The Ramification Polygon for Curves over a Finite Field

John Scherk

Abstract. A Newton polygon is introduced for a ramified point of a Galois covering of curves over a finite field. It is shown to be determined by the sequence of higher ramification groups of the point. It gives a blowing up of the wildly ramified part which separates the branches of the curve. There is also a connection with local reciprocity.

1 Introduction

Let k be a finite field of characteristic p with q elements and let L / K be a totally ramified Galois extension of local fields over k with Galois group G. Denote by ν_{L} (respectively ν_{K}) their valuations. Let z (respectively y) be a local parameter for L (respectively K). Then z satisfies an Eisenstein equation

$$
\begin{equation*}
f(z)=z^{e}+\cdots+a_{1} z+a_{0}=0 \tag{1}
\end{equation*}
$$

where $a_{i} \in \mathcal{O}_{K}=k[[y]], \nu_{K}\left(a_{i}\right) \geq 1$ for all $i, \nu_{K}\left(a_{0}\right)=1, a_{e}=1$, and $e=e_{0} p^{r}$ with $\left(e_{0}, p\right)=1$. G has a filtration

$$
G=G_{0} \supset G_{1} \supset \cdots \supset G_{i} \supset \cdots
$$

given as follows: for $i \geq-1$,

$$
\gamma \in G_{i} \Longleftrightarrow \gamma z-z \equiv 0\left(\bmod z^{i+1}\right)
$$

This note studies "Puiseux expansions" for γz, where $\gamma \in G_{1}$, i.e., for the wildly ramified part of the extension. A neat way to do this is to use a Newton polygon, the ramification polygon. While writing this paper, the author discovered that a similar Newton polygon was introduced by Krasner in [2] for local extensions of number fields. He obtained results analogous to those in Section 2 in this case.

In Section 2 the ramification polygon is introduced and its basic properties derived. The polygon determines a blowing-up of \mathbb{A}^{2}. This is discussed in Section 3. In Section 4 a connection with local reciprocity is explained. This result holds in the number field case as well and seems to be unknown there.

[^0]
2 The Ramification Polygon

For $i \geq 1$, let

$$
U_{L}^{i}=1+\left(z^{i}\right) \subset \mathcal{O}_{L}^{*}, \quad U_{K}^{i}=1+\left(y^{i}\right) \subset \mathcal{O}_{K}^{*}
$$

For $\gamma \in G_{i}, i \geq 1$, write

$$
\gamma z=z+s_{\gamma} z, \quad s_{\gamma} \in\left(z^{i}\right)
$$

Then we can define a homomorphism

$$
t_{i}: G_{i} / G_{i+1} \longrightarrow U_{L}^{i} / U_{L}^{i+1} \cong\left(z^{i}\right) /\left(z^{i+1}\right) \cong k
$$

by

$$
t_{i}(\bar{\gamma})=\overline{1+s_{\gamma}},
$$

which is injective. Under the identification with $k, \overline{1+s_{\gamma}}$ corresponds to $\bar{s} \gamma$, the leading coefficient of s_{γ} as a power series in z.

Now the local parameter y can be written as a power series in z. Regarding f then as a polynomial with coefficients in \mathcal{O}_{L}, set

$$
g(x)=g(x, z):=f(z x+z) \in \mathcal{O}_{L}[x] .
$$

Notice that

$$
g(0)=f(z)=0
$$

If $\gamma \in G_{1}$, then s_{γ} is a root of g, and if $s \in L$ is a root of g, then $s z+z$ is a root of f.
The ramification polygon Δ of L / K is defined to be the Newton polygon of g : write

$$
g(x)=\sum_{i=1}^{e} b_{i} x^{i}, \quad b_{i} \in \mathcal{O}_{L},
$$

and let

$$
P_{i}=\left(i, \nu_{L}\left(b_{i}\right)\right), \quad i=1, \ldots, e .
$$

Then Δ is the boundary of the convex hull of

$$
\bigcup_{i=1}^{e}\left(P_{i}+\mathbf{R}_{+}^{2}\right)
$$

Corollary 1 shows that Δ does not in fact depend on the choice of f.
Now

$$
b_{i}=\sum_{j=i}^{e}\binom{j}{i} a_{j} z^{j} .
$$

Since $e \mid \nu_{L}\left(a_{j}\right)$, we have that

$$
\nu_{L}\left(a_{j} z^{j}\right) \equiv j(\bmod e), \quad j=i, \ldots, e
$$

and thus they are all distinct. So

$$
\begin{equation*}
\nu_{L}\left(b_{i}\right)=\min _{i \leq j \leq e} \nu_{L}\left(\binom{j}{i} a_{j} z^{j}\right) . \tag{2}
\end{equation*}
$$

