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Abstract
In tandem with the fast-growing demand for Unmanned Aerial Vehicles (UAVs) for surveillance and reconnais-
sance, advanced controllers for these critical systems are needed. This paper proposes a flight dynamics controller
design that considers various uncertainties for the Hydra Technologies UAS-S4 Ehécatl. In order to be realistic, in
addition to flight dynamics nonlinearities, three main sources of uncertainties are considered, as those caused by
unknown controller’s parameters, modeling errors, and external disturbances. A Robust adaptive fuzzy logic con-
troller is designed, in charge of nonlinear flight dynamics in presence of a variety of uncertainties. The nonlinear
flight dynamics is modeled based on the Takagi-Sugeno method relying on the soft association of local linear mod-
els. Since this controller is model-based, an optimal reference model is defined, which is stabilised by the Linear
Quadratic Regulator procedure. A fuzzy logic controller is then designed for the nonlinear model. Lastly, with the
aim to handle the uncertainties, the gains of the fuzzy controller are reconfigured, and are continuously adjusted by
Lyapunov-based robust adaptive laws. The performance of the UAS-S4 Robust adaptive fuzzy logic controller is
evaluated in terms of lateral and longitudinal flight dynamics stabilisation, and the reference model state variables
tracking under various uncertainties.

Nomenclature

Symbols
Alon, Blon Longitudinal flight dynamics state and control matrices of the UAS-S4
Alat, Blat Lateral flight dynamics state and control matrices of the UAS-S4
Ai, Bi State and control matrices of the UAS-S4 Takagi-Sugeno fuzzy model
Ar, Br State and control matrices of the reference model
d (X, t) Bounded external disturbance
E Tracking error
Gu, Gw, Hu, Hw, Mu, Mw, Mq Longitudinal state matrix dimensional stability derivatives
Gδ , Hδ , Mδ Longitudinal control matrix dimensional stability derivatives
Ki1×n, Zi Takagi-Sugeno fuzzy logic controller gains
ki1×n, zi Desired fuzzy logic controller gains based on the reference model
p Roll rate
q Pitch rate
Q, R Linear Quadratic Regulator cost function weights
η Yaw rate
u Axial velocity
v Side velocity
V Lyapunov function
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w Vertical velocity
X The UAS-S4 state variables vector
Xr Reference model state variables vector
Yv, Yp, Yr, Lv, Lp, Lr, Nv, Np, Nr Lateral state matric dimensional stability derivatives
Yδ , Lδ , Nδ Lateral control matric dimensional stability derivatives

Greek letters
θ Pitch angle
ϕ Roll angle
δ Control input vector
δa Aileron angle
δe Elevator angle
δr Rudder angle
φi Fuzzy rule activator
K Linear Quadratic Regulator gain
�i

j Membership function’s collected grades in fuzzy subsystems
γ1, γ2 Constant weights of the Lyapunov function
εAi , εBi UAS-S4 model uncertainties

Abbreviation
FDM Flight Dynamics Model
FLM Fuzzy Logic Model
FLC Fuzzy Logic Control
LQR Linear Quadratic Regulator
RAFLC Robust Adaptive Fuzzy Logic Control
SATE Sum of Absolute Tracking Errors
T-S FL Takagi-Sugeno Fuzzy Logic
UAV Unmanned Aerial Vehicles

1.0 Introduction
Unmanned Aerial Vehicles (UAVs) are remotely controlled aircraft designed to perform specific tasks.
Due to the fast-growing demand for UAVs aimed at a variety of applications, the design of UAVs has
remained a dynamic research field [1]. In most cases, UAVs have been produced for military and disaster
relief purposes, as well as for surveillance and reconnaissance [2]. The UAS-S4 Ehecatl is such an UAV,
designed and manufactured by the Hydra Technologies company in Mexico to perform military and
civilian surveillance [3].

Critical UAV systems are equipped with accurate flight dynamics controllers [4]. Designing an effi-
cient controller requires an accurate flight dynamics model [5]. In fact, the access to the flight dynamics
model enhances our ability to evaluate the controller performance in the early phases of the UAV devel-
opment instead of relying mainly on flight test phases, which dramatically improves flight safety while
reducing both costs and time [6]. The present work seeks to design a fully functional controller for the
UAS-S4 based on its flight dynamics model. In this context, the model refers to the mathematical rep-
resentation of the UAS-S4 flight dynamics system, which is basically used for its better understanding,
prediction and control.

Since fixed-wing UAS-S4s have the minimum number of required control surfaces, only a few actu-
ators should provide a safe and reliable flight. While utilising a fewer number of actuators results in a
simpler UAV flight dynamics model, flight stability may become more affected in the presence of uncer-
tainties [7]. These uncertainties may be external disturbances (dues to environmental conditions) [8],
unknown controller parameters (affected by actuator and sensor imperfections) [9], and model imper-
fections (dues to model approximation and to experimental errors) [10]. Additionally, following changes
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in flight conditions, the flight dynamics behave nonlinearly [11]. In order to provide stable flight, it is
essential to obtain an accurate mathematical flight dynamics model for the UAS-S4, and then to design
an efficient controller that can consider flight dynamics nonlinearities and uncertainties.

Basically, any UAV flight dynamics model depends on its geometrical data, aerodynamic perfor-
mance estimation, onboard actuators and sensors model, controller model, signal processing, and
environmental functioning conditions [12]. By conducting flight tests, the model parameters can be
determined. The interpretation of UAV propulsion and actuation systems in terms of its mass and iner-
tia are the essential requirements for obtaining an accurate UAV model. To that end, both linear and
nonlinear representations of aircraft models are shown in [13]. When obtaining an accurate flight dynam-
ics model is possible, a model-based controller will be highly successful in performing the intended
tasks [14]. Thanks to the equipment available at our LARCASE (The Active Control, Avionics and
Aeroservoelasticity Research Laboratory), including the UAS-S4, the Price-Païdoussis subsonic blow
down wind tunnel, and the tow Research Aircraft Flight Simulators (RAFS) level-D for the [R]-too
and Cessna Citation X [15], the accurate modeling of UAS-S4 flight dynamics is possible. Thus, the
model-based control approach can be used to design the desired UAS-S4 controller.

From the classical control theory aspect, the PID approach is known as the generic and standard indus-
trial control law [16]. Basically, this controller operates via the feedback mechanism with the objective
of reducing the stabilisation and tracking error by modifying its signal. Although the PID technique can
stabilise UAS-S4 flight dynamics without needing complex calculations for tuning the corresponding
controller gains [3], performing the stabilisation tasks requires major control signal efforts. The need of
such a controller that gives the desired output while considering a cost function led us at our LARCASE
to investigate the LQR approach. The LQR methodology controls the state variables by using an optimal
state-feedback law computed while minimising a fine-tuned energy-like cost function [17]. This method
showed high efficiency when it was utilised for our UAS-S4 flight dynamics control [18]. However, state
variables estimation decreases the LQR’s effectiveness, which worsens with increasing distance from
the equilibrium point [19]. With respect to the designed PID and LQR controllers for our UAS-S4, we
need to design an efficient flight dynamics controller that can solve challenges including, parametric and
nonparametric uncertainties while flight dynamics behaves nonlinearly.

