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Summary

An approximate equation is derived, which predicts the effect on variability at a neutral locus of
background selection due to a set of partly linked deleterious mutations. Random mating,
multiplicative fitnesses, and sufficiently large population size that the selected loci are in
mutation/selection equilibrium are assumed. Given these assumptions, the equation is valid for an
arbitrary genetic map, and for an arbitrary distribution of selection coefficients across loci. Monte
Carlo computer simulations show that the formula performs well for small population sizes under
a wide range of conditions, and even seems to apply when there are epistatic fitness interactions
among the selected loci. Failure occurred only with very weak selection and tight linkage. The
formula is shown to imply that weakly selected mutations are more likely than strongly selected
mutations to produce regional patterning of variability along a chromosome in response to local
variation in recombination rates. Loci at the extreme tip of a chromosome experience a smaller
effect of background selection than loci closer to the centre. It is shown that background selection
can produce a considerable overall reduction in variation in organisms with small numbers of
chromosomes and short maps, such as Drosophila. Large overall effects are less likely in species
with higher levels of genetic recombination, such as mammals, although local reductions in regions

of reduced recombination might be detectable.

1. Introduction

The possible effects of natural selection on variation
and evolution at neutral or weakly selected linked loci
have recently attracted a good deal of attention (Birky
& Walsh, 1988; Kaplan er al. 1989; Stephan et al.
1992; Charlesworth et al. 1993; Wiehe & Stephan,
1993; Barton, 1994, 1995; Charlesworth, 1994;
Gillespie, 1994; Hudson, 1994; Hudson & Kaplan,
1994, 1995; Braverman et al. 1995; Charlesworth et
al. 1995; Simonsen et al. 1995), 20 yr after the
pioneering work on this subject (Maynard Smith &
Haigh, 1974; Ohta & Kimura, 1975; Thomson, 1977).
In addition, the effect of artificial selection in reducing
the effective population size at neutral loci has been
studied theoretically (Santiago & Caballero, 1995;
Santiago, in preparation). This work has in part been
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stimulated by data from surveys of DNA variation in
natural populations of Drosophila, which consistently
indicate that genetic variability is lower for loci in
regions where genetic recombination is relatively
infrequent, compared with regions in which it occurs
at higher frequencies (Aquadro er al. 1994 ; Kreitman
& Wayne, 1994). In addition, codon bias in D.
melanogaster appears to be lower in regions of reduced
recombination, suggesting that selection at weakly
selected sites is less effective when recombination is
infrequent (Kliman & Hey, 1993).

Two main hypotheses have been proposed to
explain these observations. The °‘selective sweep’
model (Berry et al. 1991) appeals to hitch-hiking of
neutral (or weakly selected) variants by favourable
mutations that arise at closely linked loci, and which
cause a substantial loss in variation as a result of the
fixation of surrounding chromosomal regions
(Maynard Smith & Haigh, 1974; Kapian et ai. 1989,
Stephan et al. 1992; Wiehe & Stephan, 1993 ; Barton,
1994, 1995; Braverman et al. 1995; Simonsen et al.
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1995; Stephan, 1995). The ‘background selection’
model involves the loss of neutral or nearly neutral
variants as a result of elimination of linked deleterious
mutant alleles from the population (Charlesworth et
al. 1993 ; Charlesworth, 1994 ; Hudson, 1994; Hudson
& Kaplan, 1994, 1995; Barton, 1995; Charlesworth et
al. 1995).

To evaluate the relative contributions of these
processes to the patterns discerned in the data, it is
necessary to develop theoretical models which are
sufficiently realistic to allow quantitative predictions
about the relations between chromosomal location
(i.e. recombinational environment) and genetic varia-
bility and rate of evolution at neutral or weakly
selected loci. Since genetic recombination occurs at a
low rate even in regions of the Drosophila genome
where its frequency is reduced, models which include
the effects of genetic recombination are essential for
this purpose. Although useful results can be obtained
by computer simulation (Charlesworth er al. 1993,
1995; Braverman et al. 1995; Hudson & Kaplan,
1995; Simonsen et al. 1995), it is clearly valuable to
have analytic results, provided that sufficiently ac-
curate approximations to reality can be achieved.
Several such models have been developed for the
analysis of selective sweeps (Maynard Smith & Haigh,
1974; Kaplan et al. 1989; Stephan et al. 1992 ; Wiehe
& Stephan, 1993; Stephan, 1995). With respect to
background selection, Hudson & Kaplan (1994) have
obtained a formula for the reduction in genetic
diversity at a neutral locus, taking into account
selection at a single partly linked locus subject to
recurrent deleterious mutation. Barton (1995) derived
a similar result for the fixation probability of a
favourable allele. Hudson & Kaplan (1995) derived
predictions of the effect of mutation at multiple loci
subject to selection on variability at a linked neutral
locus, using the simplifying assumptions of one
crossover per chromosome, and equal selective effects
at each locus. They used their results to predict the
pattern of genetic variability as a function of chromo-
somal location in the genome of D. melanogaster.

In this paper, we present an alternative derivation
of the effect on variability at a neutral site due to a
linked locus subject to deleterious mutations, and
show how an arbitrary number of selected loci can be
treated without the restrictive assumptions made by
Hudson & Kaplan (1995). We also investigate the
conditions required for the analytical results to hold,
and relate our results to those on the reduction in
effective population size due to selection, derived by
Santiago & Caballero (1995). We use computer
simulations to evaluate the performance of the
formulae under a wide range of parameter values.
These results have been used to predict patterns of
variability in Drosophila under less restrictive assump-
tions than those made by Hudson & Kaplan (1995)
(B. Charlesworth, submitted).
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2. Analytical results
(1) Formulation of the model

The model assumes m autosomal diallelic loci subject
to mutation—selection balance, in a randomly mating
population. The wild-type allele at the ith locus is
denoted by A4, and the mutant allele by q,; their
frequencies are p, and ¢, = 1 —p,, respectively. The
mutant alleles are assumed to be so rare that terms of
order ¢? are negligible. Selection can thus be assumed
to take place exclusively against heterozygous carriers
of mutant alleles. Let the mutation rate from the wild-
type to the mutant allele at the ith locus be u,. The
mean number of new mutations per diploid individual
is U =22, u,. Let the fitness of mutant heterozygotes
relative to that of wild-type homozygotes be 1 —¢, (¢ is
the product of the selection coefficient for mutant
homozygotes, s, and the dominance coefficient 4). If
the fitness effects of different loci are multiplicative, as
will be assumed in this section, there is no linkage
disequilibrium in an infinite population at equilibrium
under mutation and selection (Felsenstein, 1965;
Feldman et al. 1980; Charlesworth, 1990), and the
equilibrium allele frequency at the ith locus is
approximately u,/t,, provided that u, < ¢, (Crow &
Kimura 1970, ch. 6). The population size is assumed
to be so large that these conditions are satisfied, to a
good approximation.

