MULTIPLICATION OPERATORS
AND DYNAMICAL SYSTEMS

R. K. SINGH and JASBIR SINGH MANHAS

(Received 27 June 1990)

Communicated by A. J. Pryde

Abstract

Let \(X \) be a completely regular Hausdorff space, let \(V \) be a system of weights on \(X \) and let \(T \) be a locally convex Hausdorff topological vector space. Then \(CV_b(X, T) \) is a locally convex space of vector-valued continuous functions with a topology generated by seminorms which are weighted analogues of the supremum norm. In the present paper we characterize multiplication operators on the space \(CV_b(X, T) \) induced by operator-valued mappings and then obtain a (linear) dynamical system on this weighted function space.

Keywords and phrases: system of weights, locally convex spaces, multiplication operators, dynamical systems.

Introduction

Let \(X \) be a non-empty set, let \(T \) be a topological algebra and let \(L(X, T) \) be the linear space of all functions from \(X \) to \(T \). Let \(F(X, T) \) be a topological vector subspace of \(L(X, T) \). Let \(\psi \) be a mapping on \(X \) such that \(\psi f \in L(X, T) \) whenever \(f \in F(X, T) \). This gives rise to a linear transformation \(M_\psi : F(X, T) \to L(X, T) \) defined as \(M_\psi f = \psi f \), where the product of functions is defined pointwise. In case \(M_\psi \) takes \(F(X, T) \) into itself and is continuous, it is called a multiplication operator on \(F(X, T) \) induced by the mapping \(\psi \).

This paper is a continuation of our earlier paper [8] in which we have studied multiplication operators on weighted spaces of vector-valued con-
tinuous functions induced by scalar-valued and vector-valued mappings. In the present paper we concentrate on the study of multiplication operators on weighted spaces of vector-valued mappings induced by operator-valued mappings and then we endeavor to study a (linear) dynamical system on these function spaces.

Preliminaries

Let X be a completely regular Hausdorff space, let T be a Hausdorff locally convex topological vector space over \mathbb{C} and let $C(X, T)$ be the vector space of all continuous functions from X into T. By $cs(T)$ we mean the set of all continuous seminorms on T, and $B(T)$ denotes the set of all continuous linear operators on T. By a system of weights we mean a set V of non-negative upper-semicontinuous functions on X such that, given any $x \in X$, there is some $v \in V$ for which $v(x) > 0$ and for every pair $u, v \in V$ and $\alpha > 0$, there exists $w \in V$ so that $\alpha u \leq w$ and $\alpha v \leq w$ (point wise on X).

Now we consider the following vector space of vector-valued continuous functions:

$$CV_b(X, T) = \{ f \in C(X, T) : v f(X) \text{ is bounded in } T \text{ for all } v \in V \}.$$

Now, let $v \in V$, $q \in cs(T)$ and $f \in C(X, T)$. If we put $\| f \|_{v,q} = \sup \{ v(x) q(f(x)) : x \in X \}$, then $\| \cdot \|_{v,q}$ is a seminorm on $CV_b(X, T)$ and the family $\{ \| \cdot \|_{v,q} : v \in V, q \in cs(T) \}$ defines a locally convex topology on $CV_b(X, T)$.

In case $T = \mathbb{C}$, we shall omit T from our notation and write $CV_b(X)$ in place of $CV_b(X, \mathbb{C})$. We also write $\| \cdot \|_v$ in place of $\| \cdot \|_{v,q}$ for each $v \in V$, where $q(z) = |z|$, $z \in \mathbb{C}$. We shall denote by $B_{v,q}$ the closed unit ball corresponding to the seminorm $\| \cdot \|_{v,q}$. In case $T = (\mathcal{T}, q)$, any normed linear space, we simply write B_v. We refer to the papers of Bierstedt [1, 2] and Prolla [7] for more details and examples of these function spaces.

Let \mathcal{F} be the family of all bounded subsets of T and let $M \in \mathcal{F}$ and $p \in cs(T)$. If we define the function

$$S_{M,p} : B(T) \to \mathbb{R}^+$$

as

$$S_{M,p}(A) = \sup \{ p(A(y)) : y \in M \}$$

then $S_{M,p}$ is a seminorm on $B(T)$ and the family $\{ S_{M,p} : M \in \mathcal{F}, p \in cs(T) \}$ defines a locally convex topology on $B(T)$ which we call the topology of uniform convergence on bounded sets and denote by \mathcal{U}. Thus $(B(T), \mathcal{U})$ is a locally convex topological vector space of continuous linear operators on
For more details of these topologies on the spaces of linear operators we refer to Grothendieck [4] and Kothe [5].