A control strategy is expected to be designed, such that it could work very well despite uncertainties
[20]. These issues led us to choose the Fuzzy Logic Control (FLC) method, which has proven its ability
to handle nonlinearities in a broad range of operation [21]. Fuzzy Logic can provide a nonlinear model
constructed by the soft association of several local linear models, while reduces computational com-
plexity for the controller in real time operations. Then, a Fuzzy Logic Controller can be designed based
on the provided Fuzzy Logic Model (FLM). Where, the classical feedback control technique aimed at
flight dynamics stabilisation and tracking can be employed to control each local model. The designed
Fuzzy Logic Controller (FLC) can be developed into the Adaptive FLC that can solve uncertainties due
to unknown controller parameters (affected by actuator and sensor imperfections) [22].

The objective of this article is the adaptive fuzzy methodology reconfiguration aimed at UAVs flight
dynamics control for a wide range of uncertainties that may be caused by unknown controller’s param-
eters. The novelty of this study is to modify the adaptive laws in order to make them robust against
external disturbances (e.g., wind turbulence, wind shear, wind gust) or model imperfections (dues to
fuzzification and defuzzification process errors), which were not considered in [44]. Moreover, a gen-
eral Theorem, followed by its stability proof is given to be useful for flight dynamics control of a variety
of UAVs.

This paper is arranged in five sections. Following Section 1 on Introduction, the UAS-S4 flight
dynamics model and its fuzzy logic representation are stated in Section 2. The fuzzy controller developed
for the desired reference model is described, and then its robustness and adaptive aspects are developed
in Section 3. Section 4 presents the simulation results and their numerical analysis. The research contri-
butions and achievements are summarised in Section 5, and they are followed by an outline of proposed
future works.
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Table 1. UAS-S4 specifications (geometrical
and flight data).

Specifications Values
Wingspan 4.2 m
Wing area 2.3 m2

Total length 2.5 m
Mean aerodynamic chord 0.57 m
Empty weight 50 kg
Maximum take-off weight 80 kg
Loitering airspeed 35 knots
Maximum speed 135 knots
Service ceiling 15000 ft
Operational range 120 km

Figure 1. Hydra Technologies UAS-S4 Ehecatl.

2.0 UAS-S4 flight dynamics modeling
The first essential step towards the design of an efficient controller for a flight dynamics system is the
calculation of an appropriate model that accurately expresses the system dynamics behaviour. In this
way, the UAS-S4 is considered as the case study which is equipped with elevators, ailerons and rudders
that are controlling its loads through the pitch, roll and yaw axes. Figure 1 shows Hydra Technologies
UAS-S4 Ehecatl, and Table 1 lists its specifications.

For an UAV that flies in a broad operating range, a vast number of internal and external factors could
affect its flight dynamics behaviour. To obtain an accurate model for the design of an efficient controller,
the flight dynamics data was mapped in a Mach-altitude flight envelope. A scheduled model was pro-
vided to represent the flight envelope containing nodes associated to the flight dynamics trim models.
For each node, the flight dynamics model nonlinearities and parametric uncertainties were reduced.

The model in charge of each node was mathematically represented using differential equations with
respect to the time-varying mass, and then linear models were designed around several equilibrium
points. The controller was allocated to all nodes, in which a time-varying mass existed. Figure 2 depicts
step-by-step procedure followed to reach the research objective.

Firstly, the flight envelope schedules the UAS-S4 flight dynamics model for nine altitudes and four
speeds. Then, the nonlinear model considering time-varying mass is linearised around several equilib-
rium points. Linearised models apply to the defined membership functions in order to obtain the UAS-S4
Fuzzy Logic Model (FLM). Next, the Fuzzy Logic Controller (FLC) computes the control signal based
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Figure 2. The followed procedure to control the UAS-S4 flight dynamics.

on the provided UAS-S4 FLM. Finally, the desired and controlled flight dynamics values are compared,
and the error is used by the adaptation block for adjusting FLC gains. The UAS-S4 flight dynamics
model and its controller design are explained in details in the following sections.

2.1 UAS-S4 linear local models
By considering the aircraft differential equations of motion [23], UAS-S4 state variables can be linearly
modeled about its several equilibrium points. The UAS control problem can be solved for both its lateral
and longitudinal motions. In this paper, the state variables of the UAS-S4 both lateral and longitudinal
motions are controlled.

The state variables of the longitudinal flight dynamics are represented by Xlon = [
u w q θ

]T ,
with the axial velocity u, vertical velocity w, pitch rate q, and pitch angle θ while the control input is
δlon = [

δe δT

]T . Even though the control vector is formed by the elevator deflection δe and thrust δT ,
the former plays the key role for the pitch control. The lateral flight dynamics state variables represented
by Xlat =

[
v p η ϕ

]T , with the side velocity v, roll rate p, yaw rate η, and roll angle ϕ. Based on the
aileron and ruder deflections, δlat =

[
δa δr

]T is in charge of lateral controls input.
Knowing that the linearised state-space representation of the model around an equilibrium point

is [24]:

Ẋ(t) = A X(t) + B δ(t) (1)

where the longitudinal state-space matrices are:

Alon =

⎡
⎢⎢⎢⎢⎣

Gu Gw 0 −g cos θ0

Hu Hw u0 −g sin θ0

Mu + MẇHu Mw + MẇHw Mq + u0Hẇ 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦

Blon =

⎡
⎢⎢⎢⎢⎣

Gδe GδT

Hδe HδT

δe + MẇHδe MδT + MẇHδT

0 0

⎤
⎥⎥⎥⎥⎦ (2)
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and the lateral state-space matrices are:

Alat =

⎡
⎢⎢⎢⎢⎣

Yv Yp − (u0 − Yr) g cos θ0

Lv Lp Lr 0

Nv Np Nr 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦ , Blat =

⎡
⎢⎢⎢⎢⎣

0 Yδr

Lδa Lδr

Nδa Nδr

0 0

⎤
⎥⎥⎥⎥⎦ (3)

where Gu, Gw, Hu, Hw, Mu, Mw, Mq are the UAS-S4 longitudinal state matric dimensional stability
derivatives, and Gδ, Hδ, Mδ are its longitudinal control matric dimensional stability derivatives. In
addition, Yv, Yp, Yr, Lv, Lp, Lr, Nv, Np, Nr are the UAS-S4 lateral state matric dimensional stability
derivatives, and Yδ, Lδ, Nδ are its lateral control matric dimensional stability derivatives.

In order to obtain the UAS-S4 state-space matrices’ elements, it is needed to compute the dimensional
aerodynamic coefficients and their derivatives. While several research projects on aircraft modeling have
been conducted at the LARCASE [25–27], the most comprehensive study on the UAS-S4 modeling was
detailed in [3]. The UAS-S4 model was obtained at the LARCASE using four sub-models representatives
of aerodynamics, actuator, propulsion, and mass and inertia.

The first sub-model (aerodynamics) was set up according to the Fderivatives in-house code; this
code was based on new aerodynamics methodologies added to DATCOM [28]. The second sub-model
(propulsion) was built using a two-stroke engine integration model relying on the operation of an inter-
nal combustion engine (Otto Cycle), and on the propeller analysis (Blade Element Theory) [29, 30].
Raymer and DATCOM techniques were used to implement the third sub-model (mass and inertia) [31].
Finally, the fourth sub-model (a control surface actuation system) was designed using the servomotors’
characteristics, and the final UAS-S4 model was obtained by the sub-models integration [3].