(ii) The effect of a single selected locus on a linked
neutral locus

We first consider the effect of selection at a single
locus, locus i, for which the frequency of recom-
bination with the neutral locus is r,. If there are sex
differences in recombination frequencies, r; is the
appropriate average over the sexes (Crow & Kimura,
1970, p. 50). Let the neutral locus have alleles B and
b, and let the frequencies of these alleles within
mutant-free gametes with respect to the selected locus
be x, and 1—x, respectively. Similarly, let the
frequency of B in gametes carrying a mutation at
locus i be x,, and write § = x,—x,. The genetic
diversity at locus B, as measured by the probability
that two randomly chosen gametes differ in allelic
state (Nei, 1987, ch. 8), is

G = 2p{ xo(1—x0) +2p, gl x6(1 — x,) + x,(1 — x,)]
+2g2 x(1—x,). (1)

Rearranging, and neglecting terms of order ¢%, we
obtain

G~ 2x,(1 —x) —2q(1 —2x,) 6. (2)

It is assumed that neutral variation is produced
according to the infinite sites model, with a mutation
rate v per site (Kimura, 1969). The neutral locus in the
above formulation corresponds to a single such site,
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segregating for a pair of alleles. Allele B is arbitrarily
chosen as the allele which originates by mutation. The
expected nucleotide site diversity at statistical equi-
librium, 7, is thus given by the expectation of G.
Knowing the mean and variance terms for the
frequencies of B in the different gamete classes, it is
straightforward (see Appendix) to apply the linear
differential operator method of Ohta & Kimura (1969)
in order to obtain an expression for 7.

The final expression for the ratio of # to the
classical neutral value, 7,, is found to be

LAPOERN. [

T T ®
where p, = 7,/t, and F, =r,(1—1t). This formula is
equivalent to equation (3) of Hudson & Kaplan
(1995), with the minor difference that their formula
involves r, not 7. It is also similar to the formula
derived by Barton (1995) for the probability of fixation
of a favourable mutation linked to a locus subject to
mutation and selection. It is easily seen that, to the
order of the approximations used here, equation (3)
with no recombination is equivalent to the expression
m=fym, (where f,=1—gq, in this case) derived
previously for the case of an arbitrary number of loci
(Charlesworth et al. 1993).

Some modification is needed for the case of X-
linked mutations, which are selected against in the
hemizygous state in males (assuming male hetero-
gamety). The largest difference from the autosomal
case is likely to be when all deleterious mutations act
in both males and females. The equilibrium frequency
of a mutant allele at locus i is then g, = u,/7,, where
[,=(2t;+5)/3, and s, is its homozygous or hemi-
zygous effect on fitness (Haldane, 1927). This can be
substituted into equation (3), replacing 7, by 7. If
selection acts only in males, 7, = s,/3; if its acts only
on females, 7; = 2¢,/3. The averaging of recombination
rates across the sexes must be done differently from
the autosomal case, since an X-linked gene spends
two-thirds of its time in the homogametic sex,
compared with one-half for autosomes. The effective
population size for the classical neutral case must also
be adjusted appropriately (Charlesworth 1994;
Caballero, 1995; Nagylaki, 1995).

(iii) The effects of multiple loci

The above results can be generalized (see Appendix)
to incorporate the effects of multiple selected loci.
With small effects of each locus, we have

—~ep 2 )

 (1+ pt)"’
This is similar to equation (5) of Hudson & Kaplan
(1995), which was derived on the assumption of equal
selective effects of each locus, and a single chromosome
with at most one crossover per chromosome. As with
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their formula, the summation can be replaced by
integration over the genomic region in question, if
selected loci are sufficiently densely packed into
chromosomes that a chromosome can be treated as a
continuum.

We can then assume that loci are distributed
uniformly along the physical map of the genomic
region in question, and denote by a vanable z the
physical position of a locus subjects to mutation and
selection. The frequency of recombination between a
selected locus at position z and the neutral site under
consideration is denoted by r(z). Let u be the frequency
of new mutations per unit physical distance for a
haploid genome. The joint probability density of u
and the selection coefficient ¢ (i.e. the ‘mutation
spectrum’) is @(u,#). This allows for the possibility
that there may be different rates of mutation to alleles
with different effects on fitness (Crow & Simmons,
1983; Keightley, 1994). We assume that ¢ is in-
dependent of location. If the size of the region in terms
of physical position in some unit of measurement (e.g.
kilobases) is R, the densities of loci and of new
mutations per physical distance unit are m/R and
U/2R, respectively. Equation (4) can then be replaced
by

~ ug(u, 1)
P LLL:{H;}(: 47 drde )

where p(t,2) = r(z)(1—1t)/t.

A further simplification is possible when all loci
have the same mutation density u and selection
coeflicient ¢, such that u = U/2R. We then have

7 U
vt ©
where p(z) = r(z)(1—1)/t. Consider the case of a
single chromosome. If a proportion P of the region is
located to the left of the neutral locus and a proportion
Q = 1— P is to the right, equation (6) becomes

l~ex —i{JPR dz + o dz } @)
7 CPTIR s THP@F o D+p@F

If the map distance (in Morgans) M over the region R
is short enough for double crossovers to be ignored,
we have a linear relationship between distance z and
recombination rate,

Hz2) =z, (®)
asassumed by Hudson & Kaplan (1995). The exponent
in equation (7) then becomes

Ut +2POM(1 —1)]
A+ OMA—0][t+ PM(1— )]’

E= )]

For a very short map (M < 1), this gives £~ U/2t,
as expected from the general resuit for no recom-
bination (Charlesworth et al. 1993). For a map that
is substantially longer than the selection coeflicient
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(M > 1), and for loci which are not close to the ends
(so that POM > 1), we have

U

E~sra=p

(10
i.e. the proportional effect of background selection is
approximately the same as the density of new
mutations per map unit, as pointed out previously by
Hudson & Kaplan (1994, 1995) and Barton (1995) for
the case of a neutral locus located in the centre of a
block of selected loci. Remarkably, the effect of
background selection with M > ¢ is virtually inde-
pendent of the position of the neutral locus, except at
the extreme ends of the chromosome, so that this
result holds for almost any chromosomal region
where the recombination rate per nucleotide is
approximately independent of position. There is,
however, an edge effect, as may be seen by comparing
the value of F for the case of a neutral locus at the
extreme left end of the chromosome (PQ =0, E =
U/{2[t+ M(1 —1)]}) with the value for a locus in the
middle (P =Q =1/2, Ex U/[M—(1~-1¢)]). This im-
plies that there is a weaker effect of background
selection on a neutral site located at the end of a
chromosome than on one in the middle, as would be
expected from the fact that it experiences the effects of
selection only from one side.

(iv) The effect of the strength of selection

It is useful to look more closely at the qualitative
behaviour of the results derived in the previous
sections. Equation (3), the background selection effect
due to a single selected locus, can be further
approximated by

7 u,

—_rl— 11
7 S Ty ()

using g, = u,/t, and assuming small .. As is intuitively
expected, diversity decreases with lower r, and higher
u,. The effect of the selection coefficient is slightly
more complicated. Differentiating (11) with respect to
t,, we see that the effect on diversity increases as ¢,
decreases, up to a maximum at ¢, = r;, and decreases
thereafter. In other words, a weakly selected locus can
cause strong background selection if it is tightly
linked, but its importance declines rapidly with
increasing r,, whereas a strongly selected locus causes
weaker background selection (i.e. greater n/m,), but
can do so from a greater distance.

