = λ(m/J) leads

to m2 ⊆ J . But it is well known that m2 ⊆ J implies that m2 = mJ . This

proves that R is of minimal multiplicity by [15, Theorem 3.8, p. 45].

Our claim is now proved. In the minimal multiplicity case, Theorem 2.4(iii)

implies that eHK(R) ≥ 1.5 ≥ eHK(Rp,d), by Remark 1.4, or that e = 2, in

which case R is a hypersurface and then eHK(R)≥ eHK(Rp,d) by [5].

Hence, in the minimal multiplicity case, the Watanabe–Yoshida conjec-

ture is true.

So we have reduced our analysis to the case μ(m/J∗) ≤ e − 2. Let r =

μ(m/J∗).
Theorem 3.2 implies that

eHK(R)≥ e · (vs − rvs−1)≥ e ·
(
vs − (e− 2)vs−1

)
.

In fact, if e≥ e0 and r0 ≥ e− 2, then also

(5.1) eHK(R)≥ e0 · (vs − r0vs−1).
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Let us consider the case d= 5.

Let e = e(R). If e≥ 137, then eHK(R)≥ e(R)/d! implies that eHK(R)≥
137/5! = 137/120 = 1.141(6).

Let us assume now that e≤ 136. We will apply inequality (3.1) repeatedly

by giving values to e0, r0, and s.

In the table below, we list these choices together with the corresponding

lower bound obtained for eHK(R).

e e0 r0 s eHK

35≤ e≤ 136 35 134 1.4 ≥ 1.153

18≤ e≤ 34 18 32 1.7 ≥ 1.197

11≤ e≤ 17 11 15 1.9 ≥ 1.187

7≤ e≤ 10 7 8 2.1 ≥ 1.161

5≤ e≤ 6 5 4 2.4 ≥ 1.313

Now, let us move to the case d= 6.

Again, we may assume that e≥ 5. For e≥ 786, we obtain eHK ≥ 786/6! =

786/720.

We will now show that

G(e) := e
(
vs − (e− 2)vs−1

)
≥ 786

720

for all 5≤ e≤ 785.

Since G(e) = −vs−1e
2 + (v2 + 2vs−1)e is a quadratic function in e, we

conclude that, for a fixed s, the maximum value of G is attained at e =

m := (vs + 2vs−1)/(2vs−1).

This implies that, for a≤m≤ b,

(5.2) G(e)≤min
(
G(a),G(b)

)
.

The formula for vs gives the following: vs = s6/6!, for 0 ≤ s < 1; vs =

s6/6! − (s− 1)6/5!, for 1 ≤ s < 2; and vs = s6/6! − (s− 1)6/5! − (s− 2)6/

(2 · 4!), for 2≤ s < 3.

For 1≤ s < 2, we obtain m= (s6 − 4(s− 1)6)/(2(s− 1)6). For 2≤ s < 3,

we obtain m= (s6 − 4(s− 1)6 + 3(s− 2)6)/(2(s− 1)6 − 6(s− 2)6).

If 296 ≤ e ≤ 786, then by letting s = 1.3 we obtain m ≥ 3308.57 > 786.

This gives that G is increasing on [286,786], which shows that on this inter-

val G(e)≥G(296)> 1.89 and so eHK ≥ 1.89.

https://doi.org/10.1215/00277630-2335204 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2335204


NEW ESTIMATES OF HILBERT–KUNZ MULTIPLICITIES 71

For the rest of the analysis, as in the preceding paragraph, we will consider

intervals [a, b] containing e, give a specific value to s, and then compute the

resulting value for m. In each case, m will happen to land in [a, b], and hence

inequality (5.2) will apply.

The numbers including those for specific values for G are computed using

Mathematica, and we usually present our numbers while keeping the first

decimal point only.

[a, b] s m min(G(a),G(b)) eHK ≥
[59,296] 1.6 177.7 G(59) 1.133

[26,58] 1.9 42.2 G(26) 1.123

[16,25] 2.1 22.2 G(16) 1.118

[10,25] 2.2 13.3 G(10) 1.118

[5,9] 2.6 7.3 G(5) 1.107

§6. Root extensions and comparison

of Hilbert–Kunz multiplicities

The next theorem we prove allows us to use Theorem 3.2 to obtain lower

bounds for Hilbert–Kunz multiplicities that are not available using Theo-

rem 3.1.

