
doi:10.1017/S0017089518000228.

HIGGS BUNDLES OVER ELLIPTIC CURVES FOR COMPLEX
REDUCTIVE GROUPS

EMILIO FRANCO
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1. Introduction. An elliptic curve is a pair (X, x0), where X is a smooth complex
projective curve of genus 1 and x0 is a distinguished point on it. By abuse of notation,
we usually refer to an elliptic curve simply as X . Let G be a connected complex reductive
Lie group. A G-Higgs bundle over X is a pair (E,�), where E is a principal G-bundle
over X and �, called the Higgs field, is a section of the adjoint bundle twisted by
the canonical bundle of the curve. The canonical bundle of an elliptic curve is trivial,
�1

X
∼= OX , so � ∈ H0(X, E(g)). These objects were defined by Hitchin [19] over a

smooth projective curve of any genus and the existence of their moduli spaces M(G)d

(here d ∈ π1(G) is a topological invariant known as the degree) follows from Simpson
[31, 32] (the existence of M(SL(2, �)) was first given in [19] and the case of GL(n, �)
was also given by Nitsure [26]).

A major result of the theory of G-Higgs bundles is the non-abelian Hodge
correspondence which was proved by Hitchin [19], Donaldson [10], Simpson [30, 31, 32]
and Corlette [7]. It is a generalisation of the Narasimhan–Seshadri–Ramanathan
Theorem [25, 27] to the non-unitary case and states the existence of a chain of
homeomorphisms between the moduli space of G-Higgs bundles, the moduli space
of G-bundles with projectively flat connections C(G)d and the moduli space of
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representations R(G)d of the curve

M(G)d
homeo∼= C(G)d

homeo∼= R(G)d .

The Hitchin fibration was defined by Hitchin [20] using a basis p1, . . . , p� of the
invariant polynomials of the Lie algebra g

M(G)d −→ BG ∼= ⊕
H0(X, (�1

X )⊗ deg(pi))
(E,�) �−→ (p1(�), . . . , p�(�)).

A more canonical definition of the Hitchin fibration was provided by Donagi [8]
redefining the Hitchin base BG as the space of cameral covers H0(X, (g ⊗ �1

X )//G).
Another ground-breaking result of the theory of Higgs bundles says that, under this
fibration, the space of G-Higgs bundles is an algebraically completely integrable system
[20, 11, 8].

In 1957, Atiyah [1] studied vector bundles over an elliptic curve X leading to
an identification of the moduli space of vector bundles M(GL(n, �))d with Symh X ,
where h is the greatest common divisor of n and d. Some 40 years later, Laszlo [22]
and Friedman, Morgan and Witten [14, 16], gave a description of the moduli space of
G-bundles M(G)d ([22] only deals with M(G)0) as the quotient

M(G)d ∼= (X ⊗� �G,d )
/

WG,d , (1)

where �G,d is a certain lattice, WG,d is a finite group acting on �G,d and X ⊗� �G,d is
the tensor product over � (recall that X is an abelian variety and therefore has a natural
�-module structure). When G is simply connected (and therefore d = 0), �G,0 = � is
the coroot lattice and WG,0 = W is the Weyl group of G. In this case, by a result
of Looijenga [24] (see also [3]), M(G)0 is isomorphic to a weighted projective space.
This isomorphism was obtained directly by Friedman and Morgan [15] working with
deformations of unstable G-bundles (see also [18]).

The construction of the isomorphism (1) relies on two facts. The first one is the des-
cription of the moduli space of unitary representations R(G)d achieved by Schweigert
[29] and more generally by Borel, Friedman and Morgan [5]. By the Narasimhan–
Seshadri–Ramanathan theorem, R(G)d is homeomorphic to M(G)d . This shows that
an appropriate morphism from (X ⊗� �G,d )/WG,d to M(G)d is bijective. The other
key result is the fact that M(G)d is a normal projective variety, which allows us to
apply Zariski’s main theorem, proving that the previous bijective morphism is indeed
an isomorphism.

In this paper, we describe M(G)d for any complex reductive group G, thus,
generalising [13], where the authors studied these objects when G is a classical group.

The results of this paper are structured as follows. After reviewing in Section 2,
the theory of unitary representations and G-bundles over an elliptic curve, we prove in
Section 3 that a G-Higgs bundle is (semi)stable if and only if the underlying G-bundle
is (semi)stable [Propositions 3.1 and 3.3]. This fact shows the existence of a projection
[Corollary 3.2]

M(G)d −→ M(G)d (2)

and, combined with the results of [5], implies that every polystable G-Higgs bundle of
degree d reduces to a unique (up to conjugation) Jordan–Hölder Levi subgroup LG,d
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[Proposition 3.7]. This allows us to give a complete description of the polystable G-
Higgs bundles [Corollaries 3.8 and 3.9]. Using this description, we construct a family
HG,d of polystable G-Higgs bundles of degree d parametrised by T∗X ⊗� �G,d . Every
polystable G-Higgs bundle can be constructed starting from a Higgs bundle for an
abelian group [Remark 3.11], which shows that the non-abelian Hodge correspondence
is not entirely non-abelian in the elliptic case. Next, we show that the morphism
associated to the family HG,d factors through a bijective morphism and, using Zariski’s
main theorem, this gives us a description of the normalisation of the moduli space
[Theorem 3.14]

M(G)d
∼= (T∗X ⊗� �G,d )

/
WG,d . (3)

It is not known whetherM(G)d is a normal quasiprojective variety (see [13, Section
3.4] for a detailed discussion), so we can not apply the method used to prove (1) since
the hypothesis of Zariski’s main theorem requires the normality of the target. By means
of this bijection and the quotient (2), we define a natural orbifold structure on M(G)d

and the projection (2) corresponds with the projection of the associated cotangent
orbifold bundle [Remark 3.18].

In Section 4, we study the Hitchin fibration and we obtain that it corresponds to
the projection [Proposition 4.1]

(T∗X ⊗� �G,d )
/

WG,d −→ (� ⊗� �G,d )
/

WG,d ,

induced by the obvious projection from T∗X ∼= X × � to �. This gives us an explicit
description of (the normalisation of) all the fibres of the Hitchin fibration and, more
concretely, the generic ones [Corollary 4.2].

In Section 5, we use the non-abelian Hodge correspondence and our description
of G-Higgs bundles to extend the results of [5] about unitary representations of surface
groups of an elliptic curve to reductive representations of this surface group [Corollaries
5.1 and 5.2]. This allows us to construct a bijective morphism to the moduli spaceR(G)d

of representations and then the normalisation of the moduli space is [Corollary 5.4]

R(G)d
∼= (�∗ × �∗) ⊗� �G,d

/
WG,d . (4)

In Section 6, we study the moduli space C(G)d of G-bundles with projectively
flat connections. Using only the Narasimhan–Seshadri–Ramanathan theorem and the
fact that the underlying G-bundle of a polystable G-Higgs bundle is also polystable, we
observe a splitting of the Hitchin equations [Proposition 6.1] that simplifies the proof
of the Hitchin–Kobayashi correspondence over elliptic curves [Corollary 6.2, Remark
6.3]. We obtain that the normalisation of the moduli space is [Theorem 6.8]

C(G)d
∼= (X � ⊗� �G,d )

/
WG,d , (5)

where we recall that X � is the moduli space of rank 1 local systems on X .
In the trivial degree case, (3)–(5) become

M(G)0
∼= (T∗X ⊗� �)

/
W ,

R(G)0
∼= ((�∗ × �∗) ⊗� �)

/
W
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and

C(G)0
∼= (X � ⊗� �)

/
W ,

where W is the Weyl group of G and � is the lattice given by the kernel of the
exponential restricted to the Cartan subalgebra (i.e., the fundamental group of the
Cartan subgroup). This was obtained by Thaddeus [33] in 2001. Our arguments are
different from those of Thaddeus and work for arbitrary d.