2. Functions inducing multiplication operators

Throughout this section we will work under the following modest requirements, while developing our characterisation of an operator-valued mapping $\psi : X \to B(T)$ which induces a multiplication operator on $CV_b(X, T)$:

(2.a) X is a completely regular Hausdorff space;
(2.b) T is a Hausdorff locally convex topological vector space;
(2.c) V is a system of weights on X.

In the following theorem we characterise operator-valued mappings which induce multiplication operators on $CV_b(X, T)$.

2.1. THEOREM. Let $\psi : X \to B(T)$ be an operator-valued continuous function. Then $M_\psi : CV_b(X, T) \to CV_b(X, T)$ is a multiplication operator if and only if for every $v \in V$ and $p \in cs(T)$, there exist $u \in V$ and $q \in cs(T)$ such that $v(x)p(\psi(x)y) \leq u(x)q(y)$, for every $x \in X$ and $y \in T$.

PROOF. First, let us suppose that for every $v \in V$ and $p \in cs(T)$, there exist $u \in V$ and $q \in cs(T)$ such that

$v(x)p(\psi(x)y) \leq u(x)q(y)$, for every $x \in X$ and $y \in T$.

Then we shall show that M_ψ is a continuous linear operator on $CV_b(X, T)$. First of all, we show that M_ψ is an into map. Let $\{x_\alpha : \alpha \in \Delta\}$ be a net in X such that $x_\alpha \to x$. To show that $\psi(x_\alpha)f(x_\alpha) \to \psi(x)f(x)$ in T, it suffices to show that for every $p \in cs(T)$ and $\varepsilon > 0$, there exists $\alpha_0 \in \Delta$ such that

$p(\psi(x_\alpha)f(x_\alpha) - \psi(x)f(x)) < \varepsilon$, for every $\alpha \geq \alpha_0$.

Now,

(i) $p(\psi(x_\alpha)f(x_\alpha) - \psi(x)f(x)) \leq p[(\psi(x_\alpha) - \psi(x))(f(x_\alpha))] + p[\psi(x)(f(x_\alpha) - f(x))]$.

Since the set $\{f(x_\alpha) : \alpha \in \Delta\}$ is bounded in T, for every $p \in cs(T)$ and $\varepsilon > 0$, there exists $\alpha_1 \in \Delta$ such that

(ii) $p[(\psi(x_\alpha) - \psi(x))(f(x_\alpha))] < \varepsilon/2$, for every $\alpha \geq \alpha_1$.

Again, since $\psi(x)$ is a continuous linear operator on T, for every $p \in cs(T)$ and $\varepsilon > 0$, there exists a neighbourhood W of the origin in T such that
\[p(y(x)y) < \epsilon/2 \text{ for every } y \in W. \] Since \(f \) is continuous, there exists \(\alpha_2 \in \Delta \) such that \(f(x_\alpha) - f(x) \in W \), for \(\alpha \geq \alpha_2 \) and consequently

(iii) \[p[y(x)f(x_\alpha) - f(x)] < \epsilon/2, \quad \text{for every } \alpha \geq \alpha_2. \]

Let \(\alpha_0 \in \Delta \) be such that \(\alpha_1 \leq \alpha_0 \) and \(\alpha_2 \leq \alpha_0 \). Then from (ii) and (iii) it follows that

\[p(y(x)f(x_\alpha) - y(x)f(x)) \leq \epsilon, \quad \text{for every } \alpha \geq \alpha_0. \]

This proves the continuity of \(\psi f \). Further, let \(v \in V, \ p \in \text{cs}(T) \) and \(f \in CV_b(X, T) \). The

\[\|\psi f\|_{v,p} = \sup\{v(x)p(\psi(x)f(x)) : x \in X\} \leq \sup\{u(x)q(f(x)) : x \in X\} < \infty. \]

This implies that \(\psi f \in CV_b(X, T) \). Clearly \(M_\psi \) is linear on \(CV_b(X, T) \).

In order to prove the continuity of \(M_\psi \) on \(CV_b(X, T) \), it is enough to show that \(M_\psi \) is continuous at the origin. For this, suppose \(\{f_\alpha\} \) is a net in \(CV_b(X, T) \) such that \(\|f_\alpha\|_{v,p} \to 0 \), for every \(v \in V \) and \(p \in \text{cs}(T) \).

\[\|M_\psi f_\alpha\|_{v,p} = \sup\{v(x)p(\psi(x)f_\alpha(x)) : x \in X\} \leq \sup\{u(x)q(f_\alpha(x)) : x \in X\} = \|f_\alpha\|_{u,q} \to 0. \]

This proves the continuity of \(M_\psi \) at the origin and hence \(M_\psi \) is continuous on \(CV_b(X, T) \).