We will need to use a result of Watanabe and Yoshida. Let ff (A) denote

the total ring of fractions of a ring A.

Theorem 6.1 ([18, Theorem 2.7]). Let (R,m) ↪→ (S,n) be a module-finite

extension of local domains. Then for every m-primary ideal I of R, we have

(6.1) eHK(I) =
eHK(IS)

[ff (S) : ff (R)]
· [S/n :R/m].

Definition 6.2. Let (R,m) be a domain. Let z ∈ m, and let n be a

positive integer. Let v ∈R+ be any root of f(X) =Xn−z. We call S =R[v]

a radical extension for the pair R, z.

It should be remarked that whenever S is radical for R,z, then b :=

[ff (S) : ff (R)]≤ n. In what follows, n will denote the maximal ideal of S.

Lemma 6.3. Let (R,m,K) be a domain, let (S = R[v],n) be a radical

extension for R, and let z ∈R. Assume that K is algebraically closed. Let
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I ⊆R be such that z /∈ I and m= (z)+ I. Suppose that J = (zr)+ I0 ⊆R is

an ideal such that λR(J/I0) = 1 and in S, vrIS ⊆ I0S. (One such possibility

is J =m= (z) + I.) Let b= [ff (S) : ff (R)].

Then

eHK(I0, J)≤
n

n− 1
eHK(R)− n

b(n− 1)
eHK(S).

Proof. Consider the following sequence of inclusions:

mS ⊂ (m, vn−1)S ⊂ · · · ⊂ (m, v2)S ⊂ (m, v)S = n.

It is easy to see that

(m, vj)[q]S : vq(j−1) ⊂ (m, vj+1)[q]S : vqj ,

since, if cvq(j−1) ∈ (m, vj)[q]S, then cvqj ∈ (m, vj)[q]vqS ⊂ (m, vj+1)[q]S.

Thus, eHK(mS,n) =
∑n−1

j=1 eHK((m, vj+1)S, (m, vj)S) ≥ (n − 1)eHK(mS,

(m, vn−1)S).

Consider now the filtration

I0S ⊆ (I0, zrv
n−1)S ⊆ · · · ⊆ (I0, zrv)S ⊆ (I0, zr)S = JS.

Let s ∈ (m[q]S :S v(n−1)q) = (vn, I)[q]S : v(n−1)q = vqS + I [q]S :S v(n−1)q.

Then for any 0≤ j < n, we have

s(zrvj)q ∈ (vqS + I [q]S :S v(n−1)q)(zrvj)q

⊆ (zrv(j+1))qS + (I [q]S :S v(n−1)q)(v(n−1)qrqv(j+1)q)

⊆ (zrv(j+1))qS + I [q]rqv(j+1)qS ⊆ (zrv(j+1), I0)
[q]S.

Thus, eHK((I0, zrv
j+1)S, (I0, zrv

j)S)≤ eHK(mS, (m, vn−1)S).

Since in the chain we have at most n inclusions, we get, using Theo-

rem 6.1, that beHK(I0, J) = eHK(I0S, (I0, zr)S)≤ neHK(mS, (m, vn−1)S)≤
n/(n− 1)eHK(mS,n) = n/(n− 1)(beHK(R)− eHK(S)), which gives

eHK(I0, J)≤
n

n− 1
eHK(R)− n

b(n− 1)
eHK(S).

In what follows, we consider a Gorenstein local domain (R,m,K) with

algebraically closed residue field. Let us fix some notation. Let d= dim(R),

and consider a system of parameters x= x1, . . . , xd that generates a minimal

reduction of m. Also, k = embdim(R)−dim(R). We plan to provide a lower
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bound greater than 1 for the Hilbert–Kunz multiplicity of R. We also assume

that p �= 2. Note that if k = 2 and R is Gorenstein, then R is a complete

intersection. This is because, after completing, R is the quotient of a regular

ring of dimension d+ 2 and it has projective dimension 2 over the regular

ring. The only possible resolution in this case is of a regular sequence over

the regular ring.

The main result in [5, Theorem 4.6] gives the conjectured lower bound

for eHK(R) if R is a complete intersection. So we will assume that R is not

a complete intersection; hence, k ≥ 3. Moreover, by a result of Sally [17,

Corollary 3.2], no Gorenstein rings except hypersurfaces can have minimal

multiplicity (i.e., e(R) = μ(m)− d+ 1), so e = e(R) ≥ k + 2. In particular,

e≥ 5.