It is thus clear that only mutations within a certain
distance will matter when we sum over all loci to
obtain the total effect. From the above discussion, it is
also clear that this distance depends on ¢. For weakly
selected mutations, the total effect comes from
summing over a few closely linked loci, each causing
strong background selection, whereas for strongly
selected loci the total effect comes from summing over
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Fig. 1. The effect of background selection on a
chromosome of approximate map length 1 Morgan with
reduced recombination in the centre. Plot (@) shows the
relationship assumed between physical distance and map
distance [r(z) = (z+sinz)/6]. Plot (b) shows /7, with

U = 01 for weak ( ) (¢ = 0-0003) and strong (——-)

(¢ = 0-03) selection. Strong selection gives a smoother
relationship between the recombination rate and the effect
of background selection. Note also that whether strongly
or weakly selected mutations result in stronger
background selection depends on the position on the
map.

a larger fraction of the chromosome, each locus
causing relatively weak background selection. If there
is a distribution of mutation effects, weakly selected
mutations may cause strong background selection in
regions of reduced recombination but be unimportant
in other parts of the genome. Also, since the region
important for background selection is smaller when
mutations are weaker, the resulting effect is expected
to follow any variation in recombination rate more
closely if the mutations are weak rather than strong.
This is illustrated in Fig. 1. The expected values of
m/m, from equation (7) are shown in Fig. 15 for two
selection coefficients, for a chromosome with an
approximate map length of one Morgan with reduced
recombination in the centre (Fig. 1a). Fig. 1 also
illustrates the edge effect referred to in the previous
section. Near the tips of the chromosome, =/m,
increases sharply. Notice that the region affected is
much smaller under weak than under strong selection,
in accordance with the argument just given: when
selection is weak, only closely linked loci matter.

3. Simulation methods

The approximations derived in Section 2 were applied
to results from Monte Carlo simulations of small
populations. The program was designed to follow
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closely the Wright-Fisher sampling model (e.g. Ewens,
1979, pp. 16-19). Populations of N diploid individuals
were simulated, following the general method of
Felsenstein & Yokoyama (1976) and Charlesworth e¢
al. (1993). Pseudo-random numbers were generated
using ACG from the GNU C+ + Library (Free
Software Foundation, 1992). Details of the program
and source code can be obtained from the authors.

Each chromosome in a haploid genome was
assumed to have a large number of loci subject to
deleterious mutations (assumed to be the same for all
chromosomes when genomes with more than one
chromosome were modelled). The exact number of
loci is not important as long as it is large enough
(compared to the mutation rate and the expected
survival time of a deleterious mutation) for the
probability of double mutations (i.e. a gamete carrying
a mutant allele at a certain locus experiencing another
mutation at this locus) to be negligible. When double
mutations did occur, the resulting alleles were given a
selective disadvantage equal to the sum of those of the
two mutations. This occurred too rarely to be
important. If a mutation became fixed (again, this
happened with extremely low probability), it was
treated as a new wild-type allele.

Fitnesses were calculated according to the fitness
function in use (see below). These values were then
divided by the greatest individual fitness present
(almost always 1). An individual was then drawn at
random from the population, and used as the first
parent if its fitness was greater than a uniform variate
in the interval [0, 1). If not, then a new individual was
drawn (possibly the same), and the process was
repeated. Using the parent, a gamete was formed as
follows. A number of recombination events per
chromosome was generated as a Poisson variate with
mean equal to the total map length of the chromosome,
and positions uniformly distributed over the chromo-
some (i.e. no interference). Finally, mutations were
added to the new gamete, the number being de-
termined by a Poisson variate with mean equal to the
haploid mutation rate, and the positions again being
uniformly distributed. A second new gamete was
created by the same method (and could originate from
the same parent as the first one). This procedure was
repeated until N new individuals had been created.

Several different mutation schemes were used. In
the simplest case, all mutations were identical, but the
program could also model weaker selection on every
nth site, or could pick the selective effects from a
gamma distribution. The fitness of an individual with
n heterozygous mutations, w,, was calculated by one
of three methods, namely:

(1) Multiplicative. Fitness was given by the product
of the single-locus fitnesses. For instance, in the case
of n identical mutations with heterozygous selection
coefficient ¢, w_ = (1 -0

(ii) Additive. Fitness was equal to one minus the
sum of the single-locus selection coefficients, or zero,
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if the sum is negative. For instance, in the case of n
identical mutations with heterozygous selection coef-
ficient ¢, w, = max (1 —nt,0).

(iii) Synergistic epistasis. Each additional mutation
had a progressively larger effect, following the
exponential  quadratic model described by
Charlesworth (1990). This model is defined only for
mutations of equal effect, for which w, =
exp—n(a+np/2). The fitness of an individual with a
mixture of heterozygous and homozygous mutations
was determined by the method described by
Charlesworth et al. (1991).

To monitor the effects of the selective background
on neutral loci, the method of Charlesworth et al.
(1993) was used. The neutral mutation process in itself
was not modelled, but neutral alleles were introduced,
one at a time, and observed until either fixed or lost.
The number of generations until either fixation or
loss, T, was recorded, as was the quantity

T
H=23x(1-x), (12)
=1
where x; is the frequency of the allele. The genetic
diversity under background selection, relative to the
classical neutral value, was calculated as /7, = H/2
(Charlesworth et al. 1993).

A number of neutral loci were placed at evenly
spaced intervals from the centre of each chromosome,
and the simulation was run until a given number of
alleles (usually 16000) had been fixed or lost at each
site. When more than a single neutral allele was to be
introduced in the population, they were introduced in
different individuals. The purpose of this was to speed
up the simulations by allowing several simultaneous
observations of different loci. Although the values of
H observed for different sites are not independent, the
mean properties we are measuring should not be
affected. However, as is shown in Section 4(vii), the
position of a neutral site can sometimes influence its
distribution, and the simulation method used provides
a convenient way of investigating this. Thus, when
results from neutral sites are pooled in what follows,
only sites deemed to be free of such effects were used.
Confidence intervals for z/m, were calculated as-
suming that the means of the H/2 values over
replicates were approximately normally distributed.
Although the individual values of H/2 are far from
normally distributed, this procedure is justified by the
very large sample sizes.

Except where otherwise noted, the predicted means
were calculated from equation (7), with P = Q = 1/2.
We used two extremes for r(z), either the linear one
[equation (8)], or Haldane’s mapping function
(Haldane, 1919),

1 __e—ZZ

2 2
which, like the simulations, assumes no interference.
In addition to making it possible to evaluate the

r(z) =

(13)
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integral (7) explicitly, these two functions serve as
useful limits. Because the map distance increases fast
with physical distance when there are no double
crossovers, 7/, is always smaller when (13) is used
than with (8). However, as most of the effect is
contributed by closely linked loci [cf. Section 2(iv)],
the precise choice of mapping function rarely matters
greatly. Other mapping functions, which allow for
some degree of positive interference among crossovers
(e.g. McPeek & Speed, 1995), will give results
intermediate between the above.

Except where noted, we used a population size of
N = 3200, and a single chromosome. As in previous
studies (Charlesworth et al. 1993; Hudson & Kaplan,
1995), approximations for the effect of background
selection derived under the assumption of large
population size were found to work remarkably well
for small N (see Section 5). The number of neutral loci
per chromosome varied, as did the required number of
observations (introductions followed by loss or fix-
ation) per locus, but all simulations recorded at least
a total of one and a half million such observations. It
was verified that the frequency of fixations was not
significantly different from the expected 1/2N. We
assumed a dominance coefficient of # = 0-2, so that
only values of ¢ are given below. The main variables
investigated in the simulations were the map length,
M, the diploid mutation rate, U, and the selection
scheme (the distribution of effects of mutations and
their interaction). The parameter values were chosen
partly to test the model with simulations using
parameters comparable with previous work
(Charlesworth et al. 1993, 1995; Hudson & Kaplan,
1994, 1995), and partly because they (barring N) lie
within biologically reasonable bounds.