In this way, the UAS-S4 flight dynamics related to both longitudinal and lateral motions was rep-
resented using several linear state-space models. Each state-space model expresses the linearised state
variables about a specific equilibrium point corresponding to a certain range of altitudes and speeds.
However, by increasing the operational range about an equilibrium point, the modeling error due to the
linearisation also increases. In order to enhance the models’ accuracy, several equilibrium points can
be considered, and consequently, several local linear models can be better fitted into the actual flight
dynamics model. Therefore, a fuzzy logic approach is utilised for the UAS-S4 modeling.

2.2 UAS-S4 Fuzzy Logic Model
Basically, an aircraft nonlinear Flight Dynamics Model (FDM) can be represented through its affine
system formulation [32] by the equation Ẋ = F(X) +G(X)δ, where the control input vector δ is adjusting
the state vector variables X using F:Rn →R

n and G:Rn →R
n functions, that are unknown. A simple

nonlinear FDM was found to be more efficient than a complex nonlinear system for the design of a model-
based controller, which was our main objective. The higher efficiency of the simple nonlinear FDM was
due to its reduced computational complexity, while providing fast control signal calculations in real-
time operations [33]. Therefore, the fuzzy logic approach was chosen, as it provided this procedure for
approximating affine nonlinear systems [34].

Fuzzy logic offers the type of models that can be used to support the impression of partial truths,
where the truth concept may range between completely true and entirely false [35]. Fuzzy logic provides
a tool for assembling several local linear models, relying on membership functions, with the objective
of approximating a nonlinear model. The Takagi-Sugeno Fuzzy Logic modeling method is known as
a practical and user-friendly technique for modeling real physical systems [36] and was chosen in this
study.

The Takagi-Sugeno Fuzzy Logic Model (T-S FLM) consists of a set of models that have been locally
linearised about their equilibrium points. Based on the expert-defined fuzzy rules in Equation (4),
the association of local models can approximate the actual nonlinear continuous-time flight dynamics
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model. According to the T-S procedure for generating rules, the ith rule of the fuzzy model is defined as
the following [36].

Rulei:

⎧⎪⎨
⎪⎩

if x1 is �i
1 and . . . and xn is �i

n

then Ẋ(t) = AiX(t) + Biδ(t)

where i = 1, . . . , j

(4)

where the state variables vector X(t) ∈ Rn is controlled by the input δ(t) ∈ R for a j number of defined
rules. The state-space matrices for the UAS-S4 model should then be converted into their controllable
Canonical form, as shown in Equation. (5).

Ain×n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . . 0

0 0

...
. . .

...

0 0 0 1

an
i an−1

i · · · a2
i a1

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The fuzzy logic model representation based on the first-order models relying on j rules is [36]:

Ẋ(t) =
∑j

i=1 φi(t) (AiX(t) + Biδ(t))∑j
i=1 φi(t)

(6)

It should be mentioned that φi(t) =∏n
h=1 �i

h (X(t)) activates the ith rule by considering the collected
grades �i

h (X(t)) that are associated with the membership of X(t) in �i
h. An appropriate algorithm is

further designed for flight dynamics control by utilising the fuzzy model presented in this section.

3.0 Flight dynamics control
Having effective control over a UAV’s flight dynamics would allow efficient flights in terms of their costs
and safety. This section first defines the desired reference model for the chosen model-based control
strategy by utilising the LQR controller that performed very well under ideal conditions for the UAS-S4
[18]. The controlled model specifications (using the LQR methodology) about the equilibrium point
are considered as the reference specifications for the controlled model using the Robust Adaptive Fuzzy
Logic Control (RAFLC) methodology.

3.1 Reference model
Basically, a reference model should define the desirable response of the controlled system to the input
command. The design of the reference model is one of the basic aspects of an adaptive control strat-
egy. In addition to offering performance index values (whether for frequency-domain or time-domain
characteristics), the reference model should also satisfy its constraints, such as its relative degree and
order.

According to the above-mentioned concerns regarding the reference model definition, the desired
reference model specifications are determined using the Linear Quadratic Regulator (LQR) procedure
applied around the equilibrium point. An LQR controls the state variables using an optimal state-
feedback law, that is computed while minimiSing a fine-tuned cost function [37]. The design of an LQR
is based on the linear state-space model representation, as given in Equation (1). The LQR algorithm
calculates the control signal while minimising the following energy-based cost function:

J = 1

2
∫∞

0 XT(t)Q X(t) + δT(t) R δ(t) dt (7)
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Figure 3. The fuzzy logic controller utilised for the UAS-S4 flight dynamics.

where Q and R are the weight matrices (positive-semi-definite or positive-definite), that clarify the
importance of cost function related to the state vector and the control vector, respectively.

Consequently, the LQR control law is:

δ(t) = −K X(t) (8)

Following the state feedback gain K and state variables vector X values, the LQR procedure sta-
bilises the flight dynamics of the closed-loop model with respect to the state-space variables using
Equation (9):

Ẋ(t) = (A − BK) X(t) + BK δ(t) (9)

The feedback gain K is computed by:

K = R−1BTP (10)

where matrix P is obtained by solving the following algebraic Riccati equation:

ATP +PA +Q−PPBR−1BTP = 0 (11)

Next, the control block of the UAS-S4 model needs to be designed by taking into account the controlled
reference model. The Fuzzy Logic Control (FLC) approach is employed in order to solve the challenge
of model nonlinearities, as well as to outperform linear controllers.

3.2. Fuzzy Logic Controller (FLC)
Over the past two decades, the use of fuzzy logic for systems control has been developed for a variety of
industrial applications. In most comparison studies, the FLC outperforms classical controllers in solving
the challenges of nonlinearities, mathematical complexities, and in uncertainties removal [38–40]. In
fact, FLC allowed obtaining accurate inputs from approximate inputs through an intuitive converting
process [39].

Basically, the FLC implementation is done in three fundamental steps: fuzzification, fuzzy interface,
and defuzzification [41]. The fuzzification block converts crisp data into fuzzy data using proper mem-
bership functions. The prepared data is then fed to the Fuzzy Inference System (FIS), which processes
the fuzzy data and performs the control tasks according to the IF-THEN rules. Finally, the computed
fuzzy control signal is converted into its real signal values through the defuzzification block. The FLC
signal is applied to the UAS-S4 flight dynamics, which is modeled using FLM. This control signal is
computed as function of the error (the difference between the measured and the desired flight dynam-
ics values). Figure 3 shows the concept of FLC utilised in the closed-loop architecture in charge of the
UAS-S4 flight dynamics.

Regarding the Takagi-Sugeno Fuzzy Logic Model (T-S FLM) described in subsection 2.2, the UAS-
S4 FLM should be controlled by use of a compatible FLC. Hence, the T-S Fuzzy Logic Controller (T-S
FLC) is needed to be designed.
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3.3. T-S Fuzzy Logic Controller
Takagi-Sugeno Fuzzy Logic Control (T-S FLC) method can manage nonlinearities and time-varying
parameters while avoiding control algorithm complexity [42]. T-S FLC proved its efficiency on non-
linear systems in terms of state variables regulation and reference model tracking [43]. The T-S FLC
is structured based on the classical feedback compensator theory [44], that is established for each local
model. The rule-based control law can be mathematically represented by Equation (12) [36].

Rulei:

⎧⎪⎨
⎪⎩

if x1 is �́i
1 and . . . and xn is �́i

n

then δ(t) = −KiX(t) + Zir(t)

where i = 1, . . . , j

(12)

where the state variables are controlled by δ(t), and rely on the reference signal r(t) and adjustable gains
denoted by Ki1×n and Zi1×1.