Lemma 6.4. Let (R,m,K) be a local Gorenstein ring, let k = embdim(R)−
dim(R), and let e = e(R). Let x = x1, . . . , xd be a system of parameters

for R.

(i) The R/(x)-module ((x) :m2)/x is k-generated with 1-dimensional socle.

(ii) Assume that x is a minimal reduction for m. Then k = e−2 if and only

if (x) :m2 =m.

Proof. For (i), note that R/(x) is Gorenstein, and hence we can use

Matlis duality. The module ((x) :m2)/x is Matlis dual to R/((x) +m2).

Here R/((x) +m2) is cyclic with k-dimensional socle; therefore, ((x) :m2)/x

is k-generated with 1-dimensional socle.

To prove part (ii), we recall [17, Proposition 4.2], which says in our case

that k = e− 2 if and only if m3 ⊂ (x) ·m and λ(m2/(x) ·m) = 1. Hence, one

direction of (ii) follows at once. Now assume that m3 ⊂ (x). Note that

(x)⊆m(x :m2) + (x)⊆ (x) :m⊂ (x :m2),

and since R is Gorenstein, we must have m(x :m2) + (x) = (x) :m.

Therefore, m · ((x) :m2)/x= ((x) :m)/x, and this shows that

k = μ
((x) :m2

(x)

)
= dimK

((x) :m2

(x) :m

)
= dimK

(
m

(x) :m

)
= λ

(
m

(x) :m

)
= e− 2,

because λ(R/x) = e (x forms a minimal reduction for m).

Let (R,m,K) be a local ring with infinite residue field and of dimension d.

According to a result due to Northcott and Rees (see [15]) and, indepen-

dently, to Trung (see [9, Theorem 8.6.6]), there exists a Zariski-open subset
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U of (m/m2)d such that any x1, . . . , xd with (x1+m2, . . . , xd+m2) ∈ U forms

a minimal reduction for m. We will call a set U with this property reduction-

open.

Lemma 6.5. Let (R,m,K) be a local Gorenstein ring containing an

infinite field of positive prime characteristic p > 2. Assume that k =

embdim(R) − dim(R) ≥ 2. Let U be a reduction-open subset of (m/m2)d.

Let x be in m such that (x1 +m2, . . . , xd +m2) ∈ U .

Then, we may pick minimal generators z1, . . . , zk for ((x) :m2)/x and a

minimal generator z of m such that zzi /∈ (x) for 1≤ i≤ k and z,x2, . . . , xd
form a minimal reduction of m.

If k �= e− 2, then z can be picked not in (x) :m2. If k = e− 2, one may

take z = z1.

Proof. Clearly,

(x)⊆m(x :m2) + (x)⊆ (x) :m⊂ (x :m2),

and since R is Gorenstein, we must have m(x :m2)+(x) = (x) :m. This is the

case because (x) =m(x :m2)+(x) gives m(x :m2)⊆ (x) or (x :m2) = (x) :m,

which contradicts the fact that k ≥ 2.

Choose z1, . . . , zk in R such that their images form a minimal set of gen-

erators for ((x) :m2)/x. We conclude that each zi /∈m(x :m2) + (x), and so

zi /∈ (x) :m, i= 1, . . . , k. Note that zi ∈ (x) :m2, and hence m2 ⊂ (x) : zi for

all i= 1, . . . , k.

Let U1 = {z +m2 ∈m/m2 : (z +m2, x2 +m2, . . . , xd +m2) ∈ U}. Then U1

is a Zariski-open subset of m/m2. In what follows, for a ∈R, a will denote

the class of the element a ∈ R modulo m2; â will denote the class of a in

R/m; and ã will denote the class of a in R/(x).

Then

U1 �
⋃
i

(
(x) : zi

)
/m2,

since otherwise there exists i such that U1 ⊆ ((x) : zi)/m
2, which gives m⊆

((x) : zi) or zi ∈ (x) : m, which is not the case. (Over an infinite field, a

dense Zariski-open subset cannot be covered by a finite union of proper

vector subspaces because of dimension reasons.)