4. Simulation results

(1) Identical mutations, multiplicative selection,
short maps

The approximate equation (7) for the effect of
background selection in a region with recombination
was derived assuming multiplicative interactions be-
tween loci of equal effect, and should therefore
accurately predict the outcome of simulations incor-
porating this assumption. Cases 1-3 of Table 1 show
that this expectation is fulfilled, regardless of the
mapping function used for the theoretical expecta-
tions. The results agree with those obtained by Hudson
& Kaplan (1995), who simulated the same cases,
allowing only a single crossover per chromosome.

(i) Effect of map length

The choice of mapping function is expected to be most
important for longer maps. Cases 4 and 5 of Table 1
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include the results of two simulations with long maps
(M =1), the first with a low mutation rate (U = 0-1),
and the second with a high mutation rate (U = 0-4). In
the latter case, when background selection is strong,
the prediction using Haldane’s mapping function is
significantly better than that obtained using equation
(8), buteven here the difference is not great, illustrating
the conclusion already noted that, because most of the
background selection effect is contributed by closely
linked loci, the recombination function does not
matter much.

The most important effect of map length, however,
is that, ceteris paribus, the shorter the map, the
stronger the background selection. This is illustrated
by cases 5-8 in Table 1 where we decrease the map
length from M =1 to M = 0-1, while keeping every-
thing else constant (see also Fig. 2).

(iii) Weak selection

The analysis in Section 2 assumes that the sojourn
time of a deleterious allele is so short that a linked
neutral allele contributes nothing to nucleotide di-
versity (see Section 5). If selection is weak, this latter
assumption will not hold, and the approximations
should overestimate the effect of background selection.
Cases 9-12 of Table 1 show the results of simulations
with weak selection. When a strong effect of back-
ground selection is predicted (cases 11-12), the
predictions consistently overestimate the effect.

(iv) Mutations with unequal effects

When the selective effects varied across loci, the
expected effect can be calculated using the relevant
form of equation (5), namely,

ﬂ~ex— 1
Ty P73R )1

R dz

PR dZ
X{JO m'i’ . m}gﬁ([)d[ (14)

To test this equation, two different distributions of
mutation effects were used. In the first, every third site
was subject to weaker selection (¢,) than the rest (¢, ,).
Table 2 (case 1) shows the good agreement with the
prediction from equation (14).

In the second test, the selective effects were drawn
from a gamma distribution with parameters « = 0-70,
B = 0032, which yields a mean ¢ of 0-022, and fits the
observations from Drosophila well (Keightley, 1994).
Note, however, that this distribution will yield some
mutations whose effect is too small to satisfy the
assumption discussed above. We therefore used a
gamma distribution truncated below at Nz =35, as
well as the full distribution, in the simulations. Since
mutations of very small effect are not expected to
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Table 1. Summary of simulation results for multiplicative selection with

mutations of equal effect

m/m,
Case Selection U M Observed (95% c.1.) Expected
Multiplicative
1 t = 0005 008 016 0-64 (0-60-0:69) 0-62
2 t=001 008 016 061 (0-56-0:66) 0-63-0-64
3 t =003 008 016 072(066-078) 0-68—0-69
4 t =002 01 1 0-93 (0-85-1-00) 090
5 t =002 04 1 0-61 (0-56-0-66) 0-65-0-68
6 =002 04 075  0-55(0-51-0-59) 0-57-0-60
7 =002 04 05 046 (0-43-0-50) 0-45-0-47
8 t =002 0-4 01 0:069 (0-055-0-072) 0-052-0-055
Multiplicative, weak selection
9 t=3125%x10"* 0025 016 093 (0-87-1-00) 0-86
10 1=625%x10"" 0005 016 1-00(0-93-1-08) 097
11 t=10"3 008 016 071 (0:66-076) 0-61
12 t=10"° 016 032 067 (0:62-0-71) 0-61

The results are discussed in Sections 4 (i}—(iii). The expected values were calculated
from equation (7), using both Haldane’s mapping function (13) and the linear
function (8). If the two functions gave the same prediction only a single value is
given, otherwise the low value comes from using Haldane’s function and the high

one from the linear function.
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Fig. 2. The effect of background selection (means and
95% confidence intervals) along chromosomes of map
lengths (@) M = 0-1 and (b) M = 0-75 (cases 8 and 6 of
Table 1). The mutation rate is U = 0-4 and selection is
multiplicative with ¢ = 0-02. Neutral sites were placed at
positions 0, + 101, +202,..., + 50035, but, since the
chromosomes are symmetric, statistics were computed by
combining results from the two halves. The numbers on

the abscissa therefore represent loci counting from the
centre (0\ Means with 95% confidence intervalg are
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shown. The expected values were calculated from
equation (7), using both Haldane’s mapping function
(——-) (13) and the linear function (——) (8).
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cause much background selection, the simulation
results with truncation should show stronger effect of
background selection than those without truncation.
Table 2 (cases 2-9) shows that the simulation results
agree with this prediction. The predictions based on
the full distribution might be expected to overestimate
the effect of background selection, but this effect
seems to be too small to detect except for the case with
very tight linkage (case 5), when the truncated result
and prediction also disagree significantly (case 9). We
repeated the simulations of cases 7 and 9 with the
gamma distribution truncated at Nt = 25. As expected
(see Section 5), this makes no difference when the
map is long (case 10), but significantly improves the
prediction when the map is short (case 11). It is
not clear what causes these disagreements but it is
probably due to the small population size (see
Section 5).

(v) Non-multiplicative selection

The effects of deviations from the assumption of
multiplicativity were tested using two models of non-
multiplicative interactions, additivity and synergistic
epistasis (both described in Section 3). Given the
small selective values used, and the observation that
(1-0"=1—nt for small values of ¢ additive
interactions are expected to give very similar results
to multiplicative interactions. This is upheld for the
additive case by the simulation results (Table 2,
cases 12 and 13). The same is true for synergisiic
epistasis with =0 (case 14) which should be
identical to multiplicative selection (Charlesworth,
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Table 2. Summary of simulation results examining the sensitivity of the predictions to the distribution of

selective effects and the selection scheme

n/m,
Case Selection U M Observed (95 % c.i.) Expected
Multiplicative, unequal effects
1 ty,=004,1, =001 0-4 1 0-67 (0:62-0-69) 0-65-0-68
Multiplicative, gamma-distributed effects
2 a=070,5=0032 0-08 0-16 0-68 (0-63-0-72) 0-65-0-66
3 a =070, =0032 04 1 0-67 (0-62-0-72) 0-66-0-68
4 a =070, =04032 04 05 0-5 (0-46-0-53) 0-46-0-47
5 a = 070,48 = 0032 0-4 01 0-16 (0-15-0-17) 0-045-0-047
Multiplicative, gamma-distributed effects, truncated at Nr =5
6 a =070, = 0032 0-08 0-16 0-68 (0-63-0-73) 0-66-0-67
7 a=1070,5=0032 04 1 0-63 (0-59-0-68) 0-66-0-68
8 a = 070,48 = 0032 0-4 05 0-43 (0-40-0-46) 0-46-0-47
9 a=070,8=0032 04 01 012 (0-11-0-13) 0-051-0-053
Multiplicative, gamma-distributed effects, truncated at Nr =25
10 a=070,5=0032 0-4 1 0-64 (0-59-0-69) 0-65-0-68
11 a=070,5=0032 04 01 0-088 (0-081-0-096) 0-070-0-072
Multiplicative
12 t =002 0-08 016 0-65 (0-60-0-70) 0-66-0-67
Additive
13 t =002 0-08 0-16 0-65 (0-60-0-70) 0-66-0-67
Synergistic epistasis, « = 0-02
14 = 0-08 0-16 0-68 (0-63-0-73) 0-66-0-67
15 £ =001 (7= 2067) 0-08 0-16 0-75 (0-69-0-81) 0-70-0-71
16 £ =01 (7=07393) 0-08 016 0-79 (0-73-0-85) 0-80
17 =001 (7=6111) 0-4 05 0-47 (0-43-0-50) 0-49-0-51
15 £ =01 (m=2199) 0-4 05 0-59 (0-54-0-64) 0-57-0-60