The T-S FLC output is given by Equation (13):

δ(t) =
∑j

i=1 φ́i(t) (−KiX(t) + Zir(t))∑j
i=1 φ́i(t)

(13)

By considering φ́i(t) =∏n
h=1 �́i

h(X(t)), which activates the ith rule of the fuzzy controller based on the
collected grades �́i

h(X(t)) associated with the membership of X(t) in �́i
h. With the aim of obtaining a zero-

value tracking error φ́i(t) = φi(t)|Z−1
i |, should be determined in order to formulate Lyapunov function

for the system to become asymptotically stable; when the gain of the reference signal value was 1, the
controller could fires the proper rule with the same collected grade in the fuzzy model.

The T-S control law can be reproduced, as shown in Equation (14):
j∑

i=1

φi(t)Z
−1
i δ(t) −

j∑
i=1

φi(t)Z
−1
i (−KiX(t) + Zir(t)) = 0 (14)

Even though the FLC handles nonlinearities, it is affected by the adverse effects of parameters uncer-
tainties. Since the concept of adjustable gains is supposed to overcome these problems, the modified
Adaptive Fuzzy Logic Controller (AFLC) is employed, as it relies on adjustable gains. Additionally,
we consider the other two main sources of uncertainties, namely external disturbance, and model
imperfection. The robust adaptive configuration of the T-S FLC is our solution.

3.4. Adaptive T-S Fuzzy Logic Controller
In Control Systems Engineering, uncertainty is an issue that may appear due to a variety of reasons, and it
can adversely affect controller performance. Uncertainty presence may reduce controller robustness, and
may lead to systems dynamics instabilities. Therefore, an algorithm should control the nonlinear flight
dynamics model while remaining efficient in the presence of uncertainties. To fulfill this objective, a
reference model is defined by applying the T-S FLC. Then, the errors are measured by subtracting the
UAS-S4 state variables values from the reference model’s state variables values [22]. Finally, using a
Lyapunov function (which relies on the measured error) for guaranteeing the flight dynamics asymptotic
stability, the adaptation laws for gain tuning are calculated. Equation (15) defines the reference model
containing the desired state variables, as follows:

Ẋr(t) = ArXr(t) + Brr(t) (15)

If ki1×n and zi1×1 are assumed to be the gains of the desired compensator corresponding to each fuzzy
rule, which can regulate the closed-loop response, such that the UAS-S4 state variables exactly follow
the reference model state variables, then Ar = Ai − Biki and Br = Bizi need to be satisfied. By rearranging
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these last formulations as Ai = Ar + Biki and Br = Biz, and then, by substituting them into Equation (6),
the aircraft’s T-S fuzzy logic representation using the reference model is given in Equation (16).

Ẋ(t) =
(

Ar +
∑j

i=1 φi(t)Brz−1
i ki∑j

i=1 φi(t)

)
X(t) +

(∑j
i=1 φi(t)Brz−1

i∑j
i=1 φi(t)

)
δ(t) (16)

The error is defined as E(t) = X(t) − Xr(t). This error is further obtained by subtracting Equation (16)
from Equation (15). Therefore, the next Equation (17) represents this error.

Ėj(t) = ArEj(t) +
(∑j

i=1 φi(t)Brz−1
i ki∑j

i=1 φi(t)

)
X(t) +

(∑j
i=1 φi(t)Brz−1

i∑j
i=1 φi(t)

)
δ(t) −

(∑j
i=1 φi(t)Br∑j

i=1 φi(t)

)
r(t) (17)

By replying Equation (14) into Equation (17), the error can be obtained using next Equation (18):

Ėj(t) = ArEj(t) +
(∑j

i=1 φi(t)Br

(
kiz−1

i − KiZ−1
i

)
∑j

i=1 φi(t)

)
X(t) +

(∑j
i=1 φi(t)Br

(
z−1

i − Z−1
i

)
∑j

i=1 φi(t)

)
δ(t) (18)

In order to converge the error to zero, the following Lyapunov function for the stabilisation analysis and
reference signal tracking was employed:

V = ET
j PEj +

j∑
i=1

(
1

γ1

(ki − Ki)
T
∣∣z−1

i

∣∣ (ki − Ki) + 1

γ2

(zi − Zi)
T
∣∣z−1

i

∣∣ (zi − Zi)

)
(19)

where P = PT > 0 is positive-definite matrices and Ar stability assumption is guaranteed by use of
AT

ri
P + PAri < −Qi for all matrices Qi = QT

i > 0. In addition, γ1 and γ2 are positive constant parameters
that are used to finely tune the gains. The gains of the fuzzy controller in Equation (13) can be adjusted
via the following adaptation laws (based on FLC gains and their derivatives), obtained by solving
Equation (19) [22].

K̇i = γ1sign(zi)
φiBT

r PEjXT∑j
i=1 φi

, Żi = −γ2sgn(zi)
φiBT

r PEj(δ + KiX)

Zi

∑j
i=1 φi

(20)

The stability theorem of adaptive gains is given in [22]. Uncertainties dues to the unknown con-
troller’s parameters could affect the adaptive gain Zi, and may approach it to zero value. Since adaptive
gain Zi appears in the denominator of Equation (20), in order to guarantee the model stability, the adapta-
tion laws should be modified in cases when the denominator approaches to zero. Therefore, the modified
tuning law for an adaptive fuzzy controller is represented in Equation (21) [45]:

Żi =
{

wi, if |Zi| > Zi0 or Zi = Zi0 and wi sign(Zi) < 0

0, otherwise

where wi = −γ2 sign(zi)
BT

r PEj(δ + KiX)

Zi

∑j
i=1 φi

(21)

With respect to the stability proof given in [22], by assuming a uniformly bounded reference input
while analysing the stable reference model, the control law (Ki, Zi, φ́i) and tracking error E were guar-
anteed bounded for all j fuzzy logic rules. The convergence of the reference model was ensured, such
that limt→∞Ej(t) = 0, as the tracking error E converges to zero. This assumption is clarified in the math-
ematical proof of the general theorem formulated for the designed robust adaptive fuzzy logic laws after
Equation (26). Although the presented Adaptive Fuzzy Logic Controller (AFLC) can control nonlinear
flight dynamics in the presence of uncertainties, that are dues to unknown controller’s parameters, it
remains sensitive against other sources of uncertainties. Model imperfection and external disturbances
are the two main causes of uncertainties that adversely affect controller performance, and both of them
can be solved using robust control theory.
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3.5 Robust Adaptive T-S Fuzzy Logic Controller
Robust control is a static approach that deals explicitly with uncertain parameters and disturbances.
In other words, it is utilised to guarantee stability and to obtain robust performance while taking into
account disturbances and modeling errors (both of which are assumed to be bounded) [46].

The uncertainties dues to external disturbances, such as wind shear, gust, and turbulence can be
considered mathematically as bounded functions d (X, t), in which Dn×1 = [0 0 . . . 0 1]T .

