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1. Introduction. The theory of solutions of partial differential equations 

(1.1) Au + a(x, y)uz + fi(x, y)uy + y(x, y)u = 0 

with analytic coefficients can be based upon the theory of analytic functions 
of a complex variable; the basic tool in this approach is integral operators 
which map the set of solutions of (1.1) onto the algebra of analytic functions. 
For certain classes of operators this mapping which is first defined in the small, 
can be continued to the large, cf. Bergman (3). In this way theorems on 
analytic functions give rise to theorems on (real and complex) solutions of 
(1.1). Some of the operators possess a remarkable property: they generate 
solutions of certain partial differential equations (1.1) which also satisfy 
ordinary linear differential equations in x or y. This was first observed by 
Bergman (1;2) in the special case of the equation Au + u = 0. This property 
is of interest since it permits the investigation of such solutions of (1.1) by 
means of the theory of ordinary differential equations. The present paper is 
concerned with a class of partial differential equations (1.1) which possess 
solutions of that type. We shall derive an infinite set of independent particular 
solutions and obtain relations between singularities of the coefficients of (1.1) 
and those of the corresponding ordinary differential equations; cf. §§ 3-5. 
These results will enable us to characterize some basic properties of those 
solutions of (1.1); cf. § 6. 

2. Partial differential equations of class (£. If we introduce the variables 
z — x + iy, z* = x — iy, the equation (1.1) takes the form 

(2.1) uzz* + a(z, z*)uz + b(z, z*)uz* + c(z, z*)u = 0 

where 
w22* = j Au, uz = \{ux — iuy), uz* = i(ux + iuy), 

a = l(a + iff), b = i(a- iff), c = \y. 

If we set 

u= Z7exp(— I a{z,t)dt) 

we obtain from (2.1) 
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(2.2) L(U) = U22* + B(z, z*)Uz* + C(z, z*)U = 0 

where 

r* 
B = b — I az{z, t)dt, C = c — az — ab. 

Jo 
We note that for complex values of x and y the variables z and s* are inde
pendent. 

Definition 1. An operator of the form 

(2.3) U(z, s*) s P ( / ) = J ^ £ ( s , g*, 0 / ( ^ ( 1 - *2))(1 - t2Yhdt 

is called a Bergman operator. In (2.3) the l'associated function" f{z) of U(z,z*) is 
an analytic function of a complex variable regular at the origin. The "generating 
function" E(z,z*,t) is independent of the special choice of f(z). 

In order that U(z,z*) be a solution of (2.2) the function E(z,z*,t) must 
satisfy the equation 

(2.4) (1 - t2)Ez*t - t~lEz* + 2ztL(E) = 0, 

as can be seen by inserting (2.3) into (2.2). 

Definition 2. A partial differential equation (2.2) is said to be of the class (5 if 
its solutions can be generated in the form (2.3) with a generating function of the 
type 

m 

(2.5) £(*, s*, /) = exp Q(z, 2*, /) , Q(z, z*, t) = £ &(*, z*)f. 

Necessary and sufficient conditions have been obtained for the coefficients 
of (2.2) in order that (2.2) should be of the class @; cf. Kreyszig (4). 

3. Existence of ordinary differential equations satisfied by solutions 
of partial differential equations of the class @. If in (2.3), f(z) = zn, 
n = 0, 1, . . . , the corresponding solutions of the partial differential equations 
of the class (S satisfy a linear ordinary differential equation; cf. Kreyszig (5). 
It was conjectured that the (more important) solutions with meromorphic 
associated functions have a similar property. However, the method used in 
(5) fails in this case. In order to treat this problem in a systematic way we 
first consider solutions U(z,z*) which correspond to associated functions 

(3.1) /,(*) = (2 - r r \ r ^ 0, n = 1,2 
In order to derive ordinary differential equations satisfied by U(z,z*) we 

have to consider this function in certain planes of the (real four-dimensional) 
£2*-space. The form of these equations will depend on the choice of these planes. 
We take the planes y = y0 = const. Then we have the advantage htat 
U(z,z*) = U(x,y) is an analytic function of x. 
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THEOREM 1. Each solution U(x,y) — U(z,z*) of a partial differential equation 
(2.2) of the class S with an associated function (3.1) satisfies an ordinary linear 
differential equation 

(3.2) N{U) s N{Û) = X) GP(X> yo) Ç ? = 0, Gr = 1, y = 3/0 = const, 
p=0 # # 

(3.3) r < m + 3. 
T%e coefficients Gp(x,y) = gp(s,2*) are rational functions of qp(z,z*), 
JJL = 0,1, . . . , m. 77^ order r w independent of n. 