Lemma 1

(i) For all $i, \nu_{L}\left(b_{i}\right) \geq e$;
(ii) $\nu_{L}\left(b_{e}\right)=\nu_{L}\left(b_{p^{r}}\right)=e$;
(iii) $\nu_{L}\left(b_{1}\right)=\nu_{L}(\mathcal{D})+1$, where \mathcal{D} is the different of L / K;
(iv) for $p^{s}<i<p^{s+1}, s<r, \nu_{L}\left(b_{i}\right) \geq \nu_{L}\left(b_{p^{s}}\right)$.

Proof We have that

$$
\nu_{L}\left(\binom{j}{i} a_{j} z^{j}\right) \geq e \nu_{K}\left(a_{j}\right)+j
$$

for all j. Since $\nu_{K}\left(a_{j}\right) \geq 1$ for all $j<e$, (i) follows. Notice that

$$
(z x+z)^{e}=z^{e}\left(x^{p^{r}}+1\right)^{e_{0}}=z^{e}\left(x^{e}+\cdots+e_{0} x^{p^{r}}+1\right)
$$

So (2) implies that

$$
\nu_{L}\left(b_{p^{r}}\right)=e
$$

According to [3, III, §6, Cor. 2,],

$$
\mathcal{D}=\left(f^{\prime}(z)\right)
$$

As

$$
b_{1}=z f^{\prime}(z)
$$

this proves (iii). Lastly, suppose that $s<r, p^{s}<i<p^{s+1}$. Let ν_{p} denote the p-adic valuation. Then, as is well known,

$$
\nu_{p}\binom{j}{i} \geq \nu_{p}\binom{j}{p^{s}}
$$

for all $j \geq i$. In particular, if $\binom{j}{p^{s}} \equiv 0(\bmod p)$, then $\binom{j}{i} \equiv 0(\bmod p)$. Therefore by (2)

$$
\nu_{L}\left(b_{i}\right) \geq \nu_{L}\left(b_{p^{s}}\right)
$$

Thus P_{i} lies on Δ only if $i=p^{s}$ for some s. So let $Q_{i}=P_{p^{s i}}, i=1, \ldots, m$ be the vertices of Δ, where $0=s_{1}<\cdots<s_{m}=p^{r}$. Set $\nu_{i}=\nu_{L}\left(b_{p^{s_{i}}}\right)$. Let $L_{i}=\overline{Q_{i-1} Q_{i}}$, $1<i \leq m$ be the edges, and let $\left.-\mu_{i} \in \mathbb{O}\right)$ be the slope of L_{i}.

Theorem 1 The slopes $-\mu_{j}$ of the edges $L_{j}=\overline{Q_{j-1} Q_{j}}, 1<j \leq m$, are integral. The jumps in the sequence of higher ramification groups $G_{0} \supseteq G_{1} \supseteq \cdots$ are $\mu_{m}<\cdots<\mu_{2}$. The orders of the groups are $\left|G_{\mu_{j}}\right|=p^{s_{j}}, 1<j \leq m$.