Ẋ(t) =
∑j

i=1 φi(t) (i X(t) + Bi δ(t))∑j
i=1 φi(t)

+ Dd(X, t) (22)

Additionally, even if an aircraft is modeled by a skilled expert, relying on perfect aircraft data,
uncertainties in modeling may be dues to other causes:

– Time-varying parameters, where a fixed controller can not always stabilise its state variables
– Ignoring high-order dynamics for the nominal model simplification
– Nonlinearities, where systems contain nonlinear dynamics, and models are represented approx-

imately (such as our aircraft nonlinear dynamics, which is approximated using Fuzzy Logic
modeling)

Eventually, uncertainties associated with modeling errors of system dynamics can be added mathemat-
ically into the state-space matrices of a T-S fuzzy model, as shown in Equation (23):

Ẋ(t) =
∑j

i=1 φi(t)
(
[Ai + εAi

]
X(t) + [Bi + εBi

]
δ(t)

)
∑j

i=1 φi(t)
+ Dd(X, t) (23)

where the errors are bounded, such as ‖εAi‖∞ < ε and ‖εBi‖∞ < ε for i = 1, . . . , j.
Equation (23) can be written under the following form:

Ẋ(t) =
(

Ar +
∑j

i=1 φi(t)Brz−1
i ki∑j

i=1 φi(t)

)
X(t) +

(∑j
i=1 φi(t)Brz−1

i∑j
i=1 φi(t)

)
δ(t) + ε (X, δ) + Dd(X, t) (24)

and then by considering the uncertainties defined as f (ε, d) = ε(X, δ) + Dd(X, t) the model would be:

Ẋ(t) =
(

Ar +
∑j

i=1 φi(t)Brz−1
i ki∑j

i=1 φi(t)

)
X(t) +

(∑j
i=1 φi(t)Brz−1

i∑j
=1 φi(t)

)
δ(t) + f (ε, d) (25)

Following a procedure for computing adaptive gains similar to the ones used in the previous
subsection, and based on a robust control strategy [47], the modified adaptation laws are:

K̇i = γ1

[
sign(zi)

φiBT
r PEjXT∑j

i=1 φi

− ϑKi‖Ej‖
]

,

Żi =
{

wi, if |Zi| > Zi0 or Zi = Zi0 and wi sign(Zi) < 0

0, otherwise

wi = −γ2

[
sign(zi)

BT
r PEj(δ + KiX)

Zi

∑j
i=1 φi

− ϑZi‖Ej‖
]

(26)

Theorem: Considering a UAV flight dynamics model represented by Equation (25); its desired refer-
ence flight dynamics model is given in Equation (15) (which respects AT

ri
P + PAri < −Qi Inequality), in

which the control function is represented by Equation (13), which is tuned by the robust adaptive laws,
shown in Equation (26). By assuming uniformly bounded reference input and stable reference model,
signals corresponding to the control law (Ki, Zi, φ́i) and Ej are guaranteed to be bounded for all fuzzy
rules. The reference-model tracking convergence is ensured, so that limt→∞Ej(t) = 0, as the tracking
error E converges to zero.
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Proof. The stability analysis is done based on the designed adaptive laws, as seen in Equations (20)
and (21), by use of the Lyapunov function, described in Equation (19). The conditions |Zi| > Zi0 or Zi =
Zi0 and wi sign(Zi) < 0 were considered, and V̇ = −ET

j QEj was obtained.
In the condition expressed by Zi = Zi0, when the Lyapunov function is represented with Equation

(19), its time derivative is given by:

V̇ = −ET
j QEj + 2ET

j P

∑j
i=1 φi(t)Br

(
z−1

i − Z−1
0

)
(KiX + δ)∑j

i=1 φi(t)
(27)

As |zi| > Z0, so that
(
z−1

i − Z−1
0

)
sign

(
z−1

i

)
< 0, therefore:

ET
j P

∑j
i=1 φi(t)Br

(
z−1

i − Z−1
0

)
(KiX + δ)∑j

i=1 φi(t)
< 0 (28)

which means that V̇ < 0. Hence, for both conditions shown in Equation (21):

Żi =
{

wi, if |Zi| > Zi0 or Zi = Zi0 and wi sign(Zi) < 0

0, otherwise

where wi = −γ2 sign(zi)
BT

r PEj(δ + KiX)

Zi

∑j
i=1 φi

(21)

it obtains:

V̇ > −ET
j QEj (29)

Therefore:

∫∞
0 ET

j Ej ≤ V(0) − V(∞)

λmin(Q)
(30)

while relying on the Barbalat’s lemma, limt→∞Ej(t) = 0.
Then, by considering that the adaptive laws contain a robust term represented by Equation (26) in the

conditions expressed by |Zi| > Zi0 or Zi = Zi0 and wi sign(Zi) < 0, the Lyapunov function is expressed
by Equation (19), therefore, its time derivative becomes:

V̇ ≤ − λmin (Q)
∥∥Ej

∥∥2 + 3λmax (P)ε
∥∥Ej

∥∥2 + λmax (P)ε‖Xr‖2 + 2λmax (P)ε
∑j

i=1
‖Ki‖

∥∥Ej

∥∥2

+ 2λmax(P)ε
∥∥Ej

∥∥∑j

i=1

[|Zir| + ‖Ki‖
∥∥Ej

∥∥]− ϑ
∑j

i=1
(ki − Ki)

T
∣∣z−1

i

∣∣ (ki − Ki)

− ϑ
∑j

i=1

∣∣z−1
i

∣∣ (zi − Zi)
2 + ϑ

∑j

i=1

∥∥(ki − Ki)
∣∣z−1

i

∣∣− Ki

∥∥Ej

∥∥∥∥2

+ ϑ
∑j

i=1

∥∥(zi − Zi)
∣∣z−1

i

∣∣− Zi

∥∥Ej

∥∥∥∥2 (31)

We can determine, so that 6λmax(P)ε < λmin(Q). Therefore:

V̇ ≤ −1

2
λmin (Q)

∥∥Ej

∥∥2 + λmax (P)ε ‖Xr‖2 + 2λmax (P)ε
∑j

i=1
‖Ki‖

∥∥Ej

∥∥2

+ 2λmax (P)ε
∥∥Ej

∥∥∑j

i=1

[|Zir| + ‖Ki‖
∥∥Ej

∥∥]− ϑ
∑j

i=1
(ki − Ki)

T
∣∣z−1

i

∣∣ (ki − Ki)

− ϑ
∑j

i=1

∣∣z−1
i

∣∣ (zi − Zi)
2 + ϑ

∑j

i=1

∥∥(ki − Ki)
∣∣z−1

i

∣∣− Ki

∥∥Ej

∥∥∥∥2 + ϑ
∑j

i=1

∥∥(zi − Zi)
∣∣z−1

i

∣∣− Zi

∥∥Ej

∥∥∥∥2

(32)

If we consider that:

V̇ ≤ −αV + β (33)
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Figure 4. The designed Robust Adaptive T-S Fuzzy Logic Controller (RAFLC) mechanism.

where:

α =
min

{
1

2
λmin(Q), ϑ

}
max

{
λmin(Q), γ −1

1 , γ −1
2

} (34)

and

β = λmax (P)ε‖Xr‖2 + 2λmax (P)ε
∑j

i=1
‖Ki‖

∥∥Ej

∥∥2 + 2λmax (P)ε
∥∥Ej

∥∥∑j

i=1

[|Zir| + ‖Ki‖
∥∥Ej

∥∥]
+ ϑ

∑j

i=1

∥∥(ki − Ki)
∣∣z−1

i

∣∣− Ki

∥∥Ej

∥∥∥∥2 + ϑ
∑j

i=1

∥∥(zi − Zi)
∣∣z−1

i

∣∣− Zi

∥∥Ej

∥∥∥∥2 (35)

Therefore, V ≤ β

α
causes exponentially convergence of the Lyapunov function, and feasible stable region

in order to guarantee the flight dynamics stability is:

O=
{

x

∣∣∣∣ β

α
< V

}
(36)

In other words, adaptive gains guarantee the flight dynamics stability, as long as the amount of
bounded uncertainties respect the threshold (the border of Equation (36) as the feasible stable region).
Additionally, the leakage factor ϑ in the robust term should be carefully tuned based on a trade-off; a
larger value for ϑ improves the controller robustness, while a smaller value provides more accurate ref-
erence model state variables tracking [48]. The mechanism of our designed T-S-based Robust Adaptive
Fuzzy Logic Controller (RAFLC) block diagram is depicted in Fig. 4.