Proof. In consequence of (2.5) and (3.1) the integrand of (2.3) takes the form 

(3.4) J(x, y, i) = j(z, **, 0 = exp Q(z, z*, t) s(z, t)'n(l - t2)~\ 

S(x,yjt) s s(z,t) = \z{\ -t2) - f . 

I t suffices to prove that J satisfies the non-homogeneous equation 

(3.5) N(J) = R, R(x, y,t)=jt [(1 - t2)H(x, y, t)] 

where H is a regular function of / for \t\ < 1. If we integrate both sides of this 
equation with respect to / from —1 to 1 we obtain (3.2). We choose 

(3.6) H = P STr+1J 

where 
i 

(3.7) P(x, y, t) = p{z, z*, 0 = Z M * . «*) tK, 

the degree / and the coefficients p\(z,z*) will be suitably determined, see below. 
We have 

(3.8) J, = — = (Qt + (i - fyh + s-xnzt) J, 

(3.9) Jia) s -^4 =TaJ 
OX 

where 

(3.io) r1 = | 2 _ w ( 1 _ ^ ) ( 2 5 ) - i 

and 

(3.11) Ta = |4«i 4«2 . . . 4 a a | , « = 2, 3, . . . , 

is a determinant with the column vectors 

A.M - ((f)rr, (,!>!-»...., ®r„-. , CO,...), 
7-03) _ d T\ a n t i . 

i i = - y r , P = 0, 1, . . . , a — 1; 
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(the number of zeros decreases with increasing 0; in Aa>a-i there are no more 
zeros left, and in Aaa the term 7\ is the last one). This can easily be proved by 
induction. From (3.5) — (3.8) we find 

(3.12) R= {-tP+(l- t2)(Pt + P[S~\r + n - l)te + Qt])} J S~r+\ 

If we insert (3.9) and (3.1.2) into (3.5), omit the common factor J and multiply 
each term by Sr, each side of the resulting equation becomes a polynomial in t. 
If we choose 

(3.13) / = (w + 2)r - m - 3, 

cf. (3.7), these two polynomials have the same degree, namely (m+2)r. In 
the equation thus obtained the coefficients of each power of t must be the same 
on both sides. Hence we obtain a system of {m + 2)r + 1 linear equations. 
If we choose 

(3.14) r = m + 3 

the number of equations equals the total number of the coefficients Go, 
. . . , Gr-i of (3.2) and of the coefficients p0, . . . , pi of (3.7). In order to be able 
to determine these functions Gp and p\ it suffices that the determinant D(z,z*) 
of the coefficients of the system does not vanish identically, since every 
neighbourhood of a point of a zero surface of D contains always points at 
which D(z,z*) 9^ 0. Furthermore, it can readily be seen that the rank of D 
is always different from zero. Hence if D{z,z*) = 0 there exists a subdeter-
minant of D which does not vanish identically. In the case D = 0 the order r 
of (3.2) reduces to values smaller than m + 3; cf. (2.5), and the coefficients 
of (3.2) can be determined in a similar manner. This completes the proof. 

This result may be extended to the case of solutions with arbitrary rational 
associated functions as follows. 

THEOREM 2. Each solution U(x,y) = U(z,z*) of a partial differential equation 
(2.2) of the class (S with a rational associated function f(z) satisfies an ordinary 
linear differential equation in x whose coefficients are rational functions of 
go, . . . , qm, cf. (2.5). If f(z) has poles of orders /3K at z = zKj K = 1,2, . . . , k, the 
equation has the order 

(3.15) r < (a + 0 + l)w + a + 30 

where 0 = ($\ + 02 + . . . + fik and a is the degree of the polynomial F\{z) in 
the representation of f{z) as a sum of F\(z) and a proper rational function F%{z); 
m is defined by (2.5). 