When G = GL(n, �) or SL(n, �) (for any n, not only for n ≤ 4 as stated in
[13]) one actually obtains an isomorphism since the target is normal. In these
cases,

R(G)0 := Hom(� ⊕ �, G)
//

G ⊂ {x, y ∈ g : [x, y] = 0} //
G

is normal due to [21, Section 0.2] (although the hypothesis of [21] requires G to be
semisimple, the proof can be extended to GL(n, �) as in [23, Corollary 7.4]). Normality
of M(G)0 and C(G)0 follow from the Isosingularity theorem [32, Theorem 10.6] and
normality of R(G)0. The corresponding results for R(G)0 for general reductive G
constitute a long-standing open problem and the case of R(G)d is still more uncertain.
Indeed, it is not even clear whether the moduli spaces are reduced.

We work in the category of algebraic schemes over �. Unless, otherwise stated, all
the bundles considered are algebraic bundles.

2. Review on G-bundles and unitary representations over elliptic curves.

2.1. Review on the abelian case. If X is an elliptic curve, the Abel–Jacobi map
gives an isomorphism X ∼= Pic1(X). Fixing a point x0 ∈ X and tensoring by O(x0)−1

one obtains ς1,0 : X
∼=−→ Pic0(X), which induces an abelian group structure on X .

There is a unique Poincaré bundle P → X × Pic0(X) such that its restriction to the
slice {x0} × Pic0(X) is the trivial line bundle.

Let S be a compact connected abelian group and let S� be its complexification.
The universal cover of S (resp. S�) is its Lie algebra s (resp. s�) and the covering map is
the exponential exp : s → S (resp. s� → S�). By construction, the kernels of the two
maps coincide and we write

�S := �S� := ker exp,

which is a lattice in s ⊂ s�. Note that the fundamental groups π1(S) and π1(S�) coincide
since both are identified with the kernel of the exponential map.

Every element γ ∈ �S defines a cocharacter θ : �∗ → S� that restricts to θ :
U(1) → S. Let B = {γ1, . . . , γk} be a basis of �S and let {θ1, . . . , θk} be the associated
cocharacters. These give isomorphisms

�S : �∗ ⊗� �S
∼=−→ S�

U(1) ⊗� �S
∼=−→ S∑k

i=1 �i ⊗� γi �−→ �k
i=1θi(�i),

(6)
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where �i ∈ �∗ (resp. U(1)), and

d�S : � ⊗� �S
∼=−→ s�

� ⊗� �S
∼=−→ s∑k

i=1(λi ⊗� γi) �−→ ∑k
i=1 λi · γi,

(7)

where λi ∈ � (resp. �).
Using (6) and fibre products of the Poincaré bundle (id ×ς1,0)∗P → X × X , one

can construct a family of S�-bundles with trivial degree

PS −→ X × (X ⊗� �S), (8)

whose restriction to the slice {x0} × (X ⊗� �S) is the trivial S�-bundle over (X ⊗� �S).
Among other references, the following result is contained in [32, Theorem 9.6]

(recall that for an elliptic curve X ∼= Pic0(X)).

THEOREM 2.1. Let S� be an abelian, connected complex Lie group. Then, the moduli
space of topologically trivial S�-bundles over the elliptic curve X is

M(S�)0
∼= X ⊗� �S.

2.2. Notation and some results on Lie groups. We refer to [12] for an expanded
version of this section. Let G denote a compact (resp. complex reductive) connected
Lie group. We set some notations, which are as follows:
• Z0 denotes the connected component of the identity of the centre ZG(G) of the

group,
• p : D → [G, G] denotes the universal covering of the semisimple group [G, G],
• F := Z0 ∩ [G, G],
• C := p−1(F) ⊂ ZD(D),
• τ : C → Z0 denotes the homomorphism given by the inclusion F ↪→ Z0.
• G := G/F ,
• Z := Z0/F ,
• D := D/C or equivalently [G, G]/F ,
• H ⊂ G denotes a maximal torus (resp. Cartan subgroup) with Lie algebra h,
• H ′ ⊂ D denotes a maximal torus (resp. Cartan subgroup) with Lie algebra h′ =

[h, h],
• W = NG(H)/ZG(H) = ND(H ′)/ZD(H ′) denotes the Weyl group.

Note that we have natural isomorphisms

G ∼= Z0 ×τ D (9)

and

G ∼= Z × D. (10)

The finite covering G → G induces an injection

π1(G) ↪→ π1(Z) × π1(D)
d �−→ (u, c).

(11)
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Since D is simply connected and C finite, we have

π1(D) = C.

Let us suppose for simplicity that D is a simple compact Lie group (resp. simple
complex Lie group). Take an alcove A ⊂ h′ containing the origin. For c ∈ ZD(D), we
know (see, for instance, [6]) that there is a vertex ac of the alcove A such that c = exp(ac).
We see that A − ac is another alcove containing the origin. Hence, there is a unique
element ωc ∈ W such that

A − ac = ωc(A).

In the trivial case, we obviously have ω0 = id.
We denote the connected component of the fixed point set of the action of ωc on

H by

Sc := (Hωc )0. (12)

Let us take its normaliser NG(Sc) and define the quotient

Wc := NG(Sc)
/

ZG(Sc) = NG(hωc )
/

ZG(hωc ) . (13)

When c is the identity, one recovers the usual Weyl group W .
We define

Lc := ZG(Sc). (14)

Since Lc is the centraliser of a torus, we know that it is connected. One can easily check
that NG(Sc) = NG(Lc) and therefore Wc = NG(Lc)

/
Lc .

By [5, Lemma 2.1.1] and [5, Proposition 3.4.4], Dc = [Lc, Lc] is simply connected.
Define Fc = Sc ∩ Dc and note that Sc is the centre of Lc. By (9), we have Lc ∼= Sc ×Fc Dc.
Note, by (11), that π1(Lc) injects into π1(Sc) × π1(Dc/Fc), where

Sc := Sc/Fc. (15)

The inclusion Lc ↪→ G induces a morphism π1(Lc) → π1(G).

LEMMA 2.2. Let d = (u, c) ∈ π1(G) and let Lc be associated to c. Then, there is a
unique �d ∈ π1(Lc) that maps to d and furthermore �d = (u, p(c)).

Proof. By construction, we have that p(c) ∈ Dc = [Lc, Lc] and p(c) ∈ Sc, thus, p(c) ∈
Fc ⊂ ZDc (Dc). If � ∈ π1(Lc) is given by (v, f ) ∈ s × ZDc (Dc) and it maps to d, then
f = p(c) and v = u, since v ∈ exp−1(p(c)) ⊂ exp−1(F) ⊂ zg(g). The choice of d fixes
(v, f ), so its preimage � ∈ π1(Lc) is unique. �

Recall that Wc = NG(sc)/ZG(sc), where sc = hωc is the Lie algebra of Sc, and note
that Wc preserves �Sc ⊂ sc. This gives us an action of Wc on U(1) ⊗� �Sc (resp. on
�∗ ⊗� �Sc ) and this action commutes with the isomorphism �Sc defined in (6).

In (15), we have defined Sc as Sc/Fc. We can check that Wc preserves Fc, so the
action of Wc on Sc gives a well-defined action of Wc on Sc. Note that �Sc

= exp−1
S (Fc),

so Wc also preserves �Sc
, inducing an action on U(1) ⊗� �Sc

(resp. on �∗ ⊗� �Sc
). We

can check that the action of Wc commutes with �Sc
too.
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2.3. Representations and c-pairs. In this section, we present some results from
[5] (see also [12]). We say that two elements of a Lie group G almost commute if their
commutator lies in the centre of the Lie group. Let c be an element of C ⊂ ZD(D).
Suppose a and b are two almost commuting elements of the form a = [(z1, δ1)]τ and
b = [(z2, δ2)]τ , where z1, z2 ∈ Z0 and δ1, δ2 ∈ D. We say that (a, b) is a c-pair if [δ1, δ2] =
c. Let C(G)c denote the subset of G × G of c-pairs.

