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Higher cotangent cohomology of rational

surface singularities

Jan Stevens

Abstract

We give dimension formulas for the cotangent cohomology groups T i for all rational surface
singularities. The computations take place on the first blow-up of the singularity.

Introduction

The modules T 1 and T 2 play an important role in deformation theory, the first as a space of in-
finitesimal deformations, while the obstructions land in the second. Much work has been done to
compute their dimension for rational surface singularities, culminating in the formulas of Christo-
phersen and Gustavsen [CG01]. The ‘correct’ way to define T 1 and T 2 also yields higher T i. The
purpose of this paper is to generalize the dimension formulas to these modules.

For rational surfaces with reduced fundamental cycle, De Jong and Van Straten [JS94] showed
that the dimension of T 2 can be computed inductively from the multiplicities of the singularities on
the successive blow-ups. In the general case of a rational surface singularity X of multiplicity d � 3
with first blow-up X̂ the result [CG01, Theorem 3.8] is

dimT 2
X = (d− 1)(d − 3) + dimT 2

X̂
+ c(X),

where c(X) is an unavoidable correction term, which vanishes for large classes of singularities (in-
cluding reduced fundamental cycle). Here T 2

X̂
is the direct sum of the local T 2

X̂,x
at the (isolated)

singular points of X̂. With the same correction term one has [CG01, Theorem 3.13]:

dimT 1
X = (d− 3) + dimT 1

X̂
+ c(X).

In this case the global T 1
X̂

can be computed from a local-to-global sequence, which involves a non-zero
global contribution. The group T 1

X̂
is the Zariski tangent space of the base of the versal deformation

of the space X̂.
Our main result is that a corresponding formula holds for the higher T i without correction term:

dimT i
X = fi(d) + dimT i

X̂

with fi(d) an explicit function of d. If X̂ is smooth, then dimT i
X equals fi(d), so the value of fi(d)

follows from the computations in [AS99] for the cone over the rational normal curve of degree d;
see also § 1.6.

We follow the arguments of [CG01] closely, replacing the computations of the different T 2’s in
terms of functions on relations by computations with Harrison cohomology. By means of a Noether
normalization (a flat map X → S of degree d onto a smooth surface) it suffices to look at relative
Harrison cohomology, whose defining complex is OS-linear and therefore much smaller. We use here
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Higher cotangent cohomology

in an essential way the fact that the iterated hyperplane section of a rational surface singularity is
the fat point of minimal multiplicity d. The computations with relative Harrison cohomology work
well for i � 2. Our arguments reprove the T 2-formula from [CG01].

De Jong and Van Straten [JS94] prove their formulas for T 1 and T 2 with a one-parameter de-
formation of the singularity (with reduced fundamental cycle) to the cone over the rational normal
curve of degree d and all singularities on the first blow-up. In this deformation the codimension of
the Artin component and the dimension of T 2 are constant. By induction on the singularities on the
blow-up it then follows that the number of equations needed for the base space equals the dimension
of T 2, a property known as the surjectivity of the obstruction map. Surjectivity still follows if we for-
get about rational double points and relax the requirements. It was hoped that every rational surface
singularity admits such a good maximal deformation, but examples show that this is not the case.

1. Cotangent cohomology

1.1 The definition of T i
X is most conveniently given in the context of a more general theory and

we therefore set T i
X := T i(X/pt;OX). LetX → S be a map of analytic germs and M an OX -module.

One gets the cotangent cohomology groups as

T i(X/S;M) := H i(HomOX
(LX/S

∗ ,M))

with L
X/S
∗ being the so-called cotangent complex. All we need to know about is summarised in

[BC91, CG01]. A good reference for this section and the next is [Lod92]. We actually work with
the analytic version of the cotangent complex, which can be constructed from a Tyurina resolvent
of the analytic OS-algebra OX , see Palamodov’s survey [Pal90] and for more details his papers
[Pal76, Pal83, Pal84].

1.2 The higher cotangent cohomology can also be computed as Harrison cohomology. To give
the definition, we first recall Hochschild cohomology. Let A be a commutative algebra of essentially
finite type over a base ring k. For an A-module M , the Hochschild cohomology HH i(A/k;M) is the
cohomology of the complex

Ci(A/k;M) := Homk(A⊗i,M)
with differential

(δf)(a0, . . . , ai) = a0f(a1, . . . , ai) +
i∑

j=1

(−1)jf(a0, . . . , aj−1aj , . . . , ai) + (−1)i+1aif(a0, . . . , ai−1).

The same cohomology can also be obtained from the so-called reduced subcomplex C
•(A/k;M)

consisting only of those maps f : A⊗i → M that vanish whenever at least one of the arguments
equals 1.