Proof We show that g has $p^{s_{j}}-p^{s_{j-1}}$ roots of order μ_{j}. Let $\bar{b}_{i} \in k$ be the coefficient of the lowest order term of $b_{i} \in \mathcal{O}_{L}=k[[z]]$. Now

$$
\begin{aligned}
g\left(z^{\mu_{j}} x\right) & =\sum_{i} b_{i}\left(z^{\mu_{j}} x\right)^{i} \\
& =\sum_{i} \bar{b}_{i} z^{\nu_{L}\left(b_{i}\right)+i \mu_{j}} x^{i}+\text { higher order terms }
\end{aligned}
$$

The equation of L_{j} is

$$
\eta+\mu_{j} \xi-\left(\nu_{j}+\mu_{j} p^{s_{j}}\right)=0
$$

Since Δ is convex,

$$
\nu_{L}\left(b_{i}\right)+\mu_{j} i-\left(\nu_{j}+\mu_{j} p^{s_{j}}\right)>0
$$

for all P_{i} not on L_{j}. Therefore

$$
\begin{equation*}
g\left(z^{\mu_{j}} x\right) \equiv z^{\nu_{j}+\mu_{j} p^{s_{j}}} \sum_{P_{p^{s}} \text { on } L_{j}} \bar{b}_{p^{s}} x^{p^{s}}\left(\bmod z^{\nu_{j}+\mu_{j} p^{s_{j}+1}}\right) \tag{3}
\end{equation*}
$$

So let

$$
h_{j}(x)=\sum_{P_{p^{s}} \text { on } L_{j}} \bar{b}_{p^{s}} x^{p^{s}} \in k[x] .
$$

This is an additive polynomial. Its degree is $p^{s_{j}}$ and the lowest order term has degree $p^{s_{j-1}}$. Therefore the number of non-zero roots of h_{j} in \bar{k} is $p^{s_{j}}-p^{s_{j-1}}$. A non-zero root \bar{s} of h_{j} in k determines a root s of g in \mathcal{O}_{L} of order μ_{j} and vice versa. Since g has e roots in \mathcal{O}_{L}, all the roots of h_{j} must lie in k and μ_{j} must be an integer. This also tells us that the sequence

$$
\begin{equation*}
0 \longrightarrow G_{\mu_{j}} / G_{\mu_{j}+1} \xrightarrow{t_{\mu_{j}}} U_{L}^{\mu_{j}} / U_{L}^{\mu_{j}+1} \cong k \xrightarrow{h_{j}} k \tag{4}
\end{equation*}
$$

is exact. Therefore

$$
\left|G_{\mu_{j}} / G_{\mu_{j}+1}\right|=p^{s_{j}}-p^{s_{j-1}}
$$

and

$$
\left|G_{\mu_{j}}\right|=\sum_{i=2}^{j}\left(p^{s_{i}}-p^{s_{i-1}}\right)+1=p^{s_{j}}
$$

To see that μ_{2}, \ldots, μ_{m} are precisely the jumps in the sequence of ramification groups, let s be a root of g of order μ. Suppose μ is not one of μ_{2}, \ldots, μ_{m}. Since Δ is

$(1,0)$
convex there will be a line with slope $-\mu$ which meets it at a single vertex, say Q_{j}, for some $j, 1 \leq j \leq m$. And the rest of Δ will lie on one side of this line. Now expand $g\left(z^{\mu} x\right)$ as in (3):

$$
g\left(z^{\mu} x\right) \equiv z^{\nu_{j}+\mu p^{s_{j}}} \bar{b}_{p^{s_{j}}} x^{p^{s_{j}}} \quad\left(\bmod z^{\nu_{j}+\mu p^{s_{j}}+1}\right)
$$

But writing $s=z^{\mu} \tilde{\mathcal{s}}$, with $\tilde{s} \in \mathcal{O}_{L}, \tilde{s}(0) \neq 0$, we have

$$
0=g(s)=g\left(z^{\mu} \tilde{s}\right) \equiv z^{\nu_{j}+\mu p^{s_{j}}} \bar{b}_{p^{s_{j}}} \tilde{p}^{s_{j}},
$$

which is impossible since $\bar{b}_{p^{s_{j}}} \neq 0$. Therefore μ_{2}, \ldots, μ_{m} are the jumps.

Corollary 1 The ramification polygon is independent of the choice of Eisenstein polynomial f.

Proof The sequence of jumps and the orders of the ramification groups determine the numbers $\mu_{2}, \ldots, \mu_{m}, p^{s_{1}}, \ldots, p^{s_{m}}$ which in turn determine Δ.