Proof. The polynomial F\(z) is a sum of at most a + 1 terms. To each of 
these terms and to each partial fraction of 7^ (z) there corresponds a particular 
solution Ûs(x,y) of (2.2). We thus have 

(3.16) Û(x, y) = Z Û*(x, y), d < a + 0 + 1. 
5 = 1 
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Each of the functions Ûs(x,y) corresponding to F±(z) satisfies an ordinary 
linear differential equation of the order r* < m + 1, cf. (5, Theorem 2), while 
each of the other functions satisfies such an equation of the order r** < m + 3, 
cf. Theorem 1 of this paper. Thus, we have a system (S) of ordinary linear 
differential equations whose coefficients are rational functions of qo, . . . , qm, cf. 
(2.5). We differentiate each of these differential equations and also the equation 
(3.16) r times and eliminate all the functions Ûi(xyy) and their derivatives 
from the enlarged system (5*) thus obtained. In order to be able to do so we 
have to choose r so that the number of equations of (5*) equals the number of 
functions to be eliminated. It can easily be seen that r cannot be greater than 
(a + 0 + l ) m + a + 30. Since we differentiated (3.16) r times the rth de
rivative of U(x,y) is the highest one which occurs in (5*). This completes the 
proof. 

4. Subclasses of the class @. The coefficients B(z,z*) and C(z,z*) of the 
partial differential equations (2.2) of the class (§ are related to the coefficients 
Çv(z,z*) of the generating function (2.5) as follows (4, Theorem 1). 

(I) If qx(z,z*) ?* Othen 

dqo £2 r _ q\ dqi 
(4.1) B= - ^ - ^ , c = 

dz z 2z dz* 
(II) If qi = 0 then also g3 = 0, q$ = 0 ,. . . , and 

dqo _ q2 „ _ _ 1 dq2 

dz z1 2zdz* 
(4.2) £ = _ ^ _ ^ , C = - ^ ; 

go depends only on z and can have singularities. In case (I) q\ depends on z and 
z* and can have singularities, considered as a function of z* for any finite constant 
value of z. In case (I), qi is regular while in case (II) q2, considered as a function 
of z* for any finite constant value of z, can have singularities. 

Hence the class © consists of two subclasses @i and Sn corresponding to the 
two cases (I) and (II). 

In case (II) the function Q(z,z*,t), defined by (2.5), is an even function of t. 
Hence, in this case, the functions Ta, cf. (3.10), (3.11), are also even functions 
of /. Let P(x,y,t) be an odd function of /; then R 5 r / _ 1 is an even function of t; 
cf. (3.4)-(3.7). Hence, in this case the polynomials considered in the proof of 
Theorem 1 are even functions of / and have the degree (m + 2)r. The function 
P(xiyit) has now only \{l + 1) coefficients p\(z,z*) where I is defined by 
(3.13). The total number \{l + 1) + r of the functions Gp and p\ must equal 
the number of powers occurring in the above-mentioned polynomials. We thus 
obtain the result that each solution of a partial differential equation (2.2) of 
the subclass @n with an associated function (3.1) satisfies an ordinary linear 
differential equation of the order 

(4.3) r = < | m + 2, (m even). 
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It can be similarly proved that such a solution with an associated function 
fn(z) = zn, n = 0,1, • • • , satisfies an ordinary linear differential equation of 
the order 
(4.4) r < \ m + 1, (m even). 

Applying to these results the idea of the proof of Theorem 2 we obtain the 
following 

COROLLARY. Each solution of a partial differential equation (2.2) of the sub
class Sn with a rational associated function satisfies an ordinary differential 
equation in x of the order 

(4.5) r < m + p + {\m + l ) (a + 0), (m even), 

where a and 0 are defined as in Theorem 2. The coefficients of this equation are 
rational functions of q0, . • • , qm, cf. (2.5). 

Partial differential equations of the subclass (Su thus have the remarkable 
property that the corresponding ordinary differential equations have a smaller 
order than those corresponding to partial differential equations of the subclass 
@i. 