Definition 1.1. A permutation σ is called a (p, q)-shuffle if σ(1) < · · · < σ(p) and σ(p+1) < · · · <
σ(p+ q). Moreover, in the group algebra Z[Sp+q] we define the elements

shp,q :=
∑

(p,q)-shuffles

sgn(σ)σ.

These elements give rise to the so-called shuffle invariant subcomplexes

Ci
sh(A/k;M) : {f ∈ Homk(A⊗i,M) | f ◦ shp,i−p = 0 for 0 < p < i}

and C
i
sh(A/k;M) ⊂ C

i(A/k;M) defined in the same manner. Both complexes yield the same
cohomology, which is called Harrison cohomology Harri(A/k;M).
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Proposition 1.2. If Q ⊂ k, then Harrison cohomology is a direct summand of Hochschild coho-
mology.

In the analytic case one has to use the analytic tensor product; precise definitions are given by
Palamodov [Pal83]. We can now state the relation with cotangent cohomology.

Theorem 1.3. If the map X → S is flat, then

T i(X/S;M) ∼= Harri+1(OX/OS ;M).

1.3 Let X be a Cohen–Macaulay singularity of dimension n and multiplicity d. We can choose
as Noether normalization X → Cn a flat map of degree d. In fact, this is only a map of germs of
analytic spaces, but we are abusing notation here. The exact sequence relating absolute and relative
cotangent cohomologies gives, for an OX -module M ,

· · · → T i−1(Cn;M) → T i(X/Cn;M) → T i(X;M) → T i(Cn;M) → · · · .
As Cn is smooth, T i(Cn;M) = 0 for i � 1. We therefore obtain the following.

Lemma 1.4. One has T i(X;M) ∼= T i(X/Cn;M) for i � 2 for any OX-module M .

In particular, ifX has minimal multiplicity d (e.g., a rational surface singularity), so embdimX =
d+n−1, we may choose coordinates (z1, . . . , zd+n−1) such that the projection on the space spanned
by the last n coordinates is a Noether normalization.

In terms of rings we have a regular local ring P = C{zd, . . . , zd+n−1} and a homomorphism
P → A making the local ring A of X into a free P -module of rank d, with basis {1, z1, . . . , zd−1}.
The equations for X are of the form

zizj =
d−1∑
ν=1

pνzν + p0, 1 � i, j � d− 1,

where pν ∈ P for ν = 0, . . . , d− 1.

1.4 Let X be a rational surface singularity of multiplicity d � 3 with local ring A and Noether
normalization X → C2, or in terms of rings P → A. We can obtain the higher cotangent cohomology
as Harrison cohomology Harri+1(A/P ;M) computed from the reduced complex. As an illustration
of this technique we repeat here the proof of the following lemma, shown in [AS99]. We shall need
the argument later on.

Lemma 1.5. The natural map Harri+1(A/P ;A) → Harri+1(A/P ; C) is the zero map.

Proof. As {1, z1, . . . , zd−1} forms a basis of A as P -module, a reduced Harrison (i+ 1)-cocycle f is,
by P -linearity, determined by its values on the (i+1)-tuples of the coordinates z1, . . . , zd−1. Suppose
f(zj0, . . . , zji) /∈ mA. Since d � 3, we may choose a zk with k ∈ {1, . . . , d− 1} and k �= j0. Hence,

0 = (δf)(zj0 , . . . , zji , zk) = zj0f(zj1, . . . , zk) ± f(zj0, . . . , zji)zk
+ terms containing products zizj as arguments.

Using the equations for X as in § 1.3 we may again apply P -linearity to see that the latter terms
are contained in mP · A. Hence, modulo mP , these terms vanish, but the resulting equation inside
V = mA/mPA contradicts the fact that zj0 and zk are linearly independent.

1.5 Another powerful tool is the comparison between the cotangent cohomology of a singularity
and its hyperplane section [BC91]. Let f : X → C be a flat map such that both X and the special
fibre H have isolated singularities.
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Main Lemma [BC91, § 1.3.2]. There is a long exact sequence

T 1(X/C;OX ) → T 1
H → T 2

X
f→ T 2

X → T 2
H → T 3

X
f→ T 3

X → · · · .
Moreover, dimT 2

X/(f · T 2
X) = τH − ef with τH := dimT 1

H and ef the dimension of the smoothing
on which f lies in the versal base space of H.

1.6 The Main Lemma becomes particularly useful if the maximal ideal of X annihilates the T i
X

for i � 2. In [AS99] it is shown that the cone over the rational normal curve of degree d has this
property. Moreover, a formula is given for the dimension of all T i.

To formulate it we first consider the fat point Zm of minimal multiplicity d = m + 1, which is
the iterated hyperplane section of the cone over the rational normal curve. We define the number
cm,k as the dimension of T k−1(Zm; C). The dimension of T i

Zm
is then mcm,i+1−cm,i. By, e.g., [AS99,

§ 2.4]

cm,k =
1
k

∑
q|k

(−1)k+k/qµ(q)mk/q.