The fundamental group of an elliptic curve is π1(X) = 〈α, β : [α, β] = id〉 ∼= �2.
Take the universal central extension � = 〈α, β, δ : [α, β] = δ, [α, δ] = id, [β, δ] = id〉
and define �� as � ×� �. A representation ρ : �� → G is central if ρ(�) is contained
in ZG(G); since ρ(�) is connected and contains the unit element, it is contained in
Z0 = ZG(G)0. From a central representation ρ : �� → G, one obtains a pair (ν, u),
where ν : � → G is such that ν = ρ|� and u ∈ zg(g) is given by u = dρ(1) and, thanks
to the exponential map, u can be viewed as an element of the fundamental group
of Z. Conversely, (ν, u) determines uniquely a central representation ρ : �� → G. We
observe that u ∈ zg(g) is an invariant of the conjugacy class of the representation ρ. We
denote by Homc(��, G)d , the set of central representations with topological invariant
d and we define the moduli space of such representations as the GIT quotient by the
conjugation action of the group

R(G)d := Homc(��, G)d
//

G .

Every central representation ν : � → G is completely determined by two elements
of G, a = ν(α) and b = ν(β). Since ν is central, ν(δ) = [a, b] is contained in Z0 and
therefore in F = Z0 ∩ [G, G]. Take a = [(z1, δ1)]τ and b = [(z2, δ2)]τ , and write c =
[δ1, δ2], where ν(δ) = τ (c). Then, (a, b) completely determines the representation ν :
� → G and is a c-pair. Furthermore, c ∈ C ⊂ ZD(D) is an invariant of the conjugacy
class of the representation ν.

REMARK 2.3. Every central representation ρ : �� → G is determined by a c-pair
(a, b) ∈ C(G)c and an element u of zg(g) that satisfies τ (c) = exp(u). The pair d =
(u, c) ∈ zg(g) × ZD(D) is an invariant of the conjugacy class of ρ. Indeed, d is an
element of π1(G) as indicated by (11).

For any g ∈ G, the representation gρg−1 is determined by (gag−1, gbg−1, u), where
(gag−1, gbg−1) is a c-pair.

By Remark 2.3, we see that Homc(��, G)(u,c) can be identified with C(G)c. As
a consequence, the moduli space of representations of �� for an elliptic curve with
invariant d ∈ π1(G) determined by (u, c) ∈ zg(g) × ZD(D) coincides with the moduli
space of c-pairs

R(G)d ∼= C(G)c
//

G .

Suppose now that G is a connected complex reductive algebraic group and let K
be its maximal compact subgroup. A representation ρ is reductive if and only if the
Zariski closure of im ρ is a reductive group. It is proved in [28] that the orbit [ρ]G is
closed if and only if ρ is a reductive representation. Denote by Homc(��, G)+d , the set
of central reductive representations, and by C(G)+c , the set of reductive c-pairs (those
associated to reductive representations). Then,

R(G)d ∼= Homc(��, G)+d
/

G ∼= C(G)+c
/

G . (16)
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Note that, for G compact, every representation of �� is reductive. So, the moduli space
of unitary representations is a categorical quotient

R(G)d := R(K)d ∼= C(K)c
/

K .

A representation ρ is irreducible if the centraliser of its image, ZG(ρ), is equal to
ZG(G). Analogously, we say that a c-pair (a, b) is irreducible if the centraliser of its
elements, ZG(a, b), is equal to ZG(G).

2.4. Review on unitary representations over elliptic curves. Following [5], in this
section, we study the moduli space of central representations of �� into a compact Lie
group K . Let C = p−1(F) = π1(D) as defined at the beginning of Section 2.2 and set
c ∈ C.

PROPOSITION 2.4. ([5, Proposition 4.1.1]). Let K be a simply connected compact
semisimple Lie group. Let (a, b) be an irreducible c-pair in K. Then,

(1) the group K is a product of simple factors Ki, where each Ki is isomorphic to SU(ni)
for some ni ≥ 2;

(2) c = (c1, . . . , cr), where each ci generates the centre of Ki;
(3) conversely, if K is as in (1) and c as in (2), then there is an irreducible c-pair in K

and all c-pairs in K are conjugate.

Recall that Lc ∼= Sc ×τc Dc, where Sc, Lc are defined in (12), (14) and Dc = [Lc, Lc].

PROPOSITION 2.5. ([5, Proposition 4.2.1]). Let K be a compact Lie group. Let (a, b)
be any c-pair. Any maximal torus of ZK (a, b) is conjugate in K to Sc , so (a, b) is contained
in Lc after conjugation and, as a c-pair in Lc, is irreducible.

Now, we have the ingredients to describe the moduli space of unitary
representations. Fix d ∈ π1(G) determined by (u, c) ∈ π1(Z) × π1(D) as described in
(11). Let us take (δ1, δ2) to be one representative of the unique conjugation class of the
irreducible c-pair in Dc. Consider the following continuous map:

(Sc × Sc) −→ R(K)d

(s1, s2) �−→ ([s1, δ1]τc , [s2, δ2]τc ).
(17)

Using Proposition 2.5, one can check that (17) is surjective.

REMARK 2.6. By Proposition 2.4, we have Dc = SU(n1) × · · · × SU(n�). Let δ1,i

and δ2,i be the projections of δ1 and δ2 to SU(ni). The conjugation of the c-pair
([s1, δ1]τc , [s2, δ2]τc ) by [id, δ1,i]τc gives us ([s1, δ1]τc , [s2, ciδ2]τc ) and similarly, conjugating
by [id, δ2,i]τc gives ([s1, c−1

i δ1]τc , [s2, δ2]τc ). By Proposition 2.4(2), the ci generate ZDc (Dc),
so it is obvious that (17) factors through

Sc × Sc −→ R(K)d . (18)
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One can further prove that (18) factors through the quotient by the finite group
Wc, defined in (13).

THEOREM 2.7. ([5, Corollary 4.2.2]). Let K be a compact connected Lie group. There
is a homeomorphism

(Sc × Sc)
/

Wc
homeo−→ R(K)d .

REMARK 2.8. Since (6) gives us the isomorphism �Sc
: U(1) ⊗� �Sc

∼=−→ Sc and
the action of Wc commutes with �Sc

, we have a natural homeomorphism

(
(U(1) × U(1)) ⊗� �Sc

) /
Wc

homeo−→ R(K)d .

2.5. Review on G-bundles over an elliptic curve. Let G be a connected complex
reductive Lie group with maximal compact K . The notions of stability, semistability,
polystability and S-equivalence for G-bundles are well known (see, for example, [27]).

Given a unitary representation ρ : �� → K ⊂ G, after [2], we can construct the G-
bundle Eρ as follows (see also [27] for a similar construction). Consider the line bundle
O(x0) associated with the divisor given by the fixed point x0 of X and let Q′

x0
→ X

be the fixed U(1)-bundle obtained from reduction of structure group of O(x0). The
universal covering X̃ → X is a π1(X)-bundle. Consider the fibre product X̃ ×X Q′

x0
and

denote by Qx0 its lifting to ��. We set Eρ as the extension of structure group associated
to ρ of Qx0 , i.e.,

Eρ = ρ∗Qx0 . (19)

As shown in [2] (see also [27]),
• the bundles Eρ are polystable,
• two bundles Eρ1 and Eρ2 are isomorphic if and only if ρ1 and ρ2 are conjugate,
• every polystable G-bundle E is isomorphic to some Eρ , and
• the bundle Eρ is stable if and only if the representation ρ is irreducible.

We can interpret as follows the results of [5] given in Section 2.4.