Note that (x :m2)+m2 =m implies by Nakayama’s lemma that (x :m2) =

m. So, a similar argument shows that when m �= (x :m2), one has

U1 �
⋃
i

(
(x) : zi

)
/m2 ∪

(
(x :m2) +m2

)
/m2.
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This guarantees that, in either case, one can pick z a minimal generator

of m such that zzi /∈ (x) for 1≤ i≤ k and that z /∈ (x) :m2, whenever m �=
(x :m2).

Let us note that k = e− 2 is equivalent to (x :m2) =m by Lemma 6.4.

Whenever (x :m2) =m, we know that no zi can kill all zj modulo x. So

for all i, j, there exists rij ∈R such that z̃iz̃j = rij ũ, where u gives the socle

generator of R/(x). Here, each rij is an element in R, and for each i there

exists j such that r̂ij in R/m is nonzero. After renumbering, we can assume

that r̂12 �= 0. Since R contains an infinite field we have that K is infinite as

well. Let z′1 = z1 + yz2, where y ∈R. Let C be the set {z1 + y · z2, y ∈R} in

m/m2. This is a line in the (k+ d)-dimensional space m/m2.

Let z′j = zj + yz′1 = zj + yz1 + y2z2 for all j ≥ 2.

We will find y ∈ R such that z′1
2 /∈ (x) and for all j ≥ 2, z′1z

′
j /∈ (x) and

z′1 ∈ U1.

Computing z̃′1
2
= (r̂211 + 2r̂12ŷ + r̂22ŷ

2)ũ and z̃′1z̃j = [r̂1j + (r̂2j + r̂11)ŷ +

2r̂12ŷ
2 + r̂22ŷ

3]ũ, j = 2, . . . , k gives k polynomial functions in ŷ ∈K. Each

polynomial is not identically zero because 2r̂12 �= 0. Let U = {ŷ ∈R/m=K :

z̃′1
2 �= 0, z̃′1z̃

′
j �= 0,∀j = 2, . . . , k}. This is an open nonempty subset of K. For

any choice of y ∈R such that ŷ ∈ U , we have z′1
2 /∈ (x) and, for all j ≥ 2, we

have z′1z
′
j /∈ (x).

Note that C ∩U1 is an open subset in C. Since C is isomorphic to K, we

have a open subset of K, say, U ′, such that, for all y ∈R such that ŷ ∈ U ′,
z1 + y · z2 belongs to U1. Now, since K is infinite, U ′ and U must intersect,

so we can choose y ∈R such that ŷ ∈ U ∩U ′.
To finish the argument here, it is enough to note that now we can swap

z1 for z′1 and z′j for zj corresponding to our choice for y, and the conditions

are now satisfied.

From now on, let us fix z1, . . . , zk ∈R chosen as in Lemma 6.5.

Thus, modulo (x), each zzi, i= 1, . . . , k generates the socle of R/(x).

Let us denote Ji = (zi, . . . , zk, x), for all i= 1, . . . , k.

Let u in R be an element that generates the socle of R/(x). Denote J =

(x,u). Note that according to our remark on the elements zzi, J = (I, zzi)

for i= 1, . . . , k.

Denote Li = (x, zi), and denote Bi = (x) : Li. Note that Lk = Jk. Since

zi ∈ (x) : m2 − (x) : m, the chain (x, zi) � (x,u) � (x) is saturated; that is,
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λ(Li/(x)) = 2. So by duality, λ(R/Bi) = 2. Since zzi /∈ (x), the chain R �
(z,Bi) =m�Bi is saturated.

For any q = pe, let Gq = (x[q] :m[q]). Note that J [q] ⊂Gq.

Consider a radical extension for R and z, S = R[v], such that vn = z.

Since R is Henselian and z ∈m, S is local. Set b= [ff(S) : ff(R)](≤ n). Denote

eHK(R) = 1+εR, eHK(S) = 1+εS . In what follows, we will make a sequence

of claims that will lead to our main result.

Claim 1. We have

eHK(Bi,m)≤ n/(n− 1)eHK(R)− 1/
(
b(n− 1)

)
eHK(S).

From our observations above about R/Bi, we can apply Lemma 6.3

with I = Bi and J = m to get eHK(Bi,m) ≤ n/(n− 1)eHK(R) − n/

(b(n− 1))eHK(S).

Claim 2. We have

lim
q→∞

1

qd
λ(Gq/J

[q]) = eHK(R)− eHK

(
(x), J

)
.

We observe that R/(x)[q] is Gorenstein Artinian.