The first few values are cm,1 = m, cm,2 = (m2 +m)/2, cm,3 = (m3 −m)/3, cm,4 = (m4 −m2)/4,
cm,5 = (m5 −m)/5 and cm,6 = (m6 +m3 −m2 −m)/6. We combine them in the power series

Qd(t) =
∑
i�1

cd−1,it
i.

Proposition 1.7 [AS99, § 4.7]. The Poincaré series

Pd(t) =
∑
i�1

fi(d) · ti :=
∑
i�1

dimT i
Xd

· ti

of the cone Xd over the rational normal curve is given by

Pd(t) = (Qd(t) + 2t+ 2)
(d − 1)t− t2

(t+ 1)2
− 2t
t+ 1

.

For low values of i we get as dimensions of T i
Xd

f1(d) = 2d− 4
f2(d) = (d− 1)(d − 3)
f3(d) = (d− 1)(d − 2)(d − 3)/2

f4(d) = (d− 1)(d − 2)(2d2 − 8d+ 9)/6

f5(d) = (d− 1)(d − 2)2(3d2 − 8d+ 9)/12

f6(d) = (d− 1)(d − 2)(12d4 − 66d3 + 153d2 − 179d + 90)/60.

For the cone Xd the dimension of T i equals the number of generators of T i as OX-module. For an
OX -moduleM we denote the minimal number of generators, which is dimM/mM , by cgM . Feeding
the above results into the Main Lemma and using the arguments of [BC91, § 5.1], one obtains the
following (see [AS99]).

Theorem 1.8. For all rational surface singularities of multiplicity d one has that cg T i = fi(d) for
i � 2.

Furthermore, it is shown in [AS99, Theorem 5.3] that the dimension of T i, i � 3, equals the
number of generators for all rational surface singularities with the property that the tangent cone
has only hypersurface singularities.
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2. The tangent complex with values in a sheaf

2.1 To describe the relation between cotangent cohomology of a singularity and its first blow-up
one has to globalize local constructions. We use the analytic cotangent complex of Palamodov; for
a general overview see [Pal90], while some technical details are to be found in [Pal84].

Let f : X → S be a map of complex spaces. An analytic sheaf over X is a morphism of complex
spaces π : Y → X together with an OY -sheaf F . On Y we have the sheaf T i(X/S;F) whose stalk
at a point y ∈ Y is the cotangent cohomology T i(OX,π(y)/OS,fπ(y);Fy). This sheaf occurs in a
local-to-global spectral sequence

Epq
2 = Rp(fπ)∗(T q(X/S;F)) =⇒ T i(X/S;F).

In our application, where we will calculate the left-hand side, the right-hand side also re-
duces to a familiar object. Under the condition that Rqf∗(F) = 0 for q > 0, Christophersen and
Gustavsen [CG01] obtain from Proposition 56 of the Appendix in [And74] that T i(X/S;F) �
T i(X/S; f∗F), where f∗F is a sheaf on X. For lack of reference we give here a proof using Palam-
odov’s theory in the case that f : X → S is a finite map of germs.

2.2 A polyhedron P in a complex space X is a relatively compact subset P ⊂ U ⊂ X together
with a proper embedding ϕ : U → V ⊂ CN , where V is an open neighbourhood of the unit polydisc
DN , such that P = ϕ−1(DN ). A polyhedral covering P = {Pα, α ∈ A} should satisfy P β ⊂ Uα, if
P β∩Pα �= ∅. A simplex of the nerve N (P) is a map A : [n] → A, written A = (α0, . . . , αn), such that⋂
Pαi �= ∅. The set PA =

⋂
Pαi is again a polyhedron with ϕA =

∏
ϕαi :

⋂
Uαi →

∏
Vαi ⊂ CNA ,

where NA
∑
Nαi .

Given a map f : X → S and a polyhedronQ ⊂ S, a relative polyhedron over Q is a subset P with
ϕ : U → V ⊃ DN such that ϕ× f : U → V ×S is a proper embedding and P = ϕ−1(DN )∩ f−1(Q).
A polyhedral covering P of X/S over a covering Q of S is a covering by relative polyhedra such that
each Pα lies over some Qν(α). The mapping ν between index sets induces a morphism ν : N (P) →
N (Q).

A resolving sheaf for X/S is a functor R defined on N (P) with values in the category of
sheaves of graded differential algebras, such that each RA is a free graded commutative algebra
with a distinguished system of generators e(A) of negative grading with differential s such that the
complex (RA, s) is a resolution of the sheaf

OA := (ϕA × f)∗O(X)|DA×Qν(A)
.