The results are discussed in Section 4(iv)}—(v). The expected values were calculated from equation (7) or (14) as appropriate,
using both Haldane’s mapping function (13) and the linear function (8) asin Table 1. Under synergistic epistasis, the expected
effect was calculated by the method explained in the text. 7 is the mean number of mutations per individual.

1990). For f# + 0, we estimated the “effective’ ras U/a
(Charlesworth, 1990, p. 204), where 7 is the mean
number of deleterious mutations per individual,
calculated numerically by the method of Kimura &
Maruyama (1966), assuming segregation but no
recombination. The resulting value was then used as ¢
in equation (7) to calculate the prediction for = /m,.
The calculated values of #, the simulation results, and
the predictions are shown in Table 2 (cases 15-18).
Again, the agreement is clearly satisfactory, even with
strong epistasis (4 > a).

(vi) Multiple chromosomes

The approximations derived in Section 2 can easily
be generalized to yield predicted values for the case of
multiple chromosomes, simply by letting r(z) = 1/2
for all loci that lie on chromosomes other than the one
carrying the neutral locus under consideration. This
was tested using four chromosomes, each with U =
0-2 and M = 0-25. Multiplicative interactions between
mutations of equal effect, # = 0-02, and a population
size of N = 1600 were assumed. Simulation of this
model gave #/m, =046, with a 95% confidence
interval of (0-44-0-48). The predicted value using
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Haldane’s mapping function (13) is 047 and that
using the linear mapping function (8) is 0-48. The
effect of the additional three chromosomes is extremely
small; the predictions for a single chromosome with
U = 02 would be 0-48 and 0-50 for the Haldane and
linear mapping functions respectively. The correction
for multiple chromosomes can also be calculated from
the effect of unlinked loci on effective population size
[cf. Appendix (iii)].

(vii) Background selection close to chromosome tips

As we have seen, the effect of background selection
should be less pronounced close to the tips of
chromosomes. Figure 3 shows this very clearly. The
results shown are those from the simulation with four
chromosomes described in Section 4 (vi). There were a
total of 12007 loci, with seven neutral loci at positions
{—6003, —4002, —~2001,0,2001,4002,6003} on each
chromosome. To calculate confidence intervals for
each position, results from equivalent positions (e.g.
—4002 and 4002 from all four chromosomes) were
pooled. The predicted values were obtained from
equation (7) with the correction for multiple chromo-
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Fig. 3. An illustration of the decreased effect of
background selection close to tips of chromosomes. The
numbers on the abscissa represent loci counting from the
centre (0). The dots are means with 95% confidence
intervals. The broken and whole lines show the predicted
7/, using Haldane’s mapping function (——-) (13) and
the linear function ( ) (8), respectively. Parameters are
U=02, M=025, and ¢t = 0-02. See Section 4(vii) for
details.

somes given in Section 4(vi). The prediction is
extremely good for the centre, but seems to over-
estimate the edge effect slightly.

5. Discussion

The present results, and the results of Hudson &
Kaplan (1995) for short maps, show that a relatively
simple formula [equation (4)] can predict the effects of
background selection on genetic diversity at a neutral
locus in a random-mating population, under a wide
range of models of selection and map lengths. The
major assumptions used to obtain this result are that:
{(a) the population size is sufficiently large that the
frequencies of mutant alleles are close to their
equilibrium values for an infinite population ; () there
is a negligible contribution to genetic diversity from
neutral variants associated with deleterious mutations
[see Appendix, Section (i1)]; (¢) different loci act
multiplicatively to determine fitness, and are inde-
pendently distributed. Our simulations violate (a)
grossly, and it is therefore rather surprising that the
results agree with the theoretical predictions at all.
The likely reason for the agreement is that, in the
simulations, a given point on the chromosome is
surrounded by a large group of closely linked selected
loci. Since Nt; > 1, the total number of mutant alleles
in the group will be close to the expected number for
large populations, even though each locus is far from
being at deterministic equilibrium. A neutral locus
elsewhere on the chromosome thus perceives the
group as if it were a single locus in mutation—selection
equilibrium. Given this, our simulation results in-
dicate that the equation (4) applies both when each
locus is subject to the same selection intensity, and
when there is a wide distribution of selection coeffi-
cients (Tables 1 and 2). It even seems to work well
when there is substantial synergistic epistasis for the
fitness effects of mutant alleles (Table 2), which is a
potentially important feature of systems with multiple
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loci subject to mutation—selection balance (Kimura &
Maruyama, 1966; Crow, 1970; Feldman et al. 1980;
Kondrashov, 1988 ; Charlesworth, 1990).

An important question concerning the applicability
of these results is whether very weak selection is often
likely to cause the failure of predictions based on
equation (4). Assumption (b) can fail even if N, ¢ is of
the order of 100 or more, as indicated by our previous
simulation results, leading to overestimates of the
effect of background selection on genetic diversity (see
Charlesworth et al. 1993, table 2). One reason for this
effect appears to be that the mean time to loss of a
very weakly deleterious allele in a finite population is
not very different from the neutral value (Kimura &
Ohta, 1969). A neutral variant associated with a
chromosome carrying one or more weakly deleterious
mutations therefore persists in the population almost
as long as if there is no selection, if it does not
recombine onto a mutation-free background, even
though it is ultimately destined for elimination. In
addition, as pointed out by Charlesworth et al. (1993),
when the mean number of deleterious mutations in a
non-recombining chromosomal region is substantially
greater than one, a chromosome with a small number
of deleterious mutations is actually at a selective
advantage relative to the overall population. If U is
small, such a chromosome can persist in the popu-
lation for a long time before it accumulates further
deleterious mutations and becomes selectively dis-
advantageous. Both of these factors can lead to failure
of the assumption that neutral variants contribute
little to diversity if they are associated with mutant-
carrying chromosomes. Coalescent-process simula-
tions of the case with no recombination indicate that
rather weak selection (with ¢ of the order of 1072 or
less) is required for large deviations from the predicted
effects of background selection, if the population size
is larger than 500000 (Charlesworth er al. 1995).
Bigger deviations from the predictions are found in
small populations than in large populations with the
same selection coefficient, although the effect is not
very sensitive to population size after a value of a few
tens of thousands is reached, except if the expected
reduction in diversity is very large (Table 3).