PROPOSITION 2.9. Let G be a connected, complex semisimple Lie group and denote
by G̃ its universal cover. Let Eρ be a stable G-bundle of degree d ∈ π1(G) ⊂ ZG̃(G̃). Then,

(1) the group G̃ is a product of simple factors Gi, where each Gi is isomorphic to SL(ni, �)
for some ni ≥ 2;

(2) d = (d1, . . . , dr), where each di generates π1(Gi) ∼= �ni ;
(3) conversely, if G is as in (1) and d as in (2), then there is a stable G-bundle of degree

d and all G-bundles of degree d are isomorphic, i.e.,

M(G)d = Mst(G)d = {pt}.
Proof. Since, by Remark 2.3, a representation ρ is determined by a c-pair, and the c-

pair is irreducible if and only if the representation is irreducible, the proof follows from
Proposition 2.4 ([5, Proposition 4.1.1]) and the existence of a bijective correspondence
between irreducible representations and stable G-bundles. �

REMARK 2.10. Note that Proposition 2.9 implies that, for G simple, the only stable
bundles occur when G = PGL(n, �) and d generating �n (i.e., n and d coprime).
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Let G be a complex reductive Lie group, and let F be as defined at the beginning
of Section 2.2. Since F ⊂ ZG(G), the extension of structure group given by the
multiplication map μ : F × G → G is well defined. Given an F-bundle J and a G-
bundle E, we denote by J ⊗ E the G-bundle μ∗(J ×X E).

COROLLARY 2.11. Let E be a stable G-bundle of topological class d and let J be any
element of H1(X, F). Then,

E ∼= J ⊗ E,

so J ⊗ E has the same topological invariant as E.

Proof. This follows from Remark 2.6. �

By [27, Proposition 7.1], a G-bundle is stable if and only if the induced (G/Z0)-
bundle is stable. Let Z and D be as defined at the beginning of Section 2.2.

THEOREM 2.12. Let G be a connected complex reductive Lie group and let d ∈ π1(G).
Then,

Mst(G)d = ∅,

unless G/Z0 decomposes into PGL(n1, �)× . . . × PGL(ns, �) and d ∈ π1(Gi) projects
to (d1, . . . , ds) ∈ π1(PGL(n1, �)) × π1(PGL(ns, �)), where gcd(ni, di) = 1. In that case,
there is a natural isomorphism

Mst(G)d = M(G)d ∼= X ⊗� �Z.

Proof. The first statement follows from Proposition 2.9.
The extension of structure group associated to G → G ∼= Z × D (see (10)) induces

a morphism

Mst(G)d −→ Mst(G)(u,c)
∼= Mst(Z)u × Mst(D)c. (20)

This morphism is injective by Corollary 2.11. For any stable G-bundle E, the morphism

Mst(Z)u −→ Mst(Z)u

J �−→ J := (J ⊗ E)/D ∼= J/F

is surjective, as J is the extension of structure group of J associated to Z → Z. Then,
the morphism (20) is bijective, and, therefore, it is an isomorphism. By Proposition
2.9, Mst(D)c = {pt}, so the second statement follows from Theorem 2.1. �

REMARK 2.13. Note that the point x0 ∈ X defines an origin in Mst(Z)u. For G and
d of the form given in Theorem 2.12, we write Ex0

G,d for the stable G-bundle of degree d
associated to this point of Mst(Z)u. Let Z0 be the connected component of the centre
of G and consider the universal family of Z0-bundles PZ0 parametrised by X ⊗� �Z0 ,
which is defined in (8). We define the family (E ′)G,d = PZ0 ⊗ Ex0

G,d of G-Higgs bundles
with degree d. By Corollary 2.11, this family descends to a family parametrised by the
quotient of X ⊗� �Z0 by the image of H1(X, F). Recalling that exp−1(F) = �Z ⊂ �Z0 ,
one can check that this quotient is isomorphic to X ⊗� �Z. Then, we have a family
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EG,d → X × (X ⊗� �Z) such that

X ⊗� �Z
∼=−→ Mst(G)d

t �−→ [EG,d |X×{t}]∼=.

PROPOSITION 2.14. Every polystable G-bundle of topological type d = (u, c) admits
a reduction of structure group to Lc, giving a stable Lc-bundle of topological class �d =
(u, p(c)).

Proof. Every polystable G-bundle is isomorphic to some Eρ . By Remark 2.3, ρ

is determined by u and a c-pair (a, b) ∈ K × K . By Proposition 2.5 ([5, Proposition
4.2.1]), (a, b) is contained (after conjugation) in the maximal compact subgroup of Lc

and is irreducible as a c-pair in that group. Then, im ρ ⊂ Lc and ρ is irreducible in Lc,
so Eρ reduces to a stable Lc-bundle. �

By Proposition 2.14, it makes sense to define the following family parametrising
all polystable G-bundles of degree d,

EG,d := i∗(ELc,�d ), (21)

where i : Lc ↪→ G is the natural inclusion. Note that this family is parametrised by
X ⊗� �Sc

, where Sc is the centre of Lc. This family induces a morphism to the moduli
space

X ⊗� �Sc
−→ M(G)d , (22)

which is surjective by Proposition 2.14.

THEOREM 2.15. Let G be a connected complex reductive Lie group and let d ∈ π1(G).
Then,

M(G)d ∼= (X ⊗� �Sc
)
/

Wc .

Proof. It is clear that (22) descends to a surjective morphism

ζG,d : (X ⊗� �Sc
)
/

Wc −→ M(G)d .

Injectivity follows from Corollary 2.11 and the fact that the reduction of structure
group to Lc is unique up to conjugation. Now ςG,d is an isomorphism by Zariski’s
main theorem. �

COROLLARY 2.16. Let E1 and E2 be two polystable G-bundles of topological class d
parametrised by EG,d at the points t1 and t2 ∈ X ⊗� �Sc

. Then, E1 and E2 are isomorphic
G-bundles if and only if there exists ω ∈ Wc such that t2 = ω · t1.

3. G-Higgs bundles over an elliptic curve. Let G be a connected complex reductive
Lie group. Recall that a G-Higgs bundle over an elliptic curve X is a pair (E,�), where
E is an algebraic G-bundle over X and � ∈ H0(X, E(g)). We say that (E,�) is stable
(resp. semistable) if, for every proper parabolic subgroup P with Lie algebra p, any
non-trivial antidominant character χ : P → �∗, and any reduction of structure group
σ to the parabolic subgroup P giving the P-bundle Eσ such that � ∈ H0(X, Eσ (p)), we
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have

deg χ∗Eσ > 0 (resp. ≥ 0).

Let (E1,�1) and (E2,�2) be two semistable G-Higgs bundles and suppose that
there exists a family H parametrised by � such that H|X×{λ} ∼= (E1,�1) if λ �= 0 and
H|X×{0} ∼= (E2,�2). We say that these two G-Higgs bundles are S-equivalent and we
call the induced equivalence relation S-equivalence, writing (E1,�1) ∼S (E2,�2). Two
families of semistable G-Higgs bundles parametrised by Y are S-equivalent, H1 ∼S H2,
if for every point y ∈ Y , one has H1|X×{y} ∼S H2|X×{y}.

We denote by M(G)d the moduli space of S-equivalence classes of semistable G-
Higgs bundles of degree d and by Mst(G)d , the corresponding moduli space for stable
G-Higgs bundles.

The G-Higgs bundle E is polystable if it is semistable and, when there exists
a parabolic subgroup P � G, a strictly antidominant character χ : P → �∗ and a
reduction of structure group σ giving the P bundle Eσ such that

� ∈ H0(X, Eσ (p))

and

deg χ∗Eσ = 0,

there exists a reduction ς of the structure group of Eσ to the Levi subgroup L ⊂ P
such that � ∈ H0(X, Eς (l)), where Eς denotes the principal L-bundle obtained from
the reduction of structure group ς and l is the Lie algebra of L. There is a unique
(up to isomorphism) polystable G-Higgs bundle in each S-equivalence class. Let us
recall that every polystable G-Higgs bundle has a reduction of structure group to some
Levi subgroup L ⊂ G giving a stable L-Higgs bundle. Such a reduction is called a
Jordan–Hölder reduction and is unique in a certain sense (see, for example, [17]).

The triviality of the canonical bundle �1
X in the case of an elliptic curve leads us

to the following well-known results.

PROPOSITION 3.1. Let (E,�) be a semistable G-Higgs bundle. Then, E is a semistable
G-bundle.