4.0 Results
The effectiveness of the designed RAFL controller is evaluated in terms of UAS-S4 state variables stabil-
isation and reference model state variables tracking. The efficiency of adaptation laws can be assessed
by the convergence of the reference model’s state variables tracking error. The designed RAFL con-
troller was utilised for all trim conditions and showed very good servo-accuracy performance. The
numerical results corresponding to several trim conditions were utilised to demonstrate the controller’s
functioning in details. By assuming that the aircraft is in the trim condition at the speed = 45 m/s,
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altitude = 6, 100 m, and its mass is varying in time between 53 kg and 55 kg, the trim for the local
models of the UAS-S4 are obtained through the following two Fuzzy Logic rules:

Rule 1: if E is positive then Ẋ(t) = A1X(t) + B1δ(t)

Rule 2: if E is negative then Ẋ(t) = A2X(t) + B2δ(t)

Knowing that, the UAS-S4 Fuzzy model was designed using 216 local FDMs. If a reference model
was not employed, we had to calculate the membership functions using state variables. But, since we
first designed the desired reference model, and the UAS-S4 FDM was supposed to track the reference
model, we utilised the tracking error for calculating membership functions (which were used for all trim
conditions). Hence, we defined the membership functions such that:

MF1 =

⎧⎪⎨
⎪⎩

0, Ej < −0.1

0.5 + 5Ej

1, Ej > +0.1

, MF2 =

⎧⎪⎨
⎪⎩

1, Ej < −0.1

0.5 − 5Ej

0, Ej > +0.1

The corresponding longitudinal and lateral state-space matrices are:

A1 lon =

⎡
⎢⎢⎢⎢⎣

−0.0726

−0.3729

−0.1308

0

0.2346

−4.5992

−1.3599

0

−0.9547

43.3325

0.4664

1

−9.7830

−0.2240

−0.0118

0

⎤
⎥⎥⎥⎥⎦ , B1 lon =

⎡
⎢⎢⎢⎢⎣

−0.0133

0.0631

−0.1525

0

⎤
⎥⎥⎥⎥⎦

A2lon =

⎡
⎢⎢⎢⎢⎣

−0.0640

−0.3616

−0.1369

0

0.2434

−4.2617

−1.2685

0

−1.0870

43.8266

0.4455

1

−9.7844

−0.2514

−0.0126

0

⎤
⎥⎥⎥⎥⎦ , B2 lon =

⎡
⎢⎢⎢⎢⎣

−0.0124

0.0592

−0.1454

0

⎤
⎥⎥⎥⎥⎦

A1 lat =

⎡
⎢⎢⎢⎢⎣

−0.2423

−0.0619

0.0870

0

0.2954

−12.8788

−0.2368

1

−50.3286

0.8274

−0.1602

0.0060

9.7613

0

0

0

⎤
⎥⎥⎥⎥⎦ , B1 lat =

⎡
⎢⎢⎢⎢⎣

0

0.6512

−0.0078

0

0.0386

0.0074

−0.1628

0

⎤
⎥⎥⎥⎥⎦

A2lat =

⎡
⎢⎢⎢⎢⎣

−0.2473

−0.0594

0.0955

0

0.0629

−14.2328

−0.1886

1

−56.0717

0.8345

−0.1748

0.0013

9.7615

0

0

0

⎤
⎥⎥⎥⎥⎦ , B2 lat =

⎡
⎢⎢⎢⎢⎣

0

0.8058

−0.0081

0

0.0440

0.0091

−0.1993

0

⎤
⎥⎥⎥⎥⎦

and the reference model state-space matrices for longitudinal and lateral flight dynamics are
expressed by:

Arlon =

⎡
⎢⎢⎢⎢⎣

−0.07073

−0.3818

−0.1093

0

0.2392

−4.621

−1.307

0

−0.9704

43.41

0.2867

1

−9.9760

0.6919

−2.225

0

⎤
⎥⎥⎥⎥⎦ , Brlon =

⎡
⎢⎢⎢⎢⎣

0.17770

−0.843

2.037

0

⎤
⎥⎥⎥⎥⎦

https://doi.org/10.1017/aer.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.2


The Aeronautical Journal 1201

Arlat =

⎡
⎢⎢⎢⎢⎣

−0.2423

−0.0655

0.0869

0

0.2992

−13.227

−0.2488

1

−50.3243

0.5562

−0.1751

0.0060

9.8117

−4.6161

−0.1573

0

⎤
⎥⎥⎥⎥⎦ , Brlat =

⎡
⎢⎢⎢⎢⎣

0

4.6072

−0.055

0

0.2777

0.0532

−1.171

0

⎤
⎥⎥⎥⎥⎦

To analyse the designed controller effectiveness, the convergence of state variables (flight dynamics)
for the reference model and controlled UAS-S4 model are evaluated during the flight dynamics stabil-
isation. Regarding the initial state variables vectors X0 = [0 0 0 0.1]T and Xr0 = [0 0 0 0.08]T , Fig. 5
depicts the Robust Adaptive Fuzzy Logic Controller (RAFLC) performance in terms of pitch angle,
pitch rate, roll angle and yaw rate stabilisation while tracking those of the reference model, with respect
to the control surfaces angles deflection limits (−20 < δe < 15, −40 < δa < 40, and − 30 < δr < 30 ).

For the longitudinal flight dynamics study, Fig. 5(a) and 5(c) show that the RAFL controller can
stabilise the UAS-S4 pitch angle and the pitch rate, respectively. Figure 5(b) shows the elevator deflection
during the pitch angle stabilisation. For the lateral flight dynamics study, Fig. 5(d) and 5(f) illustrate the
UAS-S4 roll angle and yaw rate regulation, respectively. Figure 5(e) shows the aileron deflection during
the roll angle stabilisation.

State variables stabilisation using the RAFL control mechanism was performed very well, while the
UAS-S4 state variables track the reference model’s state variables as well. Tracking the reference model
state variables including pitch angle, pitch rate, roll angle and yaw rate are shown in Fig. 6 during
stablisation.

Figure 6(a) indicates the pitch angle and pitch rate convergence during stabilisation. Figure 6(b)
depicts the convergence error, that is expressed as the difference between the controlled UAS-S4 pitch
angle and its reference pitch angle. Figure 6(c) shows the roll angle and yaw rate convergence towards
stabilisation. The convergence error obtained between the reference model and the controlled UAS-S4
model for the roll angle is shown in Fig. 6(d).