Conversely, suppose \(M_\psi \) is a continuous linear operator on \(CV_b(X, T) \). We shall show that for every \(v \in V \) and \(p \in \text{cs}(T) \), there exist \(u \in V \) and \(q \in \text{cs}(T) \) such that

\[v(x)p(\psi(x)y) \leq u(x)q(y), \quad \text{for every } x \in X \text{ and } y \in T. \]

Let \(v \in V \) and \(p \in \text{cs}(T) \). Since \(M_\psi \) is continuous at the origin, there exist \(u \in V \) and \(q \in \text{cs}(T) \) such that \(M_\psi(B_{u,q}) \subseteq B_{v,p} \). We claim that

\[v(x)p(\psi(x)y) \leq 2u(x)q(y), \quad \text{for every } x \in X \text{ and } y \in T. \]

Take \(x_0 \in X \), \(y_0 \in T \) and set \(u(x_0)q(y_0) = \epsilon \). In case \(\epsilon > 0 \), the set

\[G = \{x \in X : u(x)q(y_0) < 2\epsilon\} \]

is an open neighbourhood of \(x_0 \). Thus, according to [6, Lemma 2], there exists \(f \in CV_b(X) \) such that \(0 \leq f \leq 1 \), \(f(x_0) = 1 \) and \(f(X - G) = 0 \). Define \(g(x) = f(x)y_0 \), for every \(x \in X \). Then clearly \(g \in CV_b(X, T) \) and for every \(p \in \text{cs}(T), \ 0 \leq (p \circ g) \leq p(y_0), \ (p \circ g)(x_0) = p(y_0) \) and \((p \circ g)(X - G) = 0 \). Let \(h = (2u(x_0)q(y_0))^{-1}g \). Then clearly \(h \in B_{u,q} \) and this yields that \(\psi h \in B_{v,p} \). Hence \(v(x)p(\psi(x)h(x)) \leq 1 \), for every \(x \in X \). From this, it follows that

\[v(x)p(\psi(x)g(x)) \leq 2u(x_0)q(y_0), \quad \text{for every } x \in X. \]

This implies that

\[v(x_0)p(\psi(x_0)y_0) \leq 2u(x_0)q(y_0). \]
On the other hand, suppose $u(x_0)q(y_0) = 0$. Then the following three cases arise:

(i) $u(x_0) = 0$, $q(y_0) \neq 0$;
(ii) $u(x_0) \neq 0$, $q(y_0) = 0$;
(iii) $u(x_0) = 0$, $q(y_0) = 0$.

Let us suppose that (i) holds and let $v(x)\psi(x)y_0 > 0$. Put $\varepsilon = v(x)\psi(x)y_0/2$. Then $G = \{ x \in X : \psi(x) < \varepsilon \}$ is an open neighbourhood of x_0 and hence again by [6, Lemma 2], there exists $f \in CV_b(X)$ such that $0 \leq f \leq 1$, $f(x_0) = 1$ and $f(X - G) = 0$. Again, define $g(x) = f(x)y_0$, for every $x \in X$. Then clearly $g \in CV_b(X, T)$ and for every $p \in cs(T)$, $0 \leq (p \circ g) \leq p(y_0)$, $(p \circ g)(x_0) = p(y_0)$ and $(p \circ g)(X - G) = 0$. Consider $h = e^{-1}g$. Then $h \in B_{u,q}$ and therefore $\psi h \in B_{v,p}$. Hence $v(x)\psi(x)h(x)) \leq 1$ for every $x \in X$. This implies that

$$v(x)\psi(x)g(x)) \leq \frac{v(x)\psi(x)y_0}{2}, \quad \text{for every } x \in X.$$

From this, it follows that

$$v(x)\psi(x)y_0 \leq \frac{v(x)\psi(x)y_0}{2}$$

which is impossible and hence in this case our claim is established.