Proof. If E is unstable, then E reduces to the Harder–Narasimhan parabolic
subgroup P, giving Eσ , and there exists a character χ : P → �∗ such that deg χ∗Eσ < 0.
Moreover, H0(X, E(g)) = H0(X, Eσ (p)). So, � ∈ H0(X, Eσ (p)) and hence the Higgs
bundle (E,�) is unstable. �

We have the following consequence.

COROLLARY 3.2. The moduli space of G-Higgs bundles projects onto the moduli space
of G-bundles

M(G)d −→ M(G)d
[(E,�)]S �−→ [E]S .

PROPOSITION 3.3. Let (E,�) be a stable G-Higgs bundle. Then, E is stable.

Proof. We first note that � ∈ H0(X, E(g)) is contained in aut(E,�).
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If (E,�) is stable, then, by [17, Proposition 2.14], aut(E,�) ⊂ H0(X, E(zg(g))) and
it follows easily that (E, 0) is stable too. �

COROLLARY 3.4. Let (E,�) be a polystable G-Higgs bundle. Then, E is a polystable
G-bundle.

Proof. The polystable G-Higgs bundle (E,�) reduces to the Jordan–Hölder Levi
subgroup L giving the stable L-Higgs bundle (EL,�L). By Proposition 3.3, EL is a
stable L-bundle and therefore E is a polystable G-bundle. �

With the results above, we are able to describe stable and polystable G-Higgs
bundles. Recall the bundle Eρ defined in (19).

PROPOSITION 3.5. A stable G-Higgs bundle (E,�) is isomorphic to (Eρ, z ⊗ 1O)
where ρ : �� → K is some representation such that zg(ρ) = zg(g), 1O is the constant
section of the trivial bundle O equal to 1 and z ∈ zg(g).

Proof. By Proposition 3.3, E is stable and therefore polystable. Then, E ∼= Eρ for
some ρ. By [27, Proposition 3.2], we have H0(X, E(g)) = zg(g), so � = z ⊗ 1O for some
z ∈ zg(g). Note that zg(ρ) ⊆ H0(X, Eρ(g)), and then zg(ρ) is contained in zg(g) so they
are equal. �

We recall the isomorphism (7) and note that T∗X ∼= X × �. With all this in mind,
we provide a result for G-Higgs bundles analogous to Theorem 2.1.

THEOREM 3.6. Let S� be an abelian, connected complex Lie group. Then, the moduli
space of topologically trivial S�-Higgs bundles over the elliptic curve X is

M(S�)0
∼= T∗X ⊗� �S.

Proof. The description follows from the construction of a family of S�-Higgs
bundles using PS defined in (8) and d�S from (7). �

Recall the definition of Lc given in (14).

PROPOSITION 3.7. Every polystable G-Higgs bundle of topological type d = (u, c)
admits a reduction of structure group to Lc giving a stable Lc-Higgs bundle of topological
class �d = (u, p(c)).

Proof. Take a polystable G-Higgs bundle (E,�) of type d = (u, c), and suppose
that L is a Jordan–Hölder Levi subgroup of (E,�). Since (E,�) reduces to L giving a
stable L-Higgs bundle, it follows from Proposition 3.5 that there exists (ρ, z) such that
(E,�) ∼= (Eρ, z ⊗ 1O). Here, z ∈ zg(ρ), which is a reductive Lie algebra since

ZG(ρ) = ZG(a, b) = ZK (a, b)�

and ZK (a, b) is a compact subgroup. Then, we can conjugate z ∈ zg(ρ) to the Cartan
subalgebra h ⊂ lc. As a consequence of the above and Proposition 2.14, (Eρ, z ⊗ 1O)
reduces to a stable Lc-Higgs bundle and so does (E,�). �

Recall that hωc is the centre of lc. Propositions 3.5 and 3.7 imply the following.

COROLLARY 3.8. Let KLc be a maximal compact subgroup of Lc. A polystable G-
Higgs bundle (E,�) of type d ∈ π1(G) is isomorphic to (Eρ, z ⊗ 1O), where ρ : �� →
KLc ⊂ Lc is some representation, 1O is the constant section of the trivial bundle O equal
to 1 and z ∈ hωc .
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Recall that Eρ1 ∼= Eρ2 if and only if ρ1 and ρ2 are conjugate. This fact, together
with Corollary 3.8, implies the following.

COROLLARY 3.9. In the notation of Corollary 3.8, two pairs (ρ, z) and (ρ ′, z′)
determine isomorphic polystable G-Higgs bundles if and only if there exists an element
k ∈ K such that (ρ ′, z′) = (kρk−1, adk(z)).

The automorphism group of the polystable G-Higgs bundle (Eρ, z ⊗ 1O) is ZG(ρ, z)
and its Lie algebra is zg(ρ, z).

Recall the family of polystable G-bundles EG,d → X × (X ⊗� �Sc
) defined in

Remark 2.13 and in (21). Recalling the isomorphism

d�Sc
: � ⊗� �Sc

→ sc = hωc ,

defined in (7), as well as the discussion immediately before Theorem 3.6, we define a
family of G-Higgs bundles HG,d parametrised by T∗X ⊗� �Sc

, setting, for each point
(t, s) ∈ T∗X ⊗� �Sc

,

HG,d |X×{(t,s)} = (
EG,d |X×{t} , d�Sc

(s) ⊗ 1O
)
,

where 1O is the section of the trivial bundle O equal to 1.

REMARK 3.10. By Corollary 3.8, every polystable G-Higgs bundle of degree d is
parametrised by HG,d .

REMARK 3.11. The familyHG,d can be constructed starting fromHSc,0 ⊗ (Ex0
Lc,�d

, 0),
quotienting by H1(X, F) as described in Corollary 2.11 and taking the extension of
structure group associated to Lc ↪→ G. This shows that all polystable G-Higgs bundles
are described by Higgs bundles for the abelian group Sc.

THEOREM 3.12. Let G be a connected complex reductive Lie group and let d ∈ π1(G).
Then,

Mst(G)d = ∅,

unless G/Z0 decomposes into PGL(n1, �)× . . . × PGL(ns, �) and d ∈ π1(G) projects
to (d1, . . . , ds) ∈ π1(PGL(n1, �)) × π1(PGL(ns, �)), where gcd(ni, di) = 1. In that case,
there is a natural isomorphism

Mst(G)d = M(G)d ∼= T∗X ⊗� �Z.

Proof. The first statement is a consequence of Propositions 3.3 and 3.5 and
Theorem 2.12.

As in Theorem 2.12, the extension of structure group associated to G → G ∼=
Z × D induces a morphism

Mst(G)d −→ Mst(G)(u,c)
∼= Mst(Z)u × Mst(D)c, (23)

which, as in the case of G-bundles, can be proved to be bijective. By Proposition 3.5,
Corollary 3.9 and Theorem 2.12, Mst(D)c = {pt}. Noting also that Mst(Z)u is smooth
as Z is abelian, we have that Mst(G)d ∼= Mst(Z)u and the second statement follows
from Theorem 3.6. �
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Recall Wc defined in (13). Note that Wc acts on Sc and therefore it acts on
T∗X ⊗� �Sc

.

PROPOSITION 3.13. Let (E1,�1) and (E2,�2) be two polystable G-Higgs bundles of
topological class d parametrised by HG,d at the points (t1, s1) and (t2, s2) ∈ T∗X ⊗� �Sc

.
Then, (E1,�1) and (E2,�2) are isomorphic G-Higgs bundles if and only if there exists
ω′ ∈ Wc such that (t2, s2) = ω′ · (t1, s1).

Proof. It is clear that, if (t2, s2) = ω′ · (t1, s1), then (E1,�1) ∼= (E2,�2). Suppose
conversely that (E1,�1) ∼= (E2,�2) and that (E1,�1) and (E2,�2) are associated to
(ρ1, z1) and (ρ2, z2) in the sense of Corollary 3.8. Then, by Corollary 3.9, there exists
k ∈ K such that (ρ2, z2) is equal to (kρ1k−1, adk z).