It should be noted that this work is a part of an ongoing research project to design a novel aerial
collision avoidance system. This project will predict the future trajectory of an aircraft, and if a conflict
will detected, then the system will provide a new safe trajectory for the aircraft to follow [49]. According
to the Traffic Collision Avoidance System (TCAS) criteria [50], our UAS-S4 has to change its altitude
using its elevator in order to avoid collisions. Hence, we analysed our RAFL controller performance in
terms of reference pitch angle tracking. With this aim, soft time-varying bounded signals are considered
as the controller reference inputs in order to to evaluate the controller’s performance. For evaluating
this model-based RAFL controller, the tracking error (the error obtained when the controlled UAS-S4
state variables track the reference model state variables) is considered as the performance index. In this
approach, a valid bounded reference input excites both the UAS-S4 and its reference model state vari-
ables, and the tracking error should converge to zero. Assuming the reference state as θr = 1.7 cos 0.5t ,
and initial condition given as X0 = [0 0 0 0.2]T and Xr0 = [0 0 0 0.18]T , the RAFL controller perfor-
mance is shown in Fig. 7, where its task is to control the UAS-S4 state variables, such that they track
the reference model state variables accurately.

As seen in Fig. 7(a) and 7(b), the designed controller for UAS-S4 is able to perform its task in terms
of reference model state variables tracking.

The adaptive gains effectiveness is well identified when uncertainties are considered. We therefore
incorporated the uncertainties dues to the unknown controller’s parameters (f = 0.02 cos t), and the
controller performance was quantified in terms of pitch angle as state variable. Figure 8 shows the
controller effectiveness in terms of the reference model state variables tracking by the controlled UAS-
S4 state variables (Fig. 8(a)), and tracking errors (Fig. 8(b)). Figure 8(a) shows that, even though the
RAFL controller efficiency was slightly degraded in terms of integrated tracking error (especially at
the extremums), the RAFL controller could still handle the unknown controller’s parameters uncer-
tainties. Its performance is very good accordingly the reference model’s tracking error, as shown in
Fig. 8(b).
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Pitch angle stabilization of the controlled 
UAS-S4 with respect tothe reference model

The UAS-S4 elevator angle deflection 
time variation in order to control the pitch angle

Pitch rate stabilization of the controlled 
UAS-S4 with respect to the reference model

Roll angle stabilization of the controlled 
UAS-S4 with respect to the reference model

The UAS-S4 aileron angle deflection time 
variation in order to control the roll angle

Yaw rate stabilization of the controlled 
UAS-S4 with respect to the reference model

(a) (b) 

(c) (d)

(e) (f)

Figure 5. RAFL controller performance in terms of longitudinal and lateral state variables
stabilisation.

In addition to the uncertainties related to the controller, model external disturbances and modeling
errors are other sources of uncertainties that the controller is designed to remove their adverse effects.
By assuming Fig. 9 shows the efficiency of the controller when all above-mentioned uncertainties are
considered. As shown in Fig. 9, the controlled UAS-S4 state variables (pitch angle and pitch rate) fol-
lowed the reference model state variables quite accurately. Although the controller performance slightly
decreased compared to the case of controller’s uncertainty (Fig. 8), especially at the extremums, the
robust terms ϑKi

∥∥Ej

∥∥ and ϑZi

∥∥Ej

∥∥ in the adaptation laws could handle all uncertainties dues to the
controller parameters, such as model external disturbances and modeling errors.
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Convergence of longitudinal state 
variables (including pitch angle and pitch rate) 

while the UAS-S4 is tracking the reference model 
with the aim of stablizing its state variables.

Convergence error between the reference 
model and the controlled UAS-S4 for the

pitch angle

Convergence of lateral state variables 
(including roll angle and yaw rate) while the UAS-
S4 is tracking the reference model with the aim of 

stablizing its state variables.

Convergence error between the reference 
model and the controlled UAS-S4 for the rollangle

(a) (b) 

(c) (d) 

Figure 6. RAFL controller performance in terms of convergence error.

The UAS-S4 state variable is tracking the 
reference model pitch angle

Concurrent longitudinal reference model 
statevariablestracking

(a) (b) 

Figure 7. RAFLC performance in terms of pitch angle and pitch rate tracking in the absence of
uncertainties.
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(a) (b) 

The reference model pitch angle tracking 
by controlled UAS-S4 statevariables

The tracking error convergence for 
pitch angle

Figure 8. RAFL controller performance in terms of the reference model pitch angle tracking in the
presence of uncertainties caused by unknown controller’s parameters.

(a) (b) 

The reference model pitch angle tracking 
by  controlled UAS-S4 state variable

Controlled UAS-S4 state variables track 
the reference model state variables 

Figure 9. The RAFL controller performance in presence of external disturbances and modeling errors.

Figure 10. Comparing the AFLC with the Robust AFLC (RAFLC) in terms of reference model tracking
for different uncertainties situations (from none to unbounded).
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Table 2. Sum of Absolute Tracking Errors (time = 40 sec and sampling time = 0.01 sec) while the
controlled UAS-S4 state variables are tracking the reference model state variables

Sum of Absolute Tracking
Errors (SATE)

Considered Reference Pitch angle Pitch rate
Flight condition uncertainties model (rad) (rad/s)
Altitude = 6, 100 m without uncertainty Moderate 14.55 13.32

Speed = 45 m/s Rigorous 15.16 13.81
Mass = 53 − 55 kg unknown controller’s

parameters
Moderate 25.62 24.53
Rigorous 27.03 25.99

unknown controller’s
parameters, external

Moderate 33.56 30.85

disturbances and
model imperfection

Rigorous 40.52 33.57

Altitude = 3000 m without uncertainty Moderate 14.71 13.45
Speed = 39 m/s
Mass = 65 − 67 kg

Rigorous 15.33 13.94
unknown controller’s

parameters
Moderate 25.82 24.79
Rigorous 27.27 26.31

unknown controller’s Moderate 33.92 31.26
parameters, external
disturbances and
model imperfection

Rigorous 40.88 33.98

Altitude = 100 m without uncertainty Moderate 14.84 13.66
Speed = 26 m/s
Mass = 75−77 kg

Rigorous 15.46 14.05
unknown controller’s

parameters
Moderate 25.98 24.95
Rigorous 27.46 26.36

unknown controller’s Moderate 34.09 31.44
parameters, external
disturbances and
model imperfection

Rigorous 41.34 34.34

The next challenge is the controller robustness threshold required to respect a feasible region for guar-
antying UAS-S4 stability. Figure 10 displays a visual representation of the uncertainties surpassing the
feasible region. This figure shows three separate time varying regions. The first region(0 − 20 sec) shows
the quality of the reference model state variables tracking (by controlled UAS-S4 state variables) when
it is not affected by uncertainties. The second region (20 − 42 sec) depicts the controller performance
when uncertainties (unknown controller’s parameters, external disturbances and modeling errors) are
considered in which f (ε, d) = 0.05 cos 0.9t + 0.01 cos 7t, and indicates that the controller does man-
age the bounded uncertainties after a short initial adjustment period. The third region (42 − 50 sec)
illustrates the state variables trajectories when the uncertainties surpass their boundaries, and therefore,
the controller can not guarantee the stability and convergence of the UAS-S4 state variables, as the
uncertainties moved the state variables outside the feasible region.