Case (ii). Suppose $u(x_0) \neq 0$, $q(y_0) = 0$ and $v(x)\psi(x)y_0 > 0$. Put $\varepsilon = v(x)\psi(x)y_0/2$. Then $G = \{ x \in X : u(x) < \varepsilon + u(x_0) \}$ is an open neighbourhood of x_0 and therefore by [6, Lemma 2], there exists $f \in CV_b(X)$ such that $0 \leq f \leq 1$, $f(x_0) = 1$ and $f(X - G) = 0$. Define $g(x) = f(x)y_0$, for every $x \in X$. Then clearly $g \in CV_b(X, T)$ and for every $p \in cs(T)$, $0 \leq (p \circ g) \leq p(y_0)$, $(p \circ g)(x_0) = p(y_0)$ and $(p \circ g)(X - G) = 0$. Consider $h = e^{-1}g$. Then $h \in B_{u,q}$ and this yields that $\psi h \in B_{v,p}$. This implies that $v(x)\psi(x)h(x)) \leq 1$, for every $x \in X$. From this, it follows that

$$v(x)\psi(x)g(x)) \leq \frac{v(x)\psi(x)y_0}{2}, \quad \text{for every } x \in X.$$

Further, it implies that

$$v(x)\psi(x)y_0 \leq \frac{v(x)\psi(x)y_0}{2}$$

which is impossible and hence in this case too our claim is established.

Case (iii). Finally, suppose $u(x_0) = 0$ and $q(y_0) = 0$. Let $v(x)\psi(x)y_0 > 0$ and put $\varepsilon = v(x)\psi(x)y_0/2$. Then $G = \{ x \in X : u(x) < \varepsilon \}$ is an open neighbourhood of x_0 and again by [6, Lemma 2], there exists $f \in CV_b(X)$ such that $0 \leq f \leq 1$, $f(x_0) = 1$ and $f(X - G) = 0$. Define $g(x) = f(x)y_0$, for every $x \in X$. Then clearly $g \in CV_b(X, T)$ and for every
Consider $h = e^{-1} g$. Then $h \in B_{u,q}$ and this implies that $\psi h \in B_{v,p}$. Hence $v(x)p(\psi(x)h(x)) \leq 1$, for every $x \in X$. From this, it follows that

$$v(x)p(\psi(x)g(x)) \leq \frac{v(x_0)p(\psi(x_0)y_0)}{2}, \quad \text{for every } x \in X.$$

Further, it implies that

$$v(x_0)p(\psi(x_0)y_0) \leq \frac{v(x_0)p(\psi(x_0)y_0)}{2},$$

which is a contradiction and with this our claim is established. This completes the proof of the theorem.

2.2 REMARK (i). Every constant map $\psi: X \to B(T)$ induces a multiplication operator on $CV_b(X, T)$. For, if we define $\psi: X \to B(T)$ as $\psi(x) = A$, for every $x \in X$ where A is any continuous linear operator on T. Let $v \in V$, and $p \in cs(T)$. Since A is a continuous linear operator, there exist $m > 0$ and $q \in cs(T)$ such that

$$p(Ay) \leq mq(y), \quad \text{for every } y \in T.$$

This implies that $p(\psi(x)y) \leq mq(y)$, for every $x \in X$ and $y \in T$. Further, it follows that

$$v(x)p(\psi(x)y) \leq mv(x)q(y) \quad (\text{for every } x \in X \text{ and } y \in T)$$

$$\leq u(x)q(y) \quad (\text{for every } x \in X \text{ and } y \in T).$$

Hence by Theorem 2.1, M_ψ is a multiplication operator on $CV_b(X, T)$.

(ii) Let X be a completely regular Hausdorff space and let $T = Y$ be any Banach space. Then every continuous bounded operator-valued mapping induces a multiplication operator on $CV_b(X, Y)$. For, let $\psi: X \to B(Y)$ be a bounded operator-valued mapping. Then there exists $m > 0$ such that $\|\psi(x)\| \leq m$, for every $x \in X$, Let $v \in V$, $x \in X$ and $y \in Y$. Then

$$v(x)\|\psi(x)y\| \leq v(x)\|\psi(x)\|\|y\| \leq mv(x)\|y\|$$

$$\leq u(x)\|y\| \quad (\text{for every } x \in X \text{ and } y \in Y).$$

Hence by Theorem 2.1, M_ψ is a multiplication operator on $CV_b(X, Y)$.

If $T = Y$ is any Banach space and V is the system of weights generated by the characteristic functions of all compact subsets, then it turns out that every continuous operator-valued mapping induces a multiplication operator on $CV_b(X, Y)$. This we shall establish in the following proposition.

2.3 PROPOSITION. Let X be a completely regular Hausdorff space and let

$$V = \{\lambda \chi_K : \lambda \geq 0, \ K \subset X \text{ and } K \text{ is a compact set}\}.$$
Then every continuous mapping $\psi: X \to B(Y)$, induces a multiplication operator M_ψ on $CV_b(X, Y)$.