By Corollary 2.16, there exists ω ∈ Wc = NK (Sc)/ZK (Sc) such that t2 = ω · t1.
Then, there exists n ∈ NK (Lc) = NK (Sc) projecting to ω and such that ρ2 = nρ1n−1.
Let us set z′ = adn−1 (z2) in sc = hωc and note that

(ρ2, z2) = (
nρ1n−1, adn(z′)

)
.

Then, (ρ1, z′) = (
(n−1k)ρ1(n−1k)−1, adn−1k z1

)
, so n−1k belongs to ZK (ρ1) and

conjugates z1 to z′, both elements of sc = hωc .
Let T be the maximal torus of ZK (ρ1, z′) such that its complexification is Sc.

Note that T ′ = n−1kT(n−1k)−1 is another maximal torus of ZK (ρ1, z′). Since ZK (ρ1, z′)
is compact there exists an element h′ that conjugates T to T ′. Then, there exists
h = n−1kh′ ∈ ZK (ρ1) ∩ NK (Sc) with z′ = adh(z1). Setting n′ = nh = kh′, we obtain an
element of NK (Sc) such that

(ρ2, z2) = (
n′ρ1(n′)−1, adn′(z1)

)
.

Finally, let ω′ ∈ Wc be given by the projection of n′. It is clear that it sends (t1, s1)
to (t2, s2). �

THEOREM 3.14. There exists a bijective morphism

(T∗X ⊗� �Sc
)
/

Wc
1:1−→ M(G)d . (24)

Hence, the normalisation M(G)d of M(G)d is isomorphic to (T∗X ⊗� �Sc
)
/

Wc .

Proof. By moduli theory, the family HG,d → X × (T∗X ⊗� �Sc
) induces a

morphism

T∗X ⊗� �Sc
−→ M(G)d

(t, s) �−→ [HG,d |X×{(t,s)}]S.

As we have seen in Remark 3.10, this morphism is surjective. It descends to a
surjective morphism (24). By Proposition 3.13, (24) is also injective.

The quasiprojective variety (T∗X ⊗� �Sc
)
/

Wc is normal since it is the quotient
of a smooth (and therefore normal) variety by a finite (and therefore reductive)
group. Zariski’s main theorem and (24) give us the description of the normalisation
of M(G)d . �

REMARK 3.15. This is proved in [33] for the trivial degree case. For G = GL(n, �)
or SL(n, �) and d = 0, (24) is indeed an isomorphism since the target is normal (see
the discussion at the end of Section 1).
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The irreducibility of the quotient (T∗X ⊗� �Sc
)
/

Wc implies the following.

COROLLARY 3.16. The moduli space of G-Higgs bundles M(G)d is irreducible.

A G-Higgs bundle is infinitesimally regular if the dimension of aut(E,�) is the
minimal possible one.

PROPOSITION 3.17. The Zariski open subset of points represented by polystable G-
Higgs bundles which are infinitesimally regular lies in the smooth locus of M(G)d .

Proof. Consider the infinitesimal deformation space T of (E,�). By [4], one has
the exact sequence

H0(X, E(g))
e0(�)−→ H0(X, E(g)) −→ T −→ H1(X, E(g))

e1(�)−→ H1(X, E(g)),

where ei(�)(ψ) = [ψ,�] and e1(�) is the Serre dual of e0(�) (recall that the canonical
bundle is trivial in our case). Hence, codim(im e0(�)) = dim(ker e1(�)), so dim(T) =
2 dim(ker e1(�)).

Suppose that (E,�) ∼= (Eρ, z ⊗ 1O). Recall that dx is a generator of H1(X,O), so
H1(X, E(g)) = {z′ ⊗ dx : z′ ∈ zg(ρ)}. We observe that the kernel of e1(�) corresponds
to zg(ρ, z) and therefore

dim(T) = 2 dim(zg(ρ, z)) = 2 dim(aut(E,�)),

where the last step in the equality follows from Corollary 3.9.
Suppose that ρ is associated to the c-pair (a, b) with (up to conjugation) a ∈ H.

Recall that Proposition 2.5 implies that hωc is a Cartan subalgebra of zg(ρ) and therefore
a Cartan subalgebra of zg(ρ, z) since z ∈ hωc . Then, for every polystable G-Higgs bundle
(E,�),

dim(M(G)d ) = 2 dim(hωc ) ≤ 2 dim(zg(ρ, z)) = 2 dim(aut(E,�)).

Recalling [14, Corollary 5.18], we observe that, if a is a regular element of H, then
zg(ρ, z) = hωc , so dim(T) = dim(M(G)d ) is achieved in a Zariski open subset and the
statement follows. �

We define the projection

pG,d : (T∗X ⊗� �Sc
)
/

Wc −→ (X ⊗� �Sc
)
/

Wc
[(t, s)]Wc �−→ [t]Wc .

Recalling the projection of Corollary 3.2, we have the commutative diagram

(T∗X ⊗� �Sc
)
/

Wc

1:1

��

pG,d �� (X ⊗� �Sc
)
/

Wc

∼=
��

M(G)d �� M(G)d .

REMARK 3.18. We can give an interpretation of the projection pG,d in terms of a
certain orbifold bundle. Given an orbifold defined as a global quotient Z/�, one can
define its cotangent orbifold bundle as the orbifold given by T∗Z/�, where the action
of � on T∗Z is the action induced by the action of � on Z. Denote by M̃(G)d andM̃(G)d
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the orbifolds given, respectively, by the quotients of (X ⊗� �Sc
) and (T∗X ⊗� �Sc

) by
the finite group Wc. Since T∗(X ⊗� �Sc

) is (T∗X ⊗� �Sc
), we have that M̃(G)d is the

cotangent orbifold bundle of M̃(G)d , i.e.,

M̃(G)d ∼= T ∗M̃(G)d .

4. The Hitchin fibration. We describe the Hitchin map in the spirit of [9]. Consider
the adjoint action of the group G on the Lie algebra g and take the quotient map

q : g −→ g
//

G .

Let E be any holomorphic G-bundle. Since the adjoint action of G on g//G is
obviously trivial, we note that the fibre bundle induced by E is trivial

E(g//G) = O ⊗ (g//G).

The projection q induces a surjective morphism of fibre bundles

qE : E(g) −→ E(g//G),

and qE induces a morphism on the set of holomorphic global sections

(qE)∗ : H0(X, E(g)) −→ H0(X,O ⊗ (g//G))
� �−→ �//G .

If (E1,�1) and (E2,�2) are two S-equivalent semistable G-Higgs bundles, one can
check that (qE1 )∗�1 = (qE2 )∗�2. Hence, we can define the Hitchin map

bG : M(G) −→ H0(X,O ⊗ (g//G))
[(E,�)]S �−→ (qE)∗�.

(25)

When the base variety is a Riemann surface of genus greater than or equal to 2, the
restriction of bG to every component M(G)d is surjective. This is not the case for genus
g = 1 and, to preserve the fact that the Hitchin map is a fibration, we set

B(G, d) := bG(M(G)d ),

and we denote by bG,d the restriction of (25) to M(G)d .
If H is a Cartan subgroup with Cartan subalgebra h and Weyl group W , Chevalley’s

theorem says that

g//G ∼= h/W.

So, H0(X,O ⊗ (g//G)) ∼= H0(X,O ⊗ h/W ) and, since X is a compact
holomorphic variety, we have H0(X,O ⊗ h/W ) ∼= h/W ∼= � ⊗� �H/W . There is a
natural isomorphism

βG,0 : (� ⊗� �H)
/

W
∼=−→ B(G, 0).

Now we take d ∈ π1(G) non-trivial associated to (u, c) ∈ π1(Z) × π1(D). By
Corollary 3.8, we see that every polystable G-Higgs bundle of topological class d
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is isomorphic to (Eρ, z ⊗ 1O), where z ∈ hωc . We can check that the quotient map q
induces a bijective morphism

βG,d : (� ⊗� �Sc
)
/

Wc
1:1−→ B(G, d).

Let B(�Sc
) = {γ1, . . . , γ�} be a basis of �Sc

. Recalling that T∗X ∼= X × �, we see
that the projection π : T∗X → � induces

πG,c : (T∗X ⊗� �Sc
)
/

Wc −→ (� ⊗� �Sc
)
/

Wc
[(t, s)]Wc �−→ [s]Wc .