So, by duality, λ(R/(x)[q]) = λ(HomR(R/L[q],R/(x)[q])) = λ(((x)[q] : L[q])/

(x)[q]), for any m-primary ideal L in R.

Let L = m, and we obtain λ(Gq/(x)
[q]) = λ(R/m[q]), so λ(R/Gq) =

λ(R/(x)[q])− λ(R/m[q]), which is the same as

λ(Gq/J
[q]) = λ(R/m[q])−

(
λ
(
R/(x)[q]

)
− λ(R/J [q])

)
.

Dividing by qd and taking the limit as q→∞ give the claim.

Claim 3. We have

λ(Gq/J
[q])≥ λ

(∑k
i=1(L

[q]
i ∩Gq)

J [q]

)
.

This is immediate since
∑k

i=1(L
[q]
i ∩Gq)⊂Gq.

Now, we need to introduce further notation. For i= 1, . . . , k− 1, we let

Ni,q =
L
[q]
i ∩Gq

J [q]
,
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and put

ai := limsup
1

qd
λ
((L[q]

i ∩Gq)∩
∑k

j=i+1(L
[q]
j ∩Gq)

J [q]

)
,

so

ai = limsup
1

qd
λ
(
Ni,q ∩

k∑
j=i+1

Nj,q

)
.

We set ak = 0.

Claim 4. For any i0 ∈ {1, . . . , k− 1},

λ
( k∑
i=i0

Ni,q

)
=

k∑
i=i0

λ(Ni,q)−
k−1∑
i=i0

λ
(
Ni,q ∩

k∑
j=i+1

Nj,q

)
.

Write the following exact sequence

0→Ni,q ∩
k∑

j=i+1

Nj,q →Ni,q ⊕
k∑

j=i+1

Nj,q →
k∑

j=i

Nj,q → 0,

and now start with i= i0, and recursively one gets the claim.

Claim 5. We have

λ(Ni,q)≥ λ
(L[q]

i

J [q]

)
− λ

(
m[q]

B
[q]
i

)
.

From the short exact sequence

0→Ni,q →
L
[q]
i

J [q]
→ L

[q]
i

L
[q]
i ∩Gq

→ 0

we see that λ(L
[q]
i /J [q]) = λ(Ni,q) + λ(L

[q]
i /(L

[q]
i ∩Gq)).

But

λ
( L

[q]
i

L
[q]
i ∩Gq

)
= λ

(L[q]
i +Gq

Gq

)
≤ λ

((x)[q] :B[q]
i

Gq

)
= λ

(
m[q]

B
[q]
i

)
.

Hence,

λ(Ni,q) = λ
(L[q]

i

J [q]

)
− λ

( L
[q]
i

L
[q]
i ∩Gq

)
≥ λ

(L[q]
i

J [q]

)
− λ

(
m[q]

B
[q]
i

)
.
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Claim 6. We have

λ
(L[q]

i

J [q]

)
= λ

( J
[q]
i

J
[q]
i+1

)
+ λ

(L[q]
i ∩ J

[q]
i+1

J [q]

)
.

For all i= 1, . . . , k− 1, L
[q]
i + J

[q]
i+1 = J

[q]
i , so

L
[q]
i

J [q]

/L
[q]
i ∩ J

[q]
i+1

J [q]
� J

[q]
i

J
[q]
i+1

,

and this gives the claim.

Claim 7. We have

λ
(L[q]

i ∩Gq ∩ (
∑k

j=i+1L
[q]
j ∩Gq)

J [q]

)
≤ λ

(L[q]
i ∩ J

[q]
i+1

J [q]

)
.

This follows immediately as L
[q]
i ∩Gq ∩ (

∑k
j=i+1L

[q]
j ∩Gq)⊂ L

[q]
i ∩ J

[q]
i+1,

since Lj ⊆ Ji+1 for all j ≥ i+ 1.

Theorem 6.6. Let (R,m) be a local Gorenstein ring. Let x be a minimal

reduction generated by a system of parameters, and let z ∈ m \ (x) be a

minimal generator of m picked as described above.

Let S =R[v] be a radical extension of degree n for R and z, and let z be

of degree n. Let b= [ff (S) : ff (R)]. Then

eHK(R)≥
{

e(n−1)
en−2 + n(e−2)

b(en−2)eHK(S) if k = e− 2,
e(n−1)

(n−1)e+k+1 +
n(k+1)

b((n−1)e+k+1)eHK(S) if k < e− 2.