Furthermore, for B ⊂ A each generator of RB is mapped to a generator of RA under the morphism
(pA

B)∗RB → RA, where pA
B : CNA → CNB is the canonical projection, and the map e(B) → e(A) is

injective. The elements in e(A) which are not in the image of any of the maps e(B) → e(A), with
B a proper subsimplex, are called proper generators. The functor R is completely determined by
giving all the proper generators eA,j and the values s(eA,j). The proof of the existence of a resolving
sheaf for X/S for any polyhedral covering P of X over a covering Q of Y in [Pal84, Theorem 1.1]
follows closely the absolute case in [Pal76].

Let ρA : DA ×Qν(A) → Y . The functor R from N (P) into the category of graded OY algebras,
whose value on A is RA := (ρA)∗(RA|DA×Qν(A)

), is called the resolution of X/S on P.
Now let Y π→ X

f→ S and F be a sheaf on Y . Let R be a resolution of X/S on some polyhedral
covering P, M a polyhedral covering of π over P and κ : N (M) → N (P) the induced map between
the nerves of the coverings. The functor F = π∗F(M) has value π∗F(MA) on A ∈ N (M). Finally,
f∗F is a functor from N (M) to the category of OS-sheaves.
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Definition 2.1 [Pal84, Definition 2.2]. The tangent complex T ∗(R,F ) =
∑∞

0 T n(R,F ) of the
resolution R with values in F has as term of degree n the OS-sheaf of OS-derivations of functors
κ∗R → f∗F of degree n. In other words, an element v ∈ T n(R,F )s is a collection of compatible
OS,s-derivations vA : Rκ(A),s → (fπ)∗(F|MA)s for A ∈ N (M). The differential in the tangent
complex is given by dv = −(−1)deg vvs with s the differential in R. The cohomology of this complex
is T n(X/S;F).

2.3 Now let f : (X,x) → (S, s) be a finite map of germs. We can choose the coverings P of X
and Q of S to consist of one element each.

Proposition 2.2. There exists a spectral sequence

Ep,q
2 = T p(X/S;Rqπ∗F) =⇒ T n(X/S;F).

Proof. To compute the tangent complex T ∗(R,F ) we describe the resolving sheaf R in more detail.
Let Pa be the polyhedron covering X. Let Ra be a resolution of Oa with generators ea,j . This
is basically the Tyurina resolvent of OX,x. The only simplices occurring in N (P) are of the form
A = (a, . . . , a). The proper generators of RA are divided into a basic group, consisting of eA,j with
deg eA,j = deg ea,j−dimA, and a complementary group of elements of degree − dimA, corresponding
to the coordinate functions zj on Cna. By considering the zj as complementary generators of Ra of
degree zero we have the relation deg eA,j = deg ea,j −dimA for all proper generators. The improper
generators of RA are of the form eB,j with B ⊂ A a proper subsimplex.

We introduce a filtration ψ on e(A) by setting ψ(eB,j) = deg eB,j +dimB, which is the degree of
the corresponding generator of Ra. This is the same filtration as in the proof of [Pal84, Theorem 1.1],
but this special case is simpler because there are no elements with filtration 1. For all k � 0, we
denote by Sk

A the subalgebra of RA generated by the identity and the generators of filtration at
least k. We define a derivation ∂A by

∂A(eB,j) = (−1)meB\β0,j + (−1)m−1eB\β1,j + · · · + eB\βm,j,

where B = (β0, . . . , βm). The proof of [Pal84, Theorem 1.1] yields the fact that the differential in
RA can be written as sA = ∂A + gA with gA a derivation such that gA(eA,j) is a section of Sk+1

A if
ψ(eA,j) = k.

Note that our ∂A differs from that in [Pal84], in that it extends to the last index. We indicate
the first few terms of the resolution. Let A = (a, a). To distinguish between the indices we write
A = (α, β). On CNa we have coordinates zj. The map ϕA embeds UA = Ua in the diagonal of
CNa × CNa , so if we take coordinates z(α)

j and z
(β)
j we get the Na equations z(α)

j − z
(β)
j , which

equals ∂A(z(A)
j ). To each generator f of the ideal of X there corresponds a generator eA,f . One

has that sA(eα,f ) = f(z(α)) and sA(eβ,f ) = f(z(β)), and that f(z(β)) − f(z(α)) lies in the ideal
of the diagonal, so it equals

∑
j(z

(α)
j − z

(β)
j )h(A)

j for some functions h(A)
j . Therefore, sA(eA,f ) =

−eβ,f + eα,f +
∑

j h
(A)
j z

(A)
j .

The filtration ψ induces a decreasing filtration on T ∗(R,F ), of derivations κ∗R→ f∗F vanishing
on the functor κ∗S−k. In its spectral sequence the differential d0 is the differential of the Čech
complex of the covering M of Y . The E2 term is therefore T p(X/S;Rqπ∗F).