(26)

We use this morphism to better understand the Hitchin map.

PROPOSITION 4.1. Recall the bijective morphism (24). The following diagram is
commutative:

(T∗X ⊗� �Sc
)
/

Wc
1:1 ��

πG,c

��

M(G)d

bG,d

��
(� ⊗� �Sc

)
/

Wc

βG,d

1:1
�� B(G, d).

The normalisation of the Hitchin fibre corresponding to s ∈ � ⊗� �Sc is isomorphic
to

π−1
G,c([s]Wc ) ∼= (X ⊗� �Sc

)
/

ZWc (s) . (27)

Proof. Take (t, s) ∈ (T∗X ⊗� �Sc
), and consider

bG(HG,d |X×{(t,s)}) = [s]G.

Clearly, this equality is Wc-invariant. On the other hand, note that

βG,d ◦ πG,c ([(t, s)]Wc ) = βG,d ([s]Wc ) = [s]G

and the first statement follows.
Next, consider the following projection

π̃G,c : T∗X ⊗� �Sc
−→ � ⊗� �Sc

.

We observe that

π−1
G,c([s]Wc ) ∼=

(⋃
ω∈Wc

π̃−1
G,c(ω · s)

) /
Wc .

Since, for ω · s �= ω′ · s the sets π̃−1
G,c(ω · s) and π̃−1

G,c(ω′ · s) are disjoint, it follows that

π−1
G,c([s]Wc ) ∼= π̃−1

G,c(s)
/

ZWc (s)

and therefore we obtain the isomorphism (27). Finally, we observe that the bijection (24)
sends π−1

G,c([s]Wc ) to the Hitchin fibre corresponding with the Higgs field � = z ⊗ 1O.
Hence, by Zariski’s main theorem, it describes an isomorphism with the normalisation
of this subset. �
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We denote by UG,c the subset of � ⊗� �Sc
/Wc given by the points [s]Wc such that

there exists a non-trivial ω ∈ Wc with s = ω · s. Since the only element of Wc that
acts trivially on � ⊗� �Sc

is the identity, UG,c is a finite union of closed subsets of
codimension at least equal to 1. By construction, for any s /∈ UG,c, we have ZWc (s) =
{id}.

The generic Hitchin fibre is the fibre over any element of the complement of UG,c.

COROLLARY 4.2. The normalisation of the generic Hitchin fibre is isomorphic to the
abelian variety X ⊗� �Sc

.

5. The moduli space of representations R(G)d . From the non-abelian Hodge
correspondence on a compact Riemann surface [19, 32, 10, 7], it follows that a
polystable G-Higgs bundle is associated to a reductive representation ρ : �� → G
and two representations are conjugate if and only if they are associated to isomorphic
polystable G-Higgs bundles. Furthermore, irreducible representations correspond to
stable G-Higgs bundles.

Using this correspondence and Remark 2.3, we can use the results on G-Higgs
bundles obtained in Section 3, to generalise the description given in Section 2.3 of
c-pairs on compact groups, to complex reductive Lie groups.

PROPOSITION 5.1. Let G be a simply connected complex semisimple Lie group. Let
C = p−1(F) = π1(D) as defined at the begining of Section 2.2 and set c ∈ C. Let (a, b)
be an irreducible c-pair in G. Then,

(1) the group G is a product of simple factors Gi, where each Gi is isomorphic to SL(ni, �)
for some ni ≥ 2;

(2) c = (c1, . . . , cr), where each ci generates the centre of Gi;
(3) conversely, if G is as in (1) and c as in (2), then there is an irreducible c-pair in G

and all c-pairs in G are conjugate.

Proof. This follows from Theorem 3.12 and the fact that the universal cover of
PGL(n, �) is SL(n, �). �

PROPOSITION 5.2. Let G be a connected complex reductive Lie group. Let (a, b) be a
reductive c-pair; then (a, b) is contained in Lc after conjugation and, as a c-pair in Lc, is
irreducible.

Proof. This follows from Proposition 3.7. �
Recall the notation introduced in Section 2.2.

THEOREM 5.3. Let G be a connected complex reductive Lie group and let d ∈ π1(G),
corresponding under the injection (11) to (u, c) ∈ π1(Z) × π1(D). Then, there is a bijective
morphism

ζG,d : (Sc × Sc)
/

Wc
1:1−→ R(G)d .

Proof. Take a representative (δ1, δ2) of the unique conjugation class of c-pairs in
Dc. Recall that C(G)+c denotes the space of reductive c-pairs in G and consider the
following morphisms:

(Sc × Sc) −→ C(G)+c −→ R(G)d

(s1, s2) �−→ ([s1, δ1]τc , [s2, δ2]τc ) �−→ [
([s1, δ1]τc , [s2, δ2]τc )

]
G .
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By an argument analogous to that of Remark 2.6, the composition morphism
factors through

Sc × Sc −→ R(G)d .

By (16) and Proposition 5.2, it is clear that this morphism is surjective. The group
Wc acts on Sc × Sc via conjugation by NG(Sc). Since the points of R(G)d are the
conjugation classes of c-pairs, the morphism factors through this quotient, giving the
morphism ζG,d of the statement. We only need to prove that it is injective.

Take two reductive c-pairs of the form ([s1, δ1]τc , [s2, δ2]τc ) and ([s′
1, δ1]τc , [s′

2, δ2]τc ).
Write Z′ = ZG([s′

1, δ1]τc , [s′
2, δ2]τc ) which is a complex reductive group since the c-pair

is reductive. Suppose that there is g ∈ G such that

([s1, δ1]τc , [s2, δ2]τc ) = g([s′
1, δ1]τc , [s′

2, δ2]τc )g
−1.

Then, Sc and gScg−1 are Cartan subgroups of Z′, so there is an element h ∈ Z′

such that hSch−1 = gScg−1 and then g′ = h−1g is contained in NG(Sc). We have

g′([id, δ1]τc , [id, δ2]τc )(g
′)−1 = ([id, δ′

1]τc , [id, δ′
2]τc ),

where (δ′
1, δ

′
2) is an irreducible c-pair in Dc and therefore, by Proposition 5.1, there

exists δ ∈ Dc such that δ(δ′
1, δ

′
2)δ−1 = (δ1, δ2). Noting that [id, δ]τc conmutes with Sc

since Sc is the centre of ZG(Sc), it follows that g′′ = [id, δ]τc · g′ ∈ NG(Sc) and

([s1, δ1]τc , [s2, δ2]τc ) = ([g′′s′
1(g′′)−1, δ1]τc , [g′′s′

2(g′′)−1, δ2]τc ).

Thus, (s1, s2) and (s′
1, s′

2) define the same point of (Sc × Sc)/Wc. �

COROLLARY 5.4. There is a bijective morphism

(
(�∗ × �∗) ⊗� �Sc

) /
Wc

1:1−→ R(G)d . (28)

and R(G)d =
(
(�∗ × �∗) ⊗� �Sc

) /
Wc is the normalisation of R(G)d .

Proof. Due to the isomorphism �Sc
: Sc

∼=−→ �∗ ⊗� �Sc
defined in (6) and knowing

that the action of Wc commutes with it, the first statement follows from Theorem 5.3.
The second statement follows from (28) and Zariski’s main theorem. �
REMARK 5.5. This is proved in [33] for the case d = 0. When the degree is trivial

and G = GL(n, �) or SL(n, �), one obtains an isomorphism due to the normality of
the target (see the discussion at the end of Section 1).

6. Hitchin equation and projectively flat bundles. Fix a maximal compact
subgroup K of G and denote its Lie algebra by k. Take τ : g → g to be the Cartan
involution associated to the compact real form k ⊂ g. Then, τ (k) = k and τ (ik) = −ik
for every k ∈ k.