While the slowness of our Monte Carlo simulations
with recombination and large population size pre-
cludes an exhaustive analysis of the conditions under
which the theoretical predictions breakdown, the
examples we have studied suggest that the above
conclusions are qualitatively valid when there is some
recombination (Table 1). However, the argument
given in the Appendix [Section (ii)] suggests that
assumption (b) is less likely to be violated when
recombination occurs, consistent with the results in
Table 3, where the largest discrepancies due to weak
selection are observed with tight linkage. Of course, if
population size and selection coefficients are both
so small that N, 1 is of the order of one or less, then
the fundamental assumption that the number of
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Table 3. Dependence of background selection effects on selection
coefficient and population size, when there is weak selection and no

recombination

Theoretical 7/ (x 107"): 0-82 024 0-07
t=2x10"3

U 1-0x 1072 1-5x 1072 2:0x10°2

Simulated #/7,( x 1071):

N = 5000 1-797+£0018 1-35440-013  1-2554+0-014

N = 25000 1-050+£ 0004 047840014 0-3304+0-010

N = 100000 0-846+ 0027 031840014 0-13610-008

N = 500000 0-831+0027 025140014 0081+0-008

N = 1000000 078940029 022340014 0-071+0-006
r=2x10"

U 10x 1073 1-5%10°3 2:0x 1072

Simulated 7 /m,(x 1071):

N = 5000 8-684 £ 0072 872140071 867240076

N = 25000 273540045 239140041  2:265+0-020

N = 100000 1311 £0031 082340020 0698+0-018

N = 500000 0969+0030 033640014 0-230+0-018

N = 1000000 098940035 031440016 0-1304+0-008

The simulated values of 7/m, were obtained from the means of 2000 replicates of
the coalescent process simulation procedure of Charlesworth ez al. (1995), with a

sample size of 100 haploid genomes per replicate.

deleterious mutations per individual is close to equi-
librium will be invalid even in the multi-locus case,
and background selection will be ineffective
(Charlesworth et al. 1993). Although there is evidence
for variation in the strength of selection against new
mutations affecting viability in D. melanogaster
(Keightley, 1994), the fact that the harmonic mean of
t is about 0-02 (Crow & Simmons, 1983) means that
only about 2% of mutations would have 1 < 10™
under the gamma distribution parameters fitted in
Section 4(iv). Even with an N, of 20000, as estimated
for a local population of D. melanogaster by Mukai &
Yamaguchi (1974), a t value of 10~ would be sufficient
to prevent fixation of deleterious alleles (Crow &
Kimura, 1970).

These considerations suggest that we can be fairly
confident that investigations based on the validity of
equation (4) and its corollaries, such as that of
Hudson & Kaplan (1995), will provide useful pre-
dictions of the background selection effects of all but
the most weakly selected loci, at least as far as
Drosophila populations are concerned. This provides
a justification for using the analytical results based
on equation (4) to make detailed predictions about
the effect of background selection on the relation
between chromosomal location and DNA variation
for D. melanogaster, as has been done by Hudson &
Kaplan (1995) and B. Charlesworth (submitted).
These predictions may help to distinguish between
alternative explanations of the empirical association
between low local recombination rates and low genetic
variation (Aquadro et al. 1994; Kreitman & Wayne,
1994; Braverman et al. 1995; Charlesworth et al.
1995; Hudson & Kaplan, 1995; Simonsen et al. 1995).
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Some significant implications about the effects of
background selection in the presence of recombination
follow from equation (4) and its corollaries. First,
provided that recombination does not vary with map
position and that the map length is less than one

- Morgan or so, equation (10) can be applied to neutral

loci that are not too close to the tips of the
chromosome. This equation implies that the reduction
in genetic diversity for such loct is a negative
exponential function of the ratio of the diploid
mutation rate U for the chromosome to its map length
in Morgans. This result was also obtained by a
different method by Hudson & Kaplan (1995), and a
similar formula was derived by Barton (1995) for the
effect of background selection on the probability of
fixation of a selectively favourable mutation. For D.
melanogaster, a U of 04 for one of the major
autosomes is probably close to the true value, or even
somewhat conservative (Keightley, 1994). Given that
there is no recombination in males, the effective map
length of an autosome is about 0-5 Morgans, so that
a reduction in neutral diversity to about 45% of the
classical neutral value would be predicted. More
accurate calculations, taking into account the sup-
pression of crossing over near the centromeres and
higher frequencies of exchange elsewhere, give a value
close to 62 % for loci in the most freely recombining
sections of the chromosome, with much smaller values
in the centromeric regions (Hudson & Kaplan, 1995;
B. Charlesworth, submitted). A somewhat smaller
effect (70 % of the neutral value) is predicted for the X
chromosome. This suggests that all loci on the major
chromosomes of D. melanogaster experience the effects
of background selection from genes on the same
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chromosome as themselves [the results of the Ap-
pendix, Section (iii), indicate that unlinked loci are
likely to have little effect].

Drosophila species with the basic complement of
four acrocentric autosomes, rather than the two
metacentrics derived from fusions of acrocentrics,
which are characteristic of the melanogaster species
subgroup (Ashburner, 1989, ch. 37), would be
expected to have substantially smaller effects of
background selection, since the mutation rate per
autosome is then half the value for D. melanogaster.
Additional effects will be produced by higher rates of
recombination per nucleotide site. The combined
effect of these factors could be substantial. For
example, with U/M = 0-2/1 instead of 0-4/0-5, the
expected relative diversity, n/m,, is 82% instead of
45%. An autosomal neutral locus in a species such as
D. virilis or D. subobscura, which have much larger
map lengths per chromosome arm than D. melano-
gaster and four major autosomes instead of two
(Alexander, 1976; Krimbas, 1993), might thus have
nearly twice as much neutral variation than a mid-arm
locus of D. melanogaster, other things being equal.
Differences among members of the melanogaster
subgroup are discussed by B. Charlesworth (sub-
mitted).

It is difficult to predict the likely effect of back-
ground selection in other taxa, in the absence of
estimates of U values for higher organisms. Currently,
the only direct estimates of this parameter are for
Drosophila (Crow & Simmons, 1983 ; Keightley, 1994).
While there are still considerable uncertainties asso-
ciated with these estimates, it seems likely that the
value of U for Drosophila is approximately 1, yielding
the value of 04 for the major autosomes of D.
melanogaster used above. This would presumably
apply to other taxa of higher insects. An indirect
approach for highly self-fertilizing species of plants
yields a similar value (Charlesworth et al. 1990;
Charlesworth et al. 1994; Johnston & Schoen, 1995).
A method for determining U for mammals from data
on rates of molecular evolution has recently been
proposed, but no results have yet been reported
(Kondrashov & Crow, 1993). The mutation rate per
locus for visible mutations in mammals seems to be
similar to that for Drosophila (Kondrashov & Crow,
1993), but there are more than four times as many
genes (Bird, 1995). This suggests that U for mammals
may be at least 4, which we may adopt as a working
estimate. In humans, with 23 chromosomes, the total
sex-averaged map length is about 40 Morgans
(Morton, 1991), so that the mean map length per
chromosome is approximately 1-75 Morgans, and the
mean U per chromosome is 0:17. With the Kosambi
mapping function (Kosambi, 1944), which is com-
monly used in mammalian mapping studies, the
expected nucleotide site diversity relative to the
classical neutral value would be 0-90 for a centrally
located gene, and 0-95 for a distal one, assuming that
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t = 0:02. For the mouse, with a much shorter total
map length of about 14 Morgans (Dietrich et al.
1992), the central and distal relative diversity values
would be predicted to be 077 and 0-87 respectively.
This suggests that recombinational differences could
contribute to differences in genetic diversity and rates
of molecular evolution among mammalian species.
No data are currently available to determine whether
or not such differences are observed. In plants, map
lengths of about 1-2 Morgans per chromosome have
been found in genome mapping projects (Tanksley
et al. 1992; Ahn & Tanksley, 1993). With a mutation
rate of 1 per genome, and 10 chromosomes with a
map length of 1-2, as in tomatoes (Tanksley et al.
1992), this would yield central and distal relative
diversity values of 0-92 and 096, suggesting a rather
weak overall effect of background selection.