3. The formula

3.1 We apply the results of the preceding section in the case thatX is a rational surface singularity
of multiplicity d and π : X̂ → X is the first blow-up. Then π∗OX̂

= OX and Rqπ∗(OX̂
) = 0 for

q > 0. We choose a Noether normalization X → S ∼= C2. Note that the induced map X̂ → Ŝ to
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the blow-up of the plane is again a finite map of degree d, so we can compute the higher cotangent
cohomology sheaves of X̂ also as relative Harrison cohomology: T i

X̂
∼= T i(X̂/Ŝ;OX̂) for i � 2.

By Proposition 2.2 we obtain T i(X/S;OX̂ ) = T i(X/S;OX), which equals T i
X if i � 2. The

local-to-global spectral sequence becomes

Ep,q
2 = Hp(X̂,T q(X/S;OX̂ )) =⇒ T n(X/S;OX ).

The sheaves on X̂ occurring here are the basic objects of study. To shorten notation we write

F i = T i(X/S;O
X̂

).

As only H0 and H1 contribute to the spectral sequence, we obtain the following (cf. [CG01, Corol-
lary 1.7]).

Proposition 3.1. If π : X̂ → X is the first blow-up of a rational surface singularity then one has
short exact sequences

0 → H1(X̂,F i−1) → T i(X/S;OX ) → H0(X̂,F i) → 0

for all i � 0.

Remark. Christophersen and Gustavsen [CG01] consider the absolute case. For i � 2 one has that
F i ∼= T i(X;O

X̂
). Comparison of the exact sequences for T 2

X and T 2(X/S;OX ) shows that even
H1(X̂,F1) ∼= H1(X̂,T 1(X;O

X̂
)). This can be seen directly as follows. We have the exact sequence

T 0(S;OX̂ ) → F1 → T 1(X;OX̂ ) → 0.

As S is smooth two-dimensional, the sheaf T 0(S;O
X̂

) is isomorphic to O
X̂
⊕O

X̂
and therefore its

H1 vanishes, implying the isomorphism in question.

3.2 Let C be the exceptional curve with its scheme structure defined, i.e., the one defined by
mO

X̂
. We study the sheaves F i with the exact sequence

0 → mF i → F i → F i
|C → 0.

Proposition 3.2. For all i one has

mF i ∼= T i(X̂/Ŝ;OX̂) ⊗OX̂(iC).

Proof. We describe X with coordinates (x, y; z1, . . . , zm), where m = d − 1, and project onto the
(x, y)-plane. The blow-up of the plane can be covered by two charts. By genericity of the projection
we may assume that the two charts also suffice to cover X̂. One chart (which is a germ along the
exceptional divisor, for which we take a Stein representative) has coordinates (x, η; t1, . . . , tm) with
y = xη, zi = xti. On the second chart we have coordinates (ξ, y; t′1, . . . , t′m) with x = ξy, zi = yt′i so
on the intersection ti = ξt′i.

We first look at the x-chart. We compute the stalk F i
y from the Harrison complex

C•
sh(OX,0/OS,0;OX̂,y

). We write C•
sh(A/P ;B) for short. An (i + 1)-cochain ϕ is determined by

its values on (i + 1)-tuples of coordinates zj . For the sheaf T i(X̂/Ŝ;OX̂ ) we use the complex
C•

sh(OX̂,y/OŜ,π̃(y);OX̂,y) (for short we write C•
sh(B/Q;B)) with cochains determined by their val-

ues on (i+ 1)-tuples of coordinates tj.
We define maps s : Ci+1

sh (A/P,B) → Ci+1
sh (B/Q,B) simply by

(sϕ)(tj0 , . . . , tji) = ϕ(zj0 , . . . , zji).

This does not give a map of complexes, but the following holds:

sd = xds,
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where x stands for the map ‘multiplication by x’. Let us check:

(sdϕ)(tj0 , . . . , tji) = (dϕ)(zj0 , . . . , zji)
= zj0ϕ(zj1 , . . . , zji) − ϕ(zj0zj1, zj2 , . . . , zji) + · · ·

= zj0ϕ(zj1 , . . . , zji) −
∑

pν
j0j1(x, y)ϕ(zν , zj2 , . . . , zji) + · · ·

= xtj0(sϕ)(tj1 , . . . , tji) −
∑

xp̂ν
j0j1(x, η)(sϕ)(tν , tj2 , . . . , tji) + · · ·

= xtj0(sϕ)(tj1 , . . . , tji) − x(sϕ)(tj0tj1 , tj2, . . . , tji) + · · ·

= (xdsϕ)(tj0 , . . . , tji).

The maps s induce a map s∗ on cohomology: if dϕ = 0, then x dsϕ = 0 and therefore dsϕ = 0 as
x is not a zero-divisor; furthermore, if ϕ = dψ then sϕ = dxsψ. As the maps s are surjective, s∗ is
also surjective.