For n= b= 2, the first case gives

eHK(R)≥ e

2(e− 1)
+

e− 2

2(e− 1)
eHK(S),

and the second case gives

eHK(R)≥ e

e + k+ 1
+

k+ 1

e+ k+ 1
eHK(S).

Proof. We will keep the notation introduced above and make references

to the claims just proved.
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We see that λ(Gq/J
[q])≥ λ(

∑k
j=1Nj,q), and by Claims 4 and 5, we get

λ
( Gq

J [q]

)
≥

k∑
i=1

λ(Ni,q)−
k−1∑
i=1

λ
(
Ni,q ∩

k∑
j=i+1

Nj,q

)

≥
k∑

i=1

(
λ
(L[q]

i

J [q]

)
− λ

(
m[q]

B
[q]
i

))
−

k−1∑
i=1

λ
(
Ni,q ∩

k∑
j=i+1

Nj,q

)
,

which by Claim 7 leads to

λ
( Gq

J [q]

)
≥

k∑
i=1

λ
(L[q]

i

J [q]

)
−

k−1∑
i=1

λ
(L[q]

i ∩ J
[q]
i+1

J [q]

)
−

k∑
i=1

λ
(
m[q]

B
[q]
i

)
.

Now using Claim 6 this last term can be bounded below by

k−1∑
i=1

λ
( J

[q]
i

J
[q]
i+1

)
−

k∑
i=1

λ
(
m[q]

B
[q]
i

)
+ λ

(L[q]
k

J [q]

)
.

But Lk = Jk, so we get

λ
( Gq

J [q]

)
≥

k−1∑
i=1

λ
( J

[q]
i

J
[q]
i+1

)
−

k∑
i=1

λ
(
m[q]

B
[q]
i

)
+ λ

(J [q]
k

J [q]

)
.

Dividing by qd and taking the limits lead to

1

qd
lim
q→∞

λ
( Gq

J [q]

)
≥

k−1∑
i=1

eHK(Ji+1, Ji)−
k∑

i=1

eHK(Bi,m) + eHK(J,Jk).

Consider the filtration

(x)⊆ J ⊆ Jk ⊆ · · · ⊆ J2 ⊆ J1 ⊆m.

So, eHK((x)) − eHK(R) = eHK((x), J) + eHK(J,Jk) +
∑k−1

i=1 eHK(Ji+1,

Ji) + eHK(J1,m).

We have eHK((x)) = e and limq→∞ 1/qdλ(Gq/J
[q]) = eHK(R) −

eHK((x), J) as shown in Claim 2, so e−2eHK(R)+limq→∞ 1/qdλ(Gq/J
[q]) =

e− 2eHK(R) + eHK(R)− eHK((x), J) = eHK(J,Jk) +
∑k−1

i=1 eHK(Ji+1, Ji) +

eHK(J1,m).
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But,

1

qd
lim
q→∞

λ
( Gq

J [q]

)
≥

k−1∑
i=1

eHK(Ji+1, Ji)−
k∑

i=1

eHK(Bi,m) + eHK(J,Jk),

which says that e − 2eHK(R) +
∑k−1

i=1 eHK(Ji+1, Ji) −
∑k

i=1 eHK(Bi,m) +

eHK(J,Jk)≤ eHK(J,Jk) +
∑k−1

i=1 eHK(Ji+1, Ji) + eHK(J1,m).

By canceling out the common terms, we see that e≤
∑k

i=1 eHK(Bi,m) +

eHK(J1,m) + 2eHK(R).

But eHK(J1,m) = eHK(J1)− eHK(R).

We have also proved earlier that eHK(Bi,m) ≤ n/(n− 1)eHK(R) − n/

(b(n− 1))eHK(S).

So,

e≤ k
( n

n− 1
eHK(R)− n

b(n− 1)
eHK(S)

)
+ eHK(J1) + eHK(R),

which can be rearranged as

e≤ k
( n

n− 1
eHK(R)− n

b(n− 1)
eHK(S)

)
+ eHK(J1,m) + 2eHK(R).

If k = e− 2, then J1 =m, so eHK(J1,m) = 0. A small amount of algebra

gives the desired conclusion.