The above predictions ignore regional differences in
recombination within chromosomes. In humans, there
is evidence for pericentric reductions but telomeric
increases in exchange rates per nucleotide, compared
with the intervening regions of chromosome arms
(NIH/CEPH Collaborative Mapping Group, 1992).
In plants, there is often strong centromeric and
telomeric suppression of recombination, extending
over large sections of the chromosomes (Neuffer &
Coe, 1974 ; Tanksley ez al. 1992). Background selection
and selective sweeps may thus produce significant
within-chromosome structuring of patterns of genetic
diversity and molecular evolution in these species, as
in Drosophila. This possibility should be taken into
consideration in future studies of molecular evolution
and variation.

As pointed out in Section 2(iv), the background
selection effects of weakly selected loci are much more
sensitive to recombination than those of strongly
selected loci, although (for the same mutation rate) a
weakly selected locus can have a larger background
selection effect than a strongly selected locus if linkage
is very tight. As displayed in Fig. 1, if there is regional
variation in the frequency of recombination per
nucleotide, weakly selected loci will contribute more
to regional differences in the level of neutral variability
than strongly selected loci. It has been suggested that
there may be a long tail of deleterious mutations with
very small effects among the viability mutations
detected in the Drosophila mutation accumulation
experiments (Keightley, 1994; Lande, 1994). In
addition, there is evidence that the abundant trans-
posable elements found in natural Drosophila popula-
tions have very slightly deleterious fitness effects, with
mean selection coefficients of approximately 2 x 107
(Charlesworth ez al. 1992). As suggested by Hudson
(1994), they could make a substantial contribution to
the reduction in variability in regions of low re-
combination. This possibility will be explored in more
detail in a subsequent paper (B. Chariesworth, sub-
mitted).

Finally, it is interesting to note that similar formula
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for the influence of linked loci subject to deleterious
mutations have emerged from the study of their effects
on the fixation probabilities of favourable mutations
with selection coefficients which are sufficiently large
that branching process theory can be used (Barton,
1995), and on nucleotide site diversity at neutral sites
(Hudson, 1994; Hudson & Kaplan, 1994, 1995).
Related results have also been derived for the effect on
neutral loci of directional selection on a quantitative
trait (Santiago & Caballero, 1995; Santiago, in
preparation), and for the effects of selective sweeps
and temporally fluctuating selection coefficients
(Barton, 1995). But, except for the case of complete
linkage (Charlesworth, 1994), we are currently lacking
results on the effects of background selection on
weakly selected mutations, for which branching
process theory cannot be used. With free recom-
bination, all approaches lead to the conclusion that
the effects of selection can be approximately rep-
resented by a reduction in effective population size N,.
The factor by which N, is divided to obtain the
relevant expression in each case is approximately
equal to one plus four times the additive genetic
variance in family size, if fitness is measured relative to
the population mean. More complex formule ob-
viously apply with linkage (cf. equation [4]). But it is
important to note that N, is not a sufficient descriptor
of the effects of selection at linked sites. As shown by
Charlesworth et al. (1993) and Hudson (1994) for
background selection, and by Braverman ef al. (1995)
and Simonsen et al. (1995) for selective sweeps, there
may be very different effects on the nucleotide site
diversity and on the number of segregating sites. This
would not be expected if these processes could be
described simply in terms of a reduction in N,. Rather,
both the genealogical structure of the population and
the expected time to coalescence between a pair of
genes (which is controlled by N, in the classical neutral
model), are affected by selection at linked sites. It is
much more difficult to obtain useful analytical results
for this effect than for the reduction in nucleotide site
diversity, or the fixation probability.

Appendix

The application of the linear diffusion operator
method (Ohta & Kimura, 1969) to the case of a
neutral locus and a single selected locus will be
presented here.

(i) Diffusion coefficients

Deterministic equations for the changes in the x; can
easily be written down on the assumption that the
locus under selection is in equilibrium. Second-order
terms in g, ¢; and u, will be neglected in what follows.
To the assumed order of approximation, the mean
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fitness of the population is 1 -2y, (Crow & Kimura
1970, Chap. 6), the marginal fitness of a gamete
carrying a wild-type allele at the selected locus is
1—g,t, & 1 —u,, and the marginal fitness of a mutant-
carrying gamete is 1 —f,—u,. Let the frequencies of the
gametes A, B, A,b, a,B, and a,b be y, =p,;x,, ¥, =
p1=xy), 3= g,%,, and y, = g,(1—x,), respectively.
The coefficient of linkage disequilibrium is y,y,—
YoV R q,0.

These expressions can be substituted into the
standard equations for two loci (Crow & Kimura,
1970, ch. 5), with the addition of terms to included the
effect of mutation from 4, to a,, in order to obtain
expressions for the deterministic changes in x, and x;.
Writing M, for the changes in x, from selection,
mutation and recombination, letting 7, =r(1—1¢,),
and noting that the net frequencies of the alleles at the
selected locus remain unchanged over a generation,
we obtain

Ay, 1
Moo= ™ =20
x[(1—u)y,—uy, — 7,6 —(1=2u)y,], (A1)
and
Ay 1
T g T q(1-2u)
X[(A=t,=u) y,+u,y, +7,q,6—(1=2u) y,], (A2)

which, upon neglecting second-order terms and
utilizing the relations v~ g,t, and u, <, can be
further simplified to yield

M, ~—gq,F,8, (A3)
and
M, = pft,+7)6. (A4)

The assumption of equilibrium at the selected locus
further means that the covariance between x, and x,
is zero, and that the effects of genetic drift on the x,
can be represented by sampling within the corre-
sponding gamete classes, so that the sampling
variances for the changes in the x, over one generation
are given by

X1 —=x)
TN B3
and
_a(l—xy)
ST (Ao

where N, is the variance effective population size
(Crow & Kimura, 1970, ch. 8). The validity of the
diffusion approximation used here requires 2¢, N, > 1
(Ewens, 1979, ch. 4). Since the assumption that g, is
close to its equilibrium value requires 2u, N, > 1
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(Crow & Kimura, 1970, pp. 443—444), this condition
should automatically be met whenever the model is
appropriate.