The kernel of s∗ on Harri+1(A/P,B) is the kernel of multiplication by x: if s∗[ϕ] = 0, then
sϕ = dsψ for some ψ and therefore xϕ = dψ; conversely if xϕ = dψ then xsϕ = xdsψ, so
s∗[ϕ] = 0. This makes Harri+1(B/Q,B) isomorphic to the image xHarri+1(A/P,B), giving the
claimed isomorphism locally.

To see what happens globally we also look at the y-chart, where we have the map s′. If ϕ ∈ mF i

we write ϕ(zj0 , . . . , zji) = xψ(zj0 , . . . , zji) and the isomorphism maps it onto (sψ)(tj0 , . . . , tji) =
ψ(zj0 , . . . , zji). On the intersection we can write ϕ(zj0 , . . . , zji) = yξψ(zj0 , . . . , zji), so by the other
isomorphism it gets mapped to a cocycle homologous to (ξs′ψ)(t′j0 , . . . , t

′
ji
) = ξψ(zj0 , . . . , zji).

By ξ-linearity we have that (sψ)(t′j0 , . . . , t
′
ji
) = ξi+1(sψ)(tj0 , . . . , tji) = ξi(ξs′ψ)(t′j0 , . . . , t

′
ji
).

Remark. If i � 2 then T i(X̂/Ŝ;O
X̂

) ∼= T i
X̂

is concentrated in points, but in general T 1(X̂/Ŝ;O
X̂

)

is not. Its support is the critical locus of the map X̂ → Ŝ. This follows from a local computation in
smooth points of X̂ using the exact sequence

T 0
X̂

→ T 0(Ŝ;OX̂) → T 1(X̂/Ŝ;OX̂ ) → T 1
X̂

→ 0.

In particular, if C is reduced (i.e. X has reduced fundamental cycle), then the support has no
one-dimensional compact components and the H1 of the sheaf vanishes.

Proposition 3.3. H0(X̂,F i
|C) = 0.

Proof. A global section of the sheaf F i
|C consists of a collection of local sections ϕ ∈ Ci+1

sh (A/P,B)
with dϕ = 0 such that the difference between two of them lies in the ideal of C. So each ϕ(zj0 , . . . , zji)
gives rise to a global section of OC , which therefore is a constant. To prove the proposition we have
to show that this constant is zero.

We now argue as in the proof of Lemma 1.5. In the ring B we have the equality

0 = (δf)(zj0 , . . . , zji , zk)zj0ϕ(zj1 , . . . , zji) ± zkf(zj0, . . . , zji)

−
∑

pν
j0j1(x, y)ϕ(zν , zj2 , . . . , zji) + · · ·

and we may divide by x to obtain

0 = tj0ϕ(zj1 , . . . , zji) ± tkf(zj0, . . . , zji) −
∑

p̂ν
j0j1(x, η)ϕ(zν , zj2 , . . . , zji) + · · · .

We note that C is a principal divisor, defined by x. As 1, t1, . . . , td−1 are linearly independent modulo
(x, η), we find that ϕ(zj1 , . . . , zji) = 0 ∈ H0(OC).

Corollary 3.4. For i � 2 one has H0(F i) ∼= H0(T i
X̂

).
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3.3 In order to computeH1(F i−1) we identify this group with the kernel of the map T i(X/S;OX ) →
H0(F i). From now on we fix an element x, which is supposed to be chosen generically.

Lemma 3.5. The kernel of multiplication by x on T i(X/S;OX ) is contained in the kernel of the
map T i(X/S;OX ) → H0(F i).

Proof. Suppose ϕ ∈ T i(X/S;OX ) is annihilated by x, i.e. xϕ = dψ. As dψ ≡ 0 modulo P , the
argument of Lemma 1.5 shows that ψ takes values in the maximal ideal.

Consider ϕ as a global section of F i. We may assume by genericity of x that a global section
vanishes if and only if it vanishes in the chart x �= 0 (the special points of F i on the exceptional
divisor lie in this chart). The values of ψ lie in m and are therefore divisible by x in B. We obtain
that ϕ = d(ψ/x).

Lemma 3.6. Let K be a submodule of T i
X , i � 2, containing the kernel of multiplication by x. Then

dimK/xK = cg T i.

Proof. Consider the multiplication K ·x→ K. As K ⊂ T i the kernel is always contained in Ker{T i ·x→
T i}, so under the assumption of the lemma both kernels are equal. As K is finite-dimensional,
kernel and cokernel have the same dimension, and the same holds for T i. Therefore, dimK/xK =
dimT i/xT i. For a general hyperplane section this dimension is cg T i.