Assume that k < e−2. Then according to the setup for this case, we have

J1 �m, z /∈ J1, and z is a part of a minimal generating set for m. Call this

generating set z, y2, . . . , yh with h= k+ d. Then m= (z, y2, . . . , yh) +m2.

So we may pick an ideal J0 = (y2, . . . , yh) + m2 such that J1 ⊆ J0 ⊆
J0 + (z) = m, where λ(m/J0) = 1. By Lemma 6.3, eHK(J0,m) ≤ n/(n −
1)eHK(R) − n/(b(n− 1))eHK(S). Also, λ(J0/J1) = e − k − 3, so eHK(J1,

J0)≤ (e− k − 3)eHK(R). Putting this information into our inequality now

yields

e≤ (k+ 1)
( n

n− 1
eHK(R)− n

b(n− 1)
eHK(S)

)
+ (e− k− 1)eHK(R),

and some algebra yields our other case.

Lower bounds for the Hilbert–Kunz multiplicity

of a Gorenstein F-regular ring

We now begin a construction that will yield a lower bound for Gorenstein,

F-regular, nonregular local rings. So assume that (R,m) is an F-regular local
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ring of multiplicity e = e(R)> 1 and characteristic p > 2. By the results in

Section 4, we may actually assume that e≥ 6. Note that R must be a normal

domain. We may complete and extend the residue field to assume that it is

algebraically closed. Let d= dimR, and let k = μ(m)− d. Let x= x1, . . . , xd
be a minimal reduction of m, so that λ(R/(x)) = e. We now inductively

choose w1, . . . ,wd ∈m such that, for each i= 1, . . . , d,

(a) the set w1, . . . ,wi, xi+1, . . . , xd is a minimal reduction for m;

(b) there is a set Ai of minimal generators of (w1, . . . ,wi, xi+1, . . . , xd) :m
2

(modulo (w1, . . . ,wi, xi+1, . . . , xd)) such that wi+1z /∈ (w1, . . . ,wi, xi+1,

. . . , xd) for z ∈ Ai, if k < e − 2, wi+1 /∈ (w1, . . . ,wi, xi+1, . . . , xd) : m
2;

and

(c) if k = e− 2, wi+1 belongs to Ai; such a choice is due to Lemma 6.5.

For convenience, we let wi =w1, . . . ,wi and xi+1 = xi+1, . . . , xd.

Now, fix n, and let vi =w
1/n
i be an nth root in R+ for 1≤ i≤ n. As above,

let vi = v1, . . . , vi. Set R0 =R, and for i≥ 1, set Ri =R[v1, . . . , vi] =Ri−1[vi].

Each ring is Henselian, so adjoining vi yields another local ring. Moreover,

all the residue fields are the same. If we assume that Ri is normal (e.g., if

Ri is F-regular), then Ri+1
∼= Ri[X]/(Xn − wi+1), so Ri+1 is free of rank

n over Ri. (Since Ri is normal, the minimal polynomial of vi+1 over ff(Ri)

has coefficients in Ri and hence divides Xn − wi+1. If it properly divides,

then an interpretation of the product of the constant terms involved will

give wi+1 ∈ (wi) +m2 ⊆ R, meaning that wi+1 is not a minimal generator

of m.) Thus, in the context of Theorem 6.6, applied to Ri →Ri+1, we have

n= b= [ff(Ri+1),ff(Ri)].

Let t = max{i | Ri is normal}. For 1 ≤ i ≤ t, let φi : R0/(wi,xi+1) �
Ri/(vi,xi+1). We have that each φi is an isomorphism. In particular, e(Ri) =

e, for all i≤ t; also, for i≤ t, Ri is Gorenstein.

If we now write mR0 = (wi,xi+1) + Ji, where μ(Ji) = μ(mR0) − d and

where wi+1 is a minimal generator of Ji, we have (wi,xi+1) : m
2
R0

= (wi,

xi+1) : J
2
i . Note that mRi = (vi,xi+1)+Ji (minimally). The isomorphism φi

now gives

(vi,xi+1) :Ri m
2
Ri

(vi,xi+1)
=

((wi,xi+1) :R0 J
2
i )Ri + (vi,xi+1)

(vi,xi+1)

=
((wi,xi+1) :R0 m

2
R0

)Ri + (vi,xi+1)

(vi,xi+1)
.
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Since R′
0 = R0/(wi,xi+1) → R′

i = Ri/(vi,xi+1) is an isomorphism of

R0-algebras, we note that, because the images of Ji are minimal genera-

tors in the domain, they must be minimal generators in the codomain as

well. Moreover, AnnR′
0
(m2

0) maps to AnnR′
i
(m2

i ) under the mentioned iso-

morphism, so the minimal set of generators Ai is a set of generators for

(vi,xi+1) :Ri m
2
Ri

(vi,xi+1)
,

and wi+1z /∈ (vi,xi+1) for z ∈Ai because (vi,xi+1)∩R0 = (wi,xi+1).