5. Relations between singularities of the partial differential equation 
(2.2) and those of the corresponding ordinary differential equation 
(3.2). The relations between g0, . . • , qm (cf. (2.5)) and the coefficients By C 
of (2.2) on the one hand, and between q0, . . . , qm and the coefficients Gp of 
(3.2) on the other hand, enable us to obtain direct relations between the 
singularities of the given partial differential equation (2.2) and the ordinary 
differential equation (3.2) which we have derived. Since the procedure of 
obtaining such relations is similar to that developed in (5) we omit details 
and state the result only. We find 

THEOREM 3. The singularities of the ordinary differential equation (3.2) and 
those of the corresponding partial differential equation (2.2) of the class © are 
related as follows. 

(i) If B, considered as a function of z for any finite value z* = const, has a 
pole of the order s at a point z = a, the coefficient Gp of (3.2), considered as a 
function of z, has a pole of the order 

(5.1) si(s,p) = swp, wp = m + 3 — p, 

at z = a. If s = 1 then (3.2) is of Fuchsian type at z = a. 

(ii) If qi(z,z*) 5̂  0 and C, considered as a function of 2* for any finite value 
z = const, has a pole of the order 2s—1, s > 1, at a point z* = a*, the coefficient 
Gp of (3.2), considered as a function of z*, has a pole of the order 

(5.2) s2(s,p) 
s wp — (s — l)ep (m = 1) 
S Wp + (S — l ) € p + i (m > 2) 
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at 2* = a*, where 
_ JO (a even) 

€a " \ 1 (a odd). 

It should be noted that, for a fixed value of m, these relations are the same 
for all solutions of (2.2) with the associated functions (3.1). 

6. Final remark. Let us finally state some remarks about the characteriza
tion of solutions of (2.2) by means of the preceding results. 

(a) The solutions U(z,z*) = U(x,y) of partial differential equations (2.2) of 
the class S with rational associated functions also satisfy an ordinary linear 
differential equation, considered as functions of y for any finite value X — XQ 
= const, as can be proved by using the preceding methods. This result and the 
results obtained in §§ 3-5 enable us to investigate these (single or multi
valued) solutions of (2.2) outside of the domain of validity of the integral 
representation (2.3). An appropriate theory of this kind (2) leads to a charac
terization of the behaviour of the solutions in the neighbourhood of branch 
surfaces and some other basic properties; the theory can immediately be 
applied to the class of equations (2.2) under consideration, but we should stress 
the fact that for this purpose we need the detailed information about the 
ordinary differential equations which is given by the preceding theorems. 

(b) The coefficients of the ordinary differential equations satisfied by 
U(z,z*) = U(x,y) are rational functions of go, . . . , qm- In the special case of 
partial differential equations (2.2) with rational coefficients the coefficients of 
the ordinary differential equations are rational functions ofx and yy respectively. 
Hence, in this case, the singularities of the solutions of (2.2) with rational 
associated functions lie on two-dimensional algebraic manifolds in the real 
four-dimensional space. 

(c) So far we have obtained conditions on the associated functions of the 
solutions U(z,z*) = U(x,y) of (2.2) in order that U(x,y) satisfies ordinary 
differential equations. These conditions may be replaced by conditions on the 
coefficients aK\ of the development 

(6.1) U(z,z*) = É a * * V \ 
K,X=0 

Let the associated function/(s) of U(z,z*) be represented in the form 

(6.2) /(*) = £ cvz" 

and the generating function (2.5) of the operator (2.3) in the form 

(6.3) £(*, **, 0 = exp Q(z, z*, t) = £ b„(t) s V . 
/ i , (T=0 

Then, by (2.3), 
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U(z, 0) = É a**" = É cA^+" 
K==0 fi, V=0 

where 

By comparing the coefficients of corresponding powers of z on both sides we 
obtain 

K 

(6.4) aK0 = X) ^ K - V , F , K = 0, 1, . . . . 

The solution of this system yields representations of the coefficients cv of the 
associated function in terms of the coefficients aK0 of the development (6.1). 
Using these representations and theorems by Hadamard (6) we obtain infor
mation on the nature and location of the singularities of the associated function 
of U(z,z*) from the sequence {aKo} of the coefficients in (6.1). This yields 
sufficient conditions on the coefficients aK0 in order that U(z,z*) = U(x,y) 
satisfy ordinary linear differential equations. In this connection the important 
problem arises as to what extent similar conclusions can be drawn if other 
subsequences, say {aK\}, X > 0 and fixed, of the coefficients in (6.1) are known. 
This question will be considered in another paper. 
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