The previous two lemmas show that dimH1(F i−1)/xH1(F i−1) has dimension fi(d). We have to
determine xH1(F i−1). Since x is generic the cokernel of F i−1 ·x→ mF i−1 has support at the strict
transform of the divisor of x. In particular, its H1 vanishes and therefore the map H1(F i−1) ·x→
H1(mF i−1) is surjective. The image of the composed map H1(F i−1) ·x→ H1(mF i−1) → H1(F i−1) is
xH1(F i−1). As H1(mF i−1) → H1(F i−1) is injective we obtain that xH1(F i−1) = H1(mF i−1). For
i > 2 this group vanishes.

3.4 To collect our results into formulas for the dimension of T i we introduce a name for the
remaining unknown term.

Definition 3.7. For a rational surface singularity X we define the invariant

c(X) = dimH1(mF1).

Remarks.

(1) If X has reduced fundamental cycle, the correction term H1(mF1) = H1(X̂,T 1(X̂/Ŝ;O
X̂

)(C))
vanishes by the remark in § 3.2.

(2) Our invariant is the same as the one Christophersen and Gustavsen [CG01] define using their
absolute version F1

CG of the sheaf F1. This follows from the formula for T 2. A direct proof can
be obtained as in the remark in § 3.1. One tensors the exact sequence occurring there with the
invertible sheaf OX̂(−C) and uses the fact that H1(X̂,mF1

CG) = H1(X̂,F1
CG(−C)) [CG01,

Proposition 4.1].

Theorem 3.8. If X is a rational surface singularity of multiplicity d and X̂ → X the first blow-up,
then for i > 2

dimT i
X = cg T i

X + dimT i
X̂
,

with cg T i
X = fi(d) as given in § 1.6, and

dimT 2
X = (d− 1)(d − 3) + dimT 2

X̂
+ c(X).
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4. Good maximal deformations

4.1 The dimension formula above is an inductive formula. To make it more explicit we first define
the multiplicity sequence of a rational singularity in the obvious way as the sequence of multiplicities
of the singularities on successive blow-ups (this are the infinitely near singularities, including the
singularity itself). We denote by XP the singularity at an infinitely near point P and by d(P ) its
multiplicity.

The T 1-formula of [CG01] can be best stated as a formula for the codimension of the (smooth)
Artin component in the Zariski tangent space of the versal base space. We denote this invariant by
codAC(X). For the cone over the rational normal curve of degree d � 3 it has value d− 3.

By induction we obtain the following formulas from [CG01, Theorems 3.8 and 3.13] with Theo-
rem 3.8.

Theorem 4.1. For a rational surface singularity X of multiplicity d

dimT i
X =

∑
P

fi(d), i � 3,

dimT 2
X =

∑
P

(d(P ) − 1)(d(P ) − 3) +
∑
P

c(XP ),

codAC(X) =
∑
P

(d(P ) − 3) +
∑
P

c(XP ),

where the sum ranges over all infinitely near singular points P of multiplicity at least three.

4.2 De Jong and Van Straten [JS94] derived their dimension formulas for T 1 and T 2 using
a special deformation (on the Artin component) to the cone over the rational normal curve of
degree d and all singularities on the first blow-up. The same deformation also yields the surjectivity
of the obstruction map. For any deformation XS → S of an isolated singularity X one has an
obstruction map (J /mSJ )∗ → T 2

X [Sch73], see also [JS94, § 4], where J is the ideal defining S in
its minimal embedding. To define it we use the definition of T 2 in terms of functions on relations. Let∑
FiRij ≡ 0 (mod J ) be a lift of the relation

∑
firij = 0 between the generators of the ideal of X.

Let {gk}k∈K be the generators of J and l : J /mSJ → C be a linear form. Then
∑
FiRij =

∑
amkgk

and we get a linear function on relations by sending the jth relation
∑
firij = 0 to

∑
amkl(gk),

where amk is the reduction modulo mS. As an element of T 2 this function is well defined. Suppose
now that the first-order infinitesimal deformation over T0S is isomorphic to the universal first-
order family over T 1

X , then the deformation XS → S is versal if the obstruction map is injective.
Surjectivity of the obstruction map means then that the number of generators of J equals the
dimension of T 2

X .
For general singularities the obstruction map is not surjective; a specific example is the fat

point Z3, see [BC91, § 6.2.2]. For rational surface singularities no example is known where the
obstruction map is not surjective. The only proofs are based on direct calculation or the use of
special deformations [JS94, Jon98]. The important ingredient in our dimension formulas is the
multiplicity sequence. With this in mind we define a more general class of special deformations.

Definition 4.2. A good maximal deformation of a rational surface singularity X of multiplicity d is
a one-parameter deformation XT → T such that the general fibre Xt has as singularities cones over
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rational normal curves of multiplicity d(P ), one for each infinitely near singularity of multiplicity
at least three.

Proposition 4.3. If a rational surface singularity X has a good maximal deformation, then the
number of equations of the versal base space equals the dimension of T 2

X .