Moreover,wi,xi+1 form a minimal reduction for mR0 ; hence, vi,xi+1 form

a minimal reduction for mRi . We also need that v1, . . . , vi,wi+1, xi+2, . . . , xd
form a minimal reduction of mRi .

When k < e − 2, wi+1 /∈ (wi,xi+1) : m
2
R0

. Since AnnR′
0
(m2

0) maps to

AnnR′
i
(m2

i ) under the isomorphism R′
0 →R′

i, we get wi+1 /∈ (vi,xi+1) :m
2
Ri
.

Finally, if k = e− 2, then wi+1 ∈Ai by our initial choice.

This shows that Theorem 6.6 may be applied to the extension Ri →Ri+1

if Ri is F-regular; that is, that wi+1 satisfies the necessary conditions to be

chosen as the z in Theorem 6.6.

We make several observations about the case that we may obtain an

Rd in the above manner. If we write mR0 = (w1, . . . ,wd) + J with μ(J) =

μ(mR0) − d, then mRd
= (v1, . . . , vd) + J . Thus, every generator of J is in

(w1, . . . ,wd)Rd = (vn1 , . . . , v
n
d )Rd =mn

Rd
. In addition, we note that via the iso-

morphism φd we may filter Rd/(v1, . . . , vd) by essentially the same filtration

as we take of R0/(w1, . . . ,wd). Let r =max{j | (mj
R0

+(w1, . . . ,wd))/(w1, . . . ,

wd) �= 0}. We may then take a socle generator u ∈mr
R0

, modulo (wd). The

same element will now represent a socle element in Rd/(vd) and will have

valuation at least rn. Hence, if rn≥ d, then by the Briançon–Skoda theo-

rem, u ∈ (vd)
∗, and Rd is not F-regular.

In particular, if n≥ 	d/2
 (if k = e− 2) or if n≥ 	d/3
 (if k < e− 2, by

Lemma 6.4), the ring Rd cannot be F-regular.

Choose such n, and let s=max{i :Ri is F-regular}. Note that s < d, and

hence Rs+1 is not F-regular.

In each application of Theorem 6.6, b= n, so from the theorem, for each

i≤ t (or i < d if t= d), we have

eHK(Ri)≥
{
1 + e−2

en−2(eHK(Ri+1)− 1) if k = e− 2,

1 + k+1
(n−1)e+k+1(eHK(Ri+1)− 1) if k < e− 2.
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By [1, Corollary 3.10], eHK(Rs+1)≥ 1 + 1/d.

Hence,

eHK(R0)≥
{
1 + ( e−2

en−2)
s+1( e2 − 1) if k = e− 2,

1 + ( k+1
(n−1)e+k+1)

s+1( 1d) if k < e− 2.

We then get the following lower bounds for nonregular rings, using that

we may assume that 6≤ e≤ d!, k ≥ 3:

eHK(R0)≥
{
1 + ( 4

6�d/2	−2)
d · 2 if k = e− 2,

1 + ( 4
(�d/3	)d!+4)

d( 1d) if k < e− 2.

Therefore, we can state the final result.

Theorem 6.7. Let R be a local Gorenstein F-regular ring of dimension

d ≥ 2, Hilbert–Samuel multiplicity e ≥ 6, and positive characteristic p > 2.

Let k = embdim(R) − dim(R). Assume further that R is not a complete

intersection.

Thus if e≥ d! + 1, then eHK(R)≥ 1 + 1/d!. Otherwise,

eHK(R)≥
{
1 + ( 4

6�d/2	−2)
d · 2 if k = e− 2,

1 + ( 4
(�d/3	)d!+4)

d( 1d) if k < e− 2.

Proof. It suffices to remind the reader that the first claim is well known

(see [2, p. 2507]). The last inequality is what we have proved in Section 6.
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