For comparison purposes, the RAFLC and AFLC approaches were chosen in the flight dynamics
control algorithm. As seen on Fig. 10, when uncertainties were dues to the external disturbances and
model imperfection, the RAFLC approach could track the reference state variable with less fluctuations
than the AFLC approach. The average time delays for the RAFLC and AFLC approaches were 0.3 sec
and 0.01 sec, respectively. In real-time operations, these average time delays are acceptable. Therefore, it
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Table 3. Sum of Absolute Tracking Errors (time = 40 sec and sampling time = 0.01 sec) while the con-
trolled UAS-S4 state variables are tracking the reference model state variables in the presence of various
uncertainties

Sum of Absolute Tracking
Error (SATE)

Reference Pitch angle Pitch rate
Flight condition uncertainties f (ε, d) model (rad) (rad/s)
Altitude = 6, 100 m 0.05 sin 0.9t + 0.01 cos 7t Moderate 26.67 25.62

Speed = 45 m/s Rigorous 28.34 27.34
Mass = 53 − 55 kg 0.07 sin 0.9t + 0.01 cos 7t Moderate 28.35 26.46

Rigorous 30.21 28.11

Altitude = 3000 m 0.05 sin 0.9t + 0.01 cos 7t Moderate 26.96 25.89
Speed = 39 m/s Rigorous 28.61 27.63
Mass = 65 − 67 kg 0.07 sin 0.9t + 0.01 cos 7t Moderate 28.66 26.75

Rigorous 30.49 28.52

Altitude = 100 m 0.05 sin 0.9t + 0.01 cos 7t Moderate 27.08 26.01
Speed = 26 m/s Rigorous 28.75 27.73
Mass = 75−77 kg 0.07 sin 0.9t + 0.01 cos 7t Moderate 28.72 26.84

Rigorous 30.60 28.51

can be concluded that the RAFLC outperformed the AFLC, and has provided a stabler flight in presence
of uncertainties.

In addition to the above approaches for controller performance evaluation, the controller effective-
ness can be assessed based on the tracking error value. In this approach, the differences between the
controlled UAS-S4 and its reference model state variables are measured; they are further considered for
evaluation the RAFL controller performance. In details, by considering the sampling time (0.01 sec-
onds), the Sum of Absolute Tracking Errors (SATE) while the controlled UAS-S4 state variables are
tracking the reference model state variables (during 40 seconds) characterizes the performance index.

The SATEs for two types of reference models in three trim conditions are represented on Tables 2–4.
Concretely, each individual reference model was stabilised using the LQR procedures by determining
both proper weighting matrices (Q and R). The stabilised reference model by assuming Q= 1 and R = 1
is named moderate, and the stabilised reference model by assumingQ= 50 and R = 1 is named rigorous.

According to the recorded tracking error for both pitch angle and pitch rate, it can be inferred that
there is a proportional relationship between the SATE value and the reference model rigorousness. When
the reference model is tuned such that it strictly concerns fast time-domain response, tracking the refer-
ence model state variables becomes more difficult for RALF controlled UAS-S4, and consequently, the
tracking accuracy decreases.

Another observation is that although the robust adaptive fuzzy controller can guide the UAS-S4 state
variables to track very well the reference model state variables, its accuracy degrades when large uncer-
tainties occur. This inference is obtained from Table 3 that lists the SATEs for different uncertainties
f (ε, d) in three flight conditions, and for two types of reference models.

For instance, in the second flight condition (Altitude = 3000 m, Speed = 39 m/s, Mass = 65 −
67 kg), by considering rigorous reference model (Q= 50 and R = 1), the pitch rate SATE is 27.63 rad/s
for smaller uncertainties (0.05 sin 0.9t) and the pitch rate SATE is 28.52 rad/s for larger uncertainties
(0.07 sin 0.9t).

Finally, according to the RAFLC architecture, adaptation weights are assigned to the adaptive laws in
order to regulate the RAFL controller gain. The SATE for different adaptation weights values are listed
in Table 4.
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Table 4. Sum of Absolute Tracking Errors (time = 40 sec and sampling time = 0.01 sec) the controlled
UAS-S4 state variables are tracking the reference model state variables in the presence of uncertainties
for different adaptation weight values

Sum of Absolute Tracking
Error (SATE)

Reference Pitch angle Pitch rate
Flight condition Adaptation weights model (rad) (rad/s)
Altitude = 6, 100 m γ1 = γ2 = 0.001 Moderate 26.67 25.62

Speed = 45 m/s Rigorous 28.34 27.34
Mass = 53 − 55 kg γ1 = γ2 = 0.0001 Moderate 25.96 24.91

Rigorous 27.68 26.69

Altitude = 3000 m γ1 = γ2 = 0.001 Moderate 26.96 25.89
Speed = 39 m/s Rigorous 28.61 27.63
Mass = 65 − 67 kg γ1 = γ2 = 0.0001 Moderate 26.25 25.22

Rigorous 27.93 26.95

Altitude = 100 m γ1 = γ2 = 0.001 Moderate 27.08 26.01
Speed = 26 m/s Rigorous 28.75 27.73
Mass = 75 − 77 kg γ1 = γ2 = 0.0001 Moderate 26.35 25.33

Rigorous 28.04 26.98

Table 4 shows that small values for the weights of adaptation laws result in lower SATE. For instance,
in the first flight condition (Altitude = 6, 100 m, Speed = 45 m/s, Mass = 53 − 55 kg), by considering
Moderate reference model (Q= 1 and R = 1), the pitch angle SATE is 26.67 rad if the adaptation
weights are small (γ1 = γ2 = 0.0001 if the adaptation weights are large (γ1 = γ2 = 0.001), and pitch
angle SATE is 25.96 rad if the adaptation weights are small (γ1 = γ2 = 0.0001). However, these weights
must be carefully tuned, as if they would be too-small, they could cause the UAS-S4 state variables to
drift outside the feasible region.

5.0 Conclusion
A Robust Adaptive Fuzzy Logic (RAFL) flight dynamics controller was designed for Hydra
Technologies UAS-S4 Ehecatl. The UAS-S4 was mathematically modeled using the Takagi-Sugeno
fuzzy logic method to design its corresponding controller. Adaptive gains were assigned to the fuzzy
controller to ensure that it could perform very well despite uncertainties. For the adaptive control mech-
anism, a reference model was defined, which was stabilised through the LQR method. The numerical
results show that there is an inverse relationship between the reference model rigorousness and the
RALF controller performance. When the controlled UAS-S4 state variables track the reference model
state variables, the tracking errors increase if the reference model strictly determines ideal time-domain
response properties, such as rise-time or settling-time. The tuneable controller gains were adjusted
utilising Lyapunov-based adaptation laws, that became robust against uncertainties. The controller’s
performance was evaluated in terms of reference model state variables tracking for a variety of uncer-
tainties. In-line with the requirements for cruise conditions, the RAFL controller was able to stabilise
the UAS-S4 lateral and longitudinal flight dynamics, as well as the reference model state variables;
the tracking error converged to zero. In addition, Sum of Absolute Tracking Errors (SATE) results
proved that the RAFL controller could handle uncertainties that were dues to the controller’s unknown
parameters, modeling errors, and external disturbances. Small values for the weights of adaptation laws
resulted in lower SATE. Based on numerical studies, for higher values of uncertainties, the controller
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performance degraded slightly; however, the controller could maintain the UAS-S4 state variables in
the asymptotically stable region. The robust control algorithms showed that if the uncertainties surpass
their boundaries, the controller cannot guarantee the reference model state variables’ tracking. For fur-
ther studies, we recommend the RALF controller development by utilising a fuzzy logic reference model
to improve the RAFLC efficiency in order to reduce reference state variables tracking error.
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