Proof. Let XT → T be a good maximal deformation of X. Versality induces a map b : T → BX ,
to the base space of the miniversal deformation. The embedding dimension of BX is dimT 1

X = τ ,
and BX can be realized as a fibre of a nonlinear map T 1

X → T 2
X . In a general point b(t) the

embedding dimension of the germ (BX , b(t)) is τ −
∑

P c(XP ). The number of generators of the
ideal of (BX , b(t)) in its minimal embedding is

∑
P (d(P ) − 1)(d(P ) − 3), and one needs

∑
P c(XP )

equations with independent linear parts to describe the space in which (BX , b(t)) is embedded.
Therefore one needs at the origin at least

∑
P (d(P ) − 1)(d(P ) − 3) +

∑
P c(XP ) equations. As this

number is the dimension of T 2
X , they also suffice.

Remark. The T 1-formula above follows easily from the existence of a good maximal deformation.
Consider the long exact sequence

T 1
XT /T

α→ T 1
X → T 2

XT /T
·t→ T 2

XT /T
β→ T 2

X → T 3
XT /T

·t→ T 3
XT /T

γ→ T 3
X .

The dimension of T 3 is constant in this deformation, so the rank of the C{t}-module T 3
XT /T is equal

to dimT 3
X . Therefore, γ is surjective and, as the rank is equal to dimCoker(·t) − dim Ker(·t), we

obtain that multiplication by t is injective, and therefore the map β is also surjective. By assumption
on the deformation we have dimT 2

X −RankT 2
XT /T =

∑
P c(XP ). The dimension of Ker(·t : T 2

XT /T →
T 2

XT /T ) therefore also equals
∑

P c(XP ) and we obtain dimT 1
X = dim Imα +

∑
P c(XP ). But we

know the dimension of the image of α: by [GL85] it equals the dimension of the Zariski tangent space
to BX in the general point b(t). The codimension of the Artin component is therefore

∑
P (d(P )−3).

4.3 The existence of a good maximal deformation has been established by De Jong and Van Straten
for rational singularities with reduced fundamental cycle and by De Jong in the determinantal case
[Jon98].

In the first case one can deform to the singularities on the first blow-up plus a cone of degree
d, but for determinantal singularities this is in general impossible. Specifically, if X contains one
configuration of type DII

2d+1 (in the notation of [Jon98]), then the dimension of T 1 will be too small
to allow a deformation to a determinantal with A1

2d-configuration and a cone (this was checked by
computing T 1 in the case d = 3). However, the singularity does deform into two cones.

In the definition of a good maximal deformation we ignore all occurring rational double points,
for a good reason: the singularities on the first blow-up of D4 are three A1’s, and the cone over the
rational normal curve of degree two is also A1 but there is no deformation D4 → 4A1.

It was hoped that every rational singularity has a good maximal deformation but unfortunately
this is not true. First we note that the dimension of the Artin component equals h1(X̃,ΘX̃), where
X̃ → X is the minimal resolution, with exceptional set E = E1 ∪ · · · ∪ Er. As usual we denote by
−bi the self-intersection of the irreducible component Ei. By [Wah76, Propositions 2.2 and 2.5],

h1(X̃,Θ
X̃

) =
r∑

i=1

(bi − 1) + h1(X̃,Θ
X̃

(logE)).

The second summand gives the dimension of the equisingular stratum. The stratum in the Artin
component of fibres with a cone over the rational normal curve of multiplicity d as singularity has
codimension d−1. By openness of versality these strata intersect transversally in the base of a good
maximal deformation.
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Lemma 4.4. The general rational singularity with a given resolution graph does not have a good
maximal deformation if

∑
P (d(P ) − 1) �

∑
(bi − 1).

An example where this condition is satisfied, is obtained by generalizing the D4-singularity to
higher multiplicity: consider a singularity with fundamental cycle reduced everywhere except at one
(−2)-curve, such that the first blow-up has three singularities of multiplicity k. The simplest way
to do this gives the following graph, where as usual a dot stands for a (−2)-curve:

�

−k −k

. . .(k − 2). .
.(k − 2)

� �

−k �
��

�
��

��
(k − 2)
. . .

�

� �

The singularity has multiplicity 3k − 4; for k = 2 it is indeed D4. Here we have
∑

P (d(P ) − 1) =∑
(bi − 1) = 6k − 8.
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540

https://doi.org/10.1112/S0010437X03000083 Published online by Cambridge University Press

mailto:stevens@math.chalmers.se
https://doi.org/10.1112/S0010437X03000083

	1 Cotangent cohomology
	1.1 
	1.2 
	1.3 
	1.4 
	1.5 
	1.6 

	2 The tangent complex with values in a sheaf
	2.1 
	2.2 
	2.3 

	3 The formula
	3.1 
	3.2 
	3.3 
	3.4 

	4 Good maximal deformations
	4.1 
	4.2 
	4.3 


