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EACH WEAKLY COUNTABLY DETERMINED ASPLUND SPACE

ADMITS A FRECHET DIFFERENTIATE NORM

M. FABIAN

If an Asplund space is weakly countably determined, then it

admits an equivalent Frechet differentiable norm and is weakly

compactly generated. If on an Asplund space there exists an

equivalent Gateaux differentiable norm, then its dual has a

projectional resolution of identity.

All Banach spaces considered in this note are real. The explanation

of the notions not introduced here can be found in [3] , [4], [ 71] and

CM].
There exists an open problem, over twelve years old, as to whether

every Asplud space admits an equivalent norm with some smoothness

property. It is an old and well known fact that every separable Asplund

space can be equivalently renormed in such a way that this new norm is

Fre*chet differentiable and the dual norm is locally uniformly rotund;

the historical references to this result can be found in [70] and [3,

pp. 113-119, 125]. John and Zizler [JO] extended this theorem to all

weakly compactly generated Banach spaces which possess a continuously

Frechet differentiable real valued function with bounded nonempty support.

We recall that such spaces are Asplund, as, for instance, Ekeland and

Lebourg have shown. In this note we weaken the assumptions of the theorem
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3 6 8 M. Fabian

of John and Zizler as follows.

THEOREM 1. Let (X,\'\) be a weakly countably determined Asplund

apace.

Then X admits an equivalent Frechet differentiable norm whose

dual norm is loaally uniformly rotund.. Moreover X is weakly compactly

generated.

At first glance the above theorem supports the conjecture that

every Asplund space has an equivalent Frechet differentiable norm.

However, we should mention that the spaces whose duals possess equivalent

dual locally uniformly rotund norms form a proper subclass of the class

of spaces admitting an equivalent Frechet differentiable norm. In fact,

Talagrand [7 3] has shown that the space C([0jil]) has an equivalent

Frechet differentiable norm, yet no dual norm is even strictly convex

All that is needed for the proof of Theorem 1, but one step, can be

found in a paper of the author [5], where (among other things) ideas of

John and Zizler [9], [10] are extended a little. This gap can be filled

up by a Mercourakis' s extension of a renorming theorem of Amir and

Lindenstrauss C", Theorem 4.6], together with a special case of a

striking result of Jayne and Rogers [6, Theorem 8] saying that

a norm-weak* continuous mapping from an Asplund space into its dual is a

point wise limit of a sequence of norm-norm continuous mappings. However

we feel that the proof of Theorem 1 should be given in more detail here.

Proof. By [II, Theorem 4.6] the dual X* admits an equivalent dual

strictly convex norm. Hence X admits an equivalent GSteaux different-

iable norm | • | , say. Let D denote the GSteaux derivative of

|« | . Then D is a norm-weak* continuous mapping from X into X* .

As A" is Asplund, X* is weak* dentable. Thus, according to [6,

Theorem 8], there exists a sequence {D } of norm-norm continuous

n

mappings from X into X* such that Dx lies in the norm closure of

the set {ZJ.XjD-Xj... } for each x e X . Further we shall need the
following lemma.

LEMMA. Let the assumptions of Theorem 1 hold and let \L denote

the first ordinal of cardinality dens X .
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Then on X there exists a "long sequence" (P : OJ < a s y} of

linear projections such that P is the identity, and for all w s a £ p

the following relations hold

U p X is dense in P X if w < a , and P *X* = u u D (P.X).
6 < a

 B+1 a 6<a *<u, n e

Proof. We can proceed as in the proof of [74, Theorem 1] with some

small changes in Step VI.

Having proved the Lemma we shall show that the adjoint projections

P * enjoy the same properties as P do save the last one. Clearly P *

is the identity, \\P *l| = 1 , and P *P* = P*P * = P* if 6 < a .
Ot d p p 01 p

Further we claim that the restriction mapping / — > //D „ maps P *X*
a

o n t o (p
a%)* i s o m e t r i c a l l y . I n d e e d , f i x i o < a < u , / e P *JT* , a n d l e t

e > 0 b e a r b i t r a r y . We c a n t a k e x e X, | | x | | = 1 , s u c h t h a t

Ml - e < f(x). But

/r*; = P *f(x) = /rpax; < ||//p j flp^y < ||//p j .
a a

Hence ||/ | | - e < 11// J| j and letting e go to 0 , we get that

11/11 = \\f/j> vl • Also, if g e (P X)* and g e X* i s such that
ir A. Ct

a

g/ = g , then for all x e P X we have P *g(x) = gYP xj = g(x) .
i -.A 01 0t Ot

Thus the restriction mapping is a surjective isometry. Now, as X is

Asplund, so is its subspace P X , and consequently,
dens P *X* = dens (P X) * = dens P AT < a .

a a a

It remains to prove that for all limit ordinals w < a £ \i U PQ*.£*
p < a 3

i s norm dense in P *£* . Fix such an a . We take f e P *X* and l e ta a

e > 0 be a rb i t ra ry . By the Bishop Phelps theorem we know tha t the set

{£&;/„ v: x e P X} i s dense in (P X) * . Hence, there i s x e P Xf A a a aa

such that

x - Dx/p || < E/3 .
a a
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Further, recalling the relation between D and {D } , we can find n
n

such that
||Ox - Dx|| < %/Z .

Also, since D is continuous and the set U POX is dense in P X t
n ($<a 6 a

there is u < y < a and u e P X such that

\\Dnx - Dnu\\ < z/3 .