3 Blowing Up

Equation (3) can be interpreted as a "blowing up" of the curve $g(x, z)=0$, which separates the branches $\gamma z, \gamma \in G_{1}$. The fan Σ associated with Δ [1, Section 8.2] consists of the cones generated by $\left\{(0,1),\left(\mu_{m}, 1\right)\right\},\left\{\left(\mu_{j+1}, 1\right),\left(\mu_{j}, 1\right)\right\}$ for $1<j<m$ and $\left\{\left(\mu_{2}, 1\right),(1,0)\right\}$.

This fan defines a variety $X(\Sigma)$ over k and a proper map $\phi: X(\Sigma) \rightarrow \mathbb{A}^{2}$. Let Σ^{\prime} be the fan consisting of the cones generated by $\{(\mu, 1),(\mu+1,1)\}$ for $0 \leq \mu<\mu_{2}$ and $\left\{\left(\mu_{2}, 1\right),(1,0)\right\}$. Then Σ^{\prime} is a simple fan subordinate to Σ, and $X^{\prime}:=X\left(\Sigma^{\prime}\right)$ is smooth.

For each $j, 1<j \leq m$, let Π_{j} be the cone spanned by $\left\{\left(\mu_{j}, 1\right),(1,0)\right\}$. We have the canonical map

$$
\phi_{j}: X\left(\Pi_{j}\right) \cong \mathbb{A}^{2} \longrightarrow \mathbb{A}^{2}
$$

defined by $\phi_{j}(x, y)=\left(x y^{\mu_{j}}, y\right)$. Then $\phi_{j}^{*} g$ is given by (3). Let D_{j} denote the exceptional curve $\{y=0\}$ in $X\left(\Pi_{j}\right)$. Equation (3) can be interpreted geometrically as follows. Under the blow-up ϕ_{j} precisely the components of $g^{-1}(0)$ of order μ_{j} meet D_{j}. Their points of intersection are given by the roots of h_{j}.

Let Σ_{j} be the fan consisting of the cones generated by $\left\{\left(\mu_{i+1}, 1\right),\left(\mu_{i}, 1\right)\right\}$ for $1<$ $i<j$ and $\left\{\left(\mu_{2}, 1\right),(1,0)\right\}$. Then $X\left(\Sigma_{j}\right)$ is an open subvariety of $X(\Sigma)$, and also a blow-up of $X\left(\Pi_{j}\right)$:

In $X\left(\Sigma_{j}\right)$, the proper pre-image of D_{j} (also denoted by D_{j}) lies in the chart corresponding to the cone generated by $\left\{\left(\mu_{j}, 1\right),\left(\mu_{j-1}, 1\right)\right\}$. The components of the exceptional divisor of $\phi: X(\Sigma) \rightarrow \mathbb{A}^{2}$ are then the curves D_{2}, \ldots, D_{m}. In the exceptional divisor of $X\left(\Sigma^{\prime}\right)$ there are $\mu_{j}-\mu_{j+1}-1$ rational curves interpolated between D_{j+1} and D_{j}.

4 Local Reciprocity

In this section we point out how the polynomials h_{j} are connected with local reciprocity. Assume that G is abelian. The local reciprocity map

$$
w: K^{*} / N L^{*} \longrightarrow G
$$

respects the natural filtrations on both sides and induces maps w_{i} on the quotients. We first recall the description of these maps given in [3].

Let φ denote the Herbrand function, and ψ its inverse. Then if $N: L^{*} \rightarrow K^{*}$ is the norm, we have

$$
N\left(U_{L}^{\psi(i)}\right) \subset U_{K}^{i}, \quad N\left(U_{L}^{\psi(i)+1}\right) \subset U_{K}^{i+1}
$$