(ii) Genetic diversity at statistical equilibrium

For details of the method used in this section, see
Ewens (1979, section 4.10), Kimura & Ohta (1971,
appendix 3), or Stephan ez al. (1992). For a function
g(x,y, x;), we have

d _ og dg 1 o'g o%g
dTE-r(g)_ETI:MOEX—O+Mlax1+2(VOaxg+I/Ia_x? ]

AT

where E, denotes expectation taken at a given point 7
in time. The object is to find a set of equations in
functions g, that result in a soluble set of equations for
the expectations. For the set

8o = 2x,(1 —Xx,), (A 8a)
& = 2q(1-2x,) 4, (A 8b)
g, = 0%, (A 8¢)

we have the following equations for the effects of
selection, recombination and drift:

d ~ E(g,) .
aE(go) ~ _2piNe_riE(gl), (Aga)
d X
EE(gx) ~ “‘qlf:%:)_[qi Fotpt,+ 7))
X E(g,)+4q; 7, E(g,), (A9D)
E(g,)  E(g)

d
a;E(gZ) = 4pz qiNe_4q12 Ne

——[ZqilNe +2q,F+2p (1, + Fi):' E(g,), (A9¢)
where all expectations are taken at time 7.

At statistical equilibrium, the sum of the con-
tribution from mutation at the neutral sites to the
expected change in each function and the change in
the expectation of the function due to drift and the
other deterministic forces [represented by the ap-
propriate member of equations (A 9)] must be equal
to zero. The mutational term for a given function is
equal to the change in the value of the function due to
a single new mutation that arises in a non-segregating
population, times the rate per generation at which
mutations arise (Kimura & Ohta, 1971, pp. 186-187).
If the total breeding population size is N, the change
in g, due to a single new mutation that arises in a
mutant-free chromosome is 1/(Np,) (neglecting terms
of order 1/N?). The expected number of mutations
that arise per generation is 2Nv, and the probability
that each arises in a mutant-free chromosome is p,, so
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that the mutational change in the expectation of g,
is 2v. It is easily seen that the mutational change in
the expectation of ¢ is zero, so that the change in the
expectation of g, is of order 1/N?. The change in the
expectation of g, is v/2Ng,, which is negligible for
sufficiently small v/N. Thus we have

E .
-2 N—%—QE@I), (A 100)
El
0r —9E8) 10 i y b4 7]
piNe
x E(g)+4q27, E(g,), (A 10B)

0~ E8) _ Elg)
4pi qi Ne 4q12 Ne

1
- +24,7,+2p{t;+7) | E(g,), (A 10¢)
2qi Ne

where all expectations are now taken at statistical
equilibrium. Equations (A 10) form a linear system of
equations. Their approximate solutions can be found
as follows.

The leading term in the factor of E(g,) in equation
(A 10c¢) is 2p(¢,+ 7)) provided that 4q,(t,+7) N, > 1.
The neglected term 1/2g,N, only contributes to
equation (A 105) if r, = 0, and its contribution to the
final result is negligible if 4¢, N, (¢,+7;) > 1. Neglecting
the other terms, equation (A 10¢) gives

E(g,)/p;— E(8.)/4, )

A1l
8p,qt;+F)N, ( )

E(g,) ~

Substitution of this into equation (A 1056), again
retaining only the leading term in £(g,) and neglecting
second-order terms, gives

Fi ) 9: £go)

C2(t,+ 7)) (1, +7) N, (A 12)

E(gl) ~ _(1

E(g,) can now be obtained by substituting this
expression into equation (A 104). Using this in
conjunction with equation (A 12), we have

4piNev

1__2qtfi 1— 7y
L,+7; 20,4+ 7)

E(go) = (A13)

)[1 +0(1)]

Write 7 for the expectation of the genetic diversity, G.
Then 7 in the absence of background selection is 77, =
4N,v (Kimura, 1969). Rearranging equation (A 13),
and using equations (2) and (A 11), we obtain

4;
1+ %)
le(go)—E(gl):_ (L+F)N,
CRRE T (EX O
(1+p)*
where p, = 7,/i, measures the frequency of recom-

bination relative to the selection coefficient for the ith
locus.

(A 14)
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We can therefore write

T 1

, A15
a (A 15)

(1 +py)?

provided that g, < (¢,+7) N,. This condition can be
violated if (¢,+ 7)) N, is sufficiently small. For fixed ¢,,
this is most likely to occur with complete linkage,
weak selection, and small population size. In such
cases, E(g,) contributes significantly to 77, and the sign
of E(g,) from equation (A 12) implies that 7 is
underestimated by ignoring it. In biological terms,
this means that there is a contribution to # from
neutral variants associated with deleterious alleles,
which is neglected in equation (A 15). This term
corresponds to that arising from variants initially
associated with deleterious alleles, which was similarly
neglected in the formula for the multi-locus case with
no recombination obtained by Charlesworth et al.
(1993).

1+

(iii) Effective population size with background
selection

With free recombination (r, = 1/2), equation (A 15)
gives

T 1

—_ . A 16
m, 1+4q1: ( )

The additive genetic variance in fitness, V,,, due to
the ith selected locus is equal to 2¢,:* (Mukai et al.
1974), so that the nucleotide site diversity is equivalent
to the formula for genetic diversity in the classical
neutral case, but with the effective size of the
population divided by a factor of 1+2V,, This is
consistent with the general theory of the effect of
heritable variation in family size on effective popu-
lation size. According to this theory, selection at
unlinked loci contributes a term of four times the
additive genetic variance in family size to the
denominator of the formula for N,, if family size is
measured relative to the population mean (Robertson,
1961; Nei & Murata, 1966; Santiago & Caballero,
1995). The additive genetic value of a full-sib family is
equal to the mean of the additive values of the two
parents, so that the additive variance in family fitness
is one-half ¥V, as defined here. The assumption of a
single locus means that the additive variance for
absolute fitness is nearly the same as that for fitness
scaled relative to mean fitness, so that the two results
are equivalent.

This suggests that the effect of background selection
with arbitrary linkage can also be deduced from the
general theory of effective population size. The
detailed argument is as follows. Consider a neutral
locus linked to a given selected locus i. The number of
deleterious alleles at this locus in an individual can be
treated as an additive trait. The breeding value of the
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progeny of a gamete with a value g, due to its
genotype at the selected locus is expected to be
g.(1—t,—7) after one generation, since there is a
reduction g, ¢, due to selection, and a further reduction
g; 7, due to recombination. After a large number of
generations, the sum of the contributions of this
gamete to the breeding value of its descendants
approaches g,/(z,+ 7). The contribution to the divisor
of N, is given by the variance in family size associated
with those terms (Robertson, 1961; Nei & Murata,
1966; Santiago & Caballero, 1995). This is equal to
g, t2/(t,+ 7)?, which is identical with the corresponding
term in equation (A 15). n/7, is thus equal to the ratio
of N, with background selection to the classical
neutral value of N,.

(iv) The effects of multiple loci

The above result for the effect of background selection
on N, suggests the following heuristic argument for
the case of multiple selected loci. In general, the ratio
of N, with selection to the classical neutral value is
1/(1+V), where V is the heritable variance in family
size, scaled relative to the population mean
(Robertson, 1961; Nei & Murata, 1966; Santiago &
Caballero, 1995). 1 + Vis equivalent to the expectation
of the squares of the scaled family sizes contributed by
selective differences among genotypes. With multi-
plicative fitnesses, and in the absence of linkage
disequilibrium among the selected loci, this expec-
tation is simply the product of the expectations
contributed by each locus, i.e. IL,[1 +q,22/(t,+ 7).
With small effects at each locus, we thus have

n/m =TT + 4,8/ + T ~ 11 [l ‘(nqit%)zJ’

(A17)
which yields equation (4).
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