Thus

if " Du\\ = ||f/ - Du/ | < e/3 + e/3 + e/3 = e .
a a

Now, as u £ P f and y + i < a , we have, by the Lemma, that

Dnu e P +1*X* . It follows that the distance of / from U P^X* is
p < ct

at most e . Now letting e go to 0 we get that / is in the closure

of U Pa*X* and so the density is proved.

Moreover, it is well known ['] and easy to prove that for each

f e X* and each e > 0 the set {a> S a < y; ||P */ - P *f\\ > e} is

finite.

The rest of the proof of the f irst part of the conclusion of

Theorem 1 can be completed exactly as in [ 9 ] , or, more direct ly , using

a dual version of a renorming result of Zizler LI51.

THEOREM (zizler) . Let X be a Banadh space admitting a family
{T } of linear continuous mappings on X such that

(i) for each f e X* and each z > 0 the set

{y £ r .- || T *f\\ > e } is finite,

(ii) every f e X* lies in the closed linear span of the set
{T^*f: y e V} .

(iii) for each y e r the subspace T^*X* admits an equivalent
locally uniformly rotund norm ||.|| such that ||/|l <. lim inf \f \\

whenever f,feT *X* and f —> f weakly*.

Then X admits an equivalent Frichet differentiable norm such that
the dual norm is locally uniformly rotund.
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Proof. The construction from [75] yields on X* an equivalent

locally uniformly rotund norm. And it is easy to verify that in our

situation this new norm is weakly* lower semicontinuous, that is it is a

dual norm.

Now all is prepared for completing the proof of the first part of

the conclusion of Theorem 1. We shall proceed by transfinite induction

over dens X . If dens X = N , we already know that the promised renorm-

ing exists [3, p. 118]. So let K > K be given and let us assume that

the renorming exists whenever dens X < X . Let now X be such that

dens X = N . Then, putting r = {0} u {ct: oo £ a < ji} , TQ = P^ ,

T = P , - P , w S a < ti , the conditions (i) and (ii) in the theorem

of Zizler are clearly satisfied. We shall verify (iii). We fix

a) & a < v . Then dens P ,Jf S a < ii = K . So, by the induction hypo-
cx+i

thesis, (P .X)* admits an equivalent dual locally uniformly rotund

norm |•| , say. Put

= \f/p
1

Since P *** is isometrical with (P -X)* 3 and T *X* c P*X* , it

follows that || • || is an equivalent norm on T *X* . Clearly, || • ||

is locally uniformly rotund since |»| is. Also, if fs f £ T *X*

and f — > f weakly* in X* , then /_/„ „ > f/D „ weakly* in

(Pa+JX)* . Thus ||f|la
s limTinf ||/Tla and (iii) is verified for y = <X

a & a < v . For y = 0 we can proceed analogously. Therefore the

theorem of Zizler applies and so X* admits an equivalent dual locally

uniformly rotund norm. The induction step is thus finished.

It remains to show that X is weakly compactly generated. Let us

recall that every subspace Z of X is weakly countably determined and

Asplund, too. From the first part of the proof we then know that each

such Z admits projections with the same properties as the P have.

a

Thus by [ 14, Theorem 2, I = > IV], X has a shrinking Markusevic basis.

So, by Troyanski, X is weakly compactly generated, see [70].
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We conclude this note by weakening the assumptions of the main

theorem of [5]. Namely, regarding the quoted consequence of the theorem

of Jayne and Rogers, we get

THEOREM 2. Let X be an Asplund space admitting an equivalent

Gateaux differentiable norm, or, at least, a continuous Gateaux,

differentiable real valued function with bounded nonempty support and

norm-weak* continuous derivative. Let u denote the first ordinal of

cardinality dens X .

Then X* possesses a "long sequence" {Q ; u S a £ vi} of linear

projections such that Q is the identity, and for all u s a < u we

have \\QJ\ = 1 , QaQB = Q&Qa = Q& if 6 * a , dens Q^X* n a , and

U Q, X* is dense in Q X* if w < a .
6 < a &+1 a

However, these projections cannot in general be made weak*-weak*

continuous. In fact, if it were so, then, according to the quoted theorem

of Zizler, X* would admit an equivalent dual locally uniformly rotund

norm. In particular, C(ZO,Sll)* would have such a norm, which is

impossible, see [13].

Of course, we would like to drop the assumption of smoothness in the

above theorem. If it were possible, then this provide further support

for the conjecture that each Asplund space admits an equivalent norm

possessing some smoothness properties.

Remark. Recently Professor Ch. Stegall has kindly informed me that

there exists another, more direct, way of showing that the mapping D from

the proof of Theorem 1 is of the first Baire class: According to a result

of Bourgain [2] (Stegall has proved it also) , a function f: M — > R

defined on a complete metric space M is of the first Baire class if and

only if for every compact set K c M the restriction f/v n a s a point

of continuity. By the Dugundji extension theorem we may replace R by

any Banach space. Let now K c X be a compact set. Then, as our D is

norm-weak* continuous, D(K) is weak* compact set. Now, since X is

Asplund, there are k e K and x e X such that Dk is strongly exposed

by x . Thus, if k — > k , then Dk (x) — > Dk(x) and hence
n n

Dk — > Dk in norm. It means that D/~ is norm-norm continuous at k ,
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and, by the quoted result, D is of the first Baire class.
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Sibeliova 49

162 00 Prague 6

Czechoslovakia

Added in Proof: By combining Theorem 1 together with [J2, Theorem 18]

and [3, Theorem 4, page 152] we immediately get the following

COROLLARY. Avery dispersed (that is, scattered) Gul'ko compact

is Eberlein.

It should also be noted that it was Professor K. MusiaJ who firstly

suggested to us finding a Frgchet differentiable norm in a weakly

compactly generated Asplund space.
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