Let (E,�) be a G-Higgs bundle and let h be a metric on E, i.e., a C∞ reduction of E
to the maximal compact subgroup K giving the K-bundle Eh. We define the involution
on the adjoint bundle τh : Eh(g) → Eh(g) using τ fibrewise.
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Let ∂E denote the Dolbeault operator of E and set Ah := ∂E + τh(∂E), which is the
unique K-connection on Eh compatible with ∂E , also known as the Chern connection.
We denote by Fh the curvature of Ah.

Take the C∞ (1, 0)-form dx ∈ A1,0(X,O) and dx ∈ A0,1(X,O). Given a G-Higgs
bundle (E,�), Hitchin introduced in [19], the following equation for a metric h on E:

Fh + [� dx, τh(�) dx] = u ⊗ ω, (29)

where u ∈ zg(g) and ω ∈ A2(X) is the volume form of the curve normalised to 2π i.
Recall that u is determined by d ∈ π1(G).

In the elliptic case, we have a splitting of the Hitchin equation.

PROPOSITION 6.1. If the G-Higgs bundle (E,�) is polystable, then there exists a
metric h on E that satisfies

Fh = u ⊗ ω and [� dx, τh(�) dx] = 0.

Proof. By Corollary 3.4, if the G-Higgs bundle (E,�) is polystable, then E is
polystable and by the Narasimhan–Seshadri–Ramanathan theorem there exists a
metric for which Fh = u ⊗ ω.

By Corollary 3.8, (E,�) is isomorphic to (Eρ, z ⊗ idE) where z ∈ hωc . Then,

[� dx, τh(�) dx] = [z, τ (z)] ⊗ idE ⊗( dx ∧ dx) = 0,

since both z and τ (z) belong to the abelian subalgebra h. �
One can easily show that a G-Higgs bundle (E,�) admitting a metric that satisfies

(29) is always polystable. Thus, we see that Proposition 6.1 completes the proof of the
Hitchin–Kobayashi correspondence in the elliptic case.

COROLLARY 6.2. A G-Higgs bundle (E,�) is polystable if and only if it admits a
metric h that satisfies the Hitchin equation (29).

REMARK 6.3. Note that to prove the Hitchin–Kobayashi correspondence in the
elliptic case we only make use of the Narasimhan–Seshadri–Ramanathan theorem, the
Jordan–Hölder reduction and Propositions 3.1 and 3.3.

Let EG,d be the (unique up to isomorphism) differentiable G-bundle of degree
d ∈ π1(G) over the elliptic curve X . A G-connection A on EG,d is flat if the curvature
vanishes, FA = 0 (note that this forces d = 0). A G-connection A on EG,d is projectively
flat or equivalently A has constant central curvature if FA = a ⊗ ω for some a ∈ zg(g).
Due to topological considerations a = u, where u ∈ zg(g) is determined by d ∈ π1(G).
Let us denote by C(G)d the moduli space of projectively flat connections on EG,d and
consequently, C(G)0 is the moduli space of flat connections on EG,0.

We denote by X � the moduli space of line bundles with flat connections
over the elliptic curve X . Recalling that T∗X ∼= Pic0(X) × H0(X,�1

X ), we have a
homeomorpshism

X � homeo−→ T∗X, (30)

given by Hodge theory.
Let S be a connected complex reductive abelian group. Recalling the isomorphism

�S given in (6), one can give a description of the moduli space of flat S-connections,
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denoted by C(S)0. Write ES,0 for the differentiable S-bundle with trivial topological
class and recall that it is unique up to isomorphism.

Recall the isomorphism (6). For instance, the following result is contained in [32,
Theorem 9.10].

THEOREM 6.4. Let S� be an abelian, connected complex Lie group. Then, the
moduli space of flat S�-connections over the elliptic curve X is

C(S)0
∼= X � ⊗� �S.

Let L ⊂ G be a reductive subgroup. We say that the G-connection A reduces to the
L-connection A′ when A is gauge equivalent to the extension of structure group of A′

given by the natural injection i : L ↪→ G.
Recall from (11) that d ∈ π1(G) is determined by (u, c) ∈ π1(Z) × π1(D), where

π1(Z) ⊂ zg(g) and π1(D) = C as described in Section 2.2. Take Lc as defined in (14)
and denote by Kc its maximal compact subgroup.

PROPOSITION 6.5. Every projectively flat connection A on EG,d reduces to a
projectively flat Lc-connection. Furthermore, A is gauge equivalent to

A(ρ,z) = Aρ + z dx + τ (z) dx,

where Aρ is the Chern connection of Eρ given by ρ : �� → Kc and z ∈ hωc .
The projectively flat connections A(ρ,z) and A(ρ ′,z′) are gauge equivalent if and only if

there exists g ∈ K such that (ρ ′, z′) = (gρg−1, adg z).

Proof. From a polystable G-Higgs bundle (E,�), we can construct a G-connection
on EG,d as follows:

A = Ah + � dx + τh(�) dx.

Two isomorphic polystable G-Higgs bundles give rise to gauge equivalent flat G-
connections. By Corollary 6.2, the above G-connection is projectively flat if and only
if (E,�) is polystable. The description of polystable G-Higgs bundles in Corollary 3.8
implies the proposition. �

Denote by ELc,�d the differentiable bundle underlying Ex0
Lc,�d

, the Lc-bundle with
degree �d defined in Remark 2.13, and let Ax0

Lc,�d
be its Chern connection. Setting

p : X × (X � ⊗ �Sc ) → X , we define the family

(F′
Lc,�d

, (A′)Lc,�d ) = (
PS,0 ⊗ p∗ELc,�d ,ASd ,0 ⊗ p∗Ax0

Lc,�d

)
,

noting that Sc is the centre of Lc. This family is parametrised by X � ⊗� �Sc .
Recall Fc and Sc as defined in (15). Let J ∈ H1(X, Fc) be a Fc-bundle and AJ its

Chern connection. By Corollary 2.11, one has the following.

PROPOSITION 6.6. Let A be any Lc-connection on ELc,�d , then AJ ⊗ A is gauge
equivalent to A.

As a consequence of Proposition 6.6, it follows that (F′
Lc,�d

, (A′)Lc,�d ) induces a fa-
mily of Lc-connections parametrised by the quotient of �Sc by the subgroup associated
to H1(X, Fc). This quotient is �Sc

, and therefore we obtain a family parametrised by
X � ⊗� �Sc

that we denote by (FLc,�d ,ALc,�d ).
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Using the natural injection i : Lc ↪→ G, we construct, by extension of structure
group,

(FG,d ,AG,d ) = i∗(FLc,�d ,ALc,�d ),

a family of projectively flat G-connections, which is also parametrised by X � ⊗� �Sc
.

REMARK 6.7. The flat G-connection parametrised by (FG,d ,AG,d ) at the point
f ∈ X � ⊗� �Sc

is of the form A(ρ,z). It is therefore associated to the polystable G-Higgs
bundle (Eρ, z ⊗ 1O) parametrised by HG,d at the point (t, s) ∈ T∗X ⊗� �Sc

, where (t, s)
is the image of f under the homeomorphism (30). Therefore, by Proposition 3.13, two
points f1, f2 ∈ X � ⊗� �Sc

parametrise gauge equivalent connections if f2 = ω · f1 for
some ω ∈ Wc.

THEOREM 6.8. There exists a bijective morphism

(X � ⊗� �Sc
)
/

Wc
1:1−→ C(G)d (31)

and C(G)d =
(
X � ⊗� �Sc

) /
Wc is the normalisation of C(G)d .

Proof. The family (FG,d ,AG,d ) induces a morphism from the parametrising space
to the moduli space

X � ⊗� �Sc
−→ C(G)d ,

which is surjective by Proposition 6.5. By Remark 6.7, this surjection factors through
(31) giving an injection.

The second statement follows from (31) and Zariski’s main theorem. �
REMARK 6.9. This is proved in [33] for the trivial degree case. In the case of

G = GL(n, �) or SL(n, �) and d = 0, (31) is an isomorphism since the target is normal.
Normality of C(G)0 follows from the isosingularity theorem [32, Theorem 10.6] and
normality of R(G)0.
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