[3, V, Prop. 8]. Furthermore, the induced map

$$
\begin{equation*}
k \cong U_{L}^{\psi(i)} / U_{L}^{\psi(i)+1} \xrightarrow{N_{i}} U_{K}^{i} / U_{K}^{i+1} \cong k \tag{5}
\end{equation*}
$$

is an additive polynomial of degree $\left|G_{\psi(i)}\right|$, and the sequence

$$
0 \longrightarrow G_{\psi(i)} / G_{\psi(i)+1} \xrightarrow{t_{\psi(i)}} U_{L}^{\psi(i)} / U_{L}^{\psi(i)+1} \xrightarrow{N_{i}} U_{K}^{i} / U_{K}^{i+1}
$$

is exact [3, V, Prop. 9].
Now there belongs to this sequence a "coboundary map"

$$
\delta_{i}: \operatorname{coker} N_{i} \cong U_{K}^{i} / U_{K}^{i+1} N U_{L}^{\psi(i)} \longrightarrow G_{\psi(i)} / G_{\psi(i)+1} .
$$

It is constructed as follows, keeping in mind the identifications in (5) (cf. [3, XV, Section 1]): take $a \in k \cong U_{K}^{i} / U_{K}^{i+1}$ and let $b \in \bar{k}$ be a solution of

$$
N_{i}(b)=a
$$

Set

$$
c=F b-b
$$

where F is the Frobenius homomorphism. Then $c \in \operatorname{ker} N_{i} \subset k$ and c does not depend on the choice of b. This determines a well-defined homomorphism

$$
U_{K}^{i} / U_{K}^{i+1} N U_{L}^{\psi(i)} \longrightarrow \operatorname{ker} N_{i}
$$

So define

$$
\delta_{i}(a):=t_{\psi(i)}\left(c^{-1}\right) \in G_{\psi(i)} / G_{\psi(i)+1}
$$

On the other hand, the local reciprocity map w also respects the filtrations:

$$
w\left(U_{K}^{i} / N U_{L}^{\psi(i)}\right) \subset G_{\psi(i)}
$$

and induces isomorphisms

$$
w_{i}: U_{K}^{i} / U_{K}^{i+1} N U_{L}^{\psi(i)} \longrightarrow G_{\psi(i)} / G_{\psi(i)+1} .
$$

Serre [3, XV, Prop. 4] proves that

$$
w_{i}(a)=\delta_{i}\left(a^{-1}\right), \quad a \in U_{K}^{i} / U_{K}^{i+1} N U_{L}^{\psi(i)}
$$

Since δ_{i} is determined by N_{i}, it is therefore of interest to know more about these additive polynomials. The quotients $G_{\psi(i)} / G_{\psi(i)+1}$ are trivial unless $\psi(i)=\mu_{j}$ for some j, or equivalently, $i=\varphi\left(\mu_{j}\right)$.

Theorem 2 For $j \geq 2, N_{\varphi\left(\mu_{j}\right)}$ and h_{j} coincide up to a constant.
Proof The polynomial h_{j} is an additive polynomial of degree $\left|G_{\mu_{j}}\right|$. Its kernel is $\operatorname{im} t_{\mu_{j}}$ (cf. (4)). Set $i=\varphi\left(\mu_{j}\right)$ so that $\mu_{j}=\psi(i)$. Then the degree of N_{i} is also $\left|G_{\mu_{j}}\right|$ and its kernel is im $t_{\mu_{j}}$ too. Therefore N_{i} and h_{j} coincide up to a constant (cf. [3, V, Section 5]).

Remark 1 The isomorphisms

$$
U_{L}^{i} / U_{L}^{i+1} \cong k, \quad U_{K}^{i} / U_{K}^{i+1} \cong k
$$

depend on the choice of z, respectively y. Choosing an Eisenstein polynomial f is equivalent to fixing z. The norm map N_{i} regarded as an additive polynomial then still depends on the choice of y. Varying y multiplies N_{i} by a constant.

References

[1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps. Vol. II, Birkhäuser, 1988.
[2] M. Krasner, Sur la primitivité des corps \wp-adiques. Mathematica, Cluj, 13(1937), 72-191.
[3] J. P. Serre, Local fields. Springer-Verlag, 1979.

Department of Mathematics
University of Toronto
100 St. George Street
Toronto, Ontario
M5S 3G3
email: scherk@math.toronto.edu

[^0]: Received by the editors March 21, 2001.
 AMS subject classification: 11G20.
 (C)Canadian Mathematical Society 2003.