Proof. In order to show that M_ψ is a continuous linear operator on $CV_b(X, Y)$, in the light of Theorem 2.1 it is enough to show that for every $v \in V$, there exists $u \in V$ such that

$$v(x)\|\psi(x)y\| \leq u(x)\|y\|, \quad \text{for every } x \in X \text{ and } y \in Y.$$ If $v \in V$, then $v = \lambda \chi_K$, for some compact subset K of X. Since $\psi: X \to B(Y)$ is continuous, $\psi(K)$ is a compact subset in $B(Y)$. Let $m = \text{Sup}\{\|\psi(x)\|: x \in K\}$. Put $u(x) = \lambda m \chi_K(x)$. Then $u \in V$. Let $x \in K$ and $y \in Y$. Then

$$\|\psi(x)y\| \leq \|\psi(x)\|\|y\| \leq m\|y\|.$$ From this, it follows that

$$\lambda \chi_K(x)\|\psi(x)y\| \leq \lambda \chi_K(x)m\|y\|.$$ This implies that

$$v(x)\|\psi(x)y\| \leq u(x)\|y\|, \quad \text{for every } x \in K \text{ and } y \in Y.$$ On the other hand, if $x \in X \setminus K$, then obviously

$$v(x)\|\psi(x)y\| \leq u(x)\|y\|.$$ Thus $v(x)\|\psi(x)y\| \leq u(x)\|y\|$, for every $x \in X$, $y \in Y$ and hence M_ψ is a multiplication operator on $CV_b(X, Y)$. This completes the proof of the theorem.

2.4 Remark (i). From the above proposition, we note that if $\psi: X \to B(T)$ where T is any Banach space, is an unbounded continuous operator-valued mapping, even then ψ gives rise to a multiplication operator M_ψ on $CV_b(X, T)$, where V is the system of weights generated by the characteristic functions of all compact subsets of X.

(ii) In the above proposition, if we replace the system of weights

$$V = \{\lambda \chi_K: \lambda \geq 0, \ K \subset X \text{ and } K \text{ is a compact set}\}$$

by $C_c^+(X)$, the set of all positive continuous functions having compact supports, even then the conclusion holds.

2.5 Corollary. Let X have the discrete topology and

$$V = \{\lambda \chi_K: \lambda \geq 0, \ K \subset X \text{ and } K \text{ is a compact set}\}.$$
Then every map \(\psi: X \to B(T) \), where \(T \) is a Banach space, induces a multiplication operator \(M_\psi \) on \(CV_b(X, T) \).

Now, we shall give certain examples of operator-valued mappings which induce and do not induce multiplication operators on \(CV_b(X, T) \).

2.6 Example. Let \(X = \mathbb{N} \) with discrete topology and let \(T = l^2 \), the Hilbert space of all square summable sequences of complex numbers. If we define \(\psi: \mathbb{N} \to B(l^2) \) by \(\psi(n) = U^n \), where \(U \) is the unilateral shift operator on \(l^2 \), then

\[
\|\psi(n)\| = \|U^n\| \leq \|U\|^n \leq 1, \quad \text{for every } n \in \mathbb{N}.
\]

This shows that \(\psi \) is a bounded operator-valued mapping and hence by Remark 2.2 (ii), \(M_\psi \) is a multiplication operator on \(CV_b(X, T) \).

2.7 Example. Let \(X = \mathbb{N} \), with discrete topology and \(T = \mathbb{R}^2 \), the real Banach space. Define \(\psi: \mathbb{N} \to B(\mathbb{R}^2) \) by \(\psi(n) = P^n \), where \(P \) is a projection operator on \(\mathbb{R}^2 \). Then \(\|\psi(n)\| = \|P^n\| \leq \|P\|^n \leq 1 \). This implies that \(\psi \) is a bounded operator-valued mapping and hence by Remark 2.2(ii), \(M_\psi \) is a multiplication operator on \(CV_b(X, T) \).

2.8 Example. Let \(X = \mathbb{N} \) be the set of natural numbers with discrete topology and let \(V = K^+(\mathbb{N}) \), the system of all positive constant weights. Let \(T = C_b(\mathbb{N}) = l^\infty \) be the Banach space of all bounded sequences of complex numbers and \(B(l^\infty) \), the Banach algebra of bounded operators on \(l^\infty \). Define \(\psi: \mathbb{N} \to B(l^\infty) \) as \(\psi(n) = C(\phi_n) \), where \(C(\phi): l^\infty \to l^\infty \) is the composition operator induced by a map \(\phi: \mathbb{N} \to \mathbb{N} \). Then it can be seen that for every \(v \in V \), there exists \(u \in V \) such that

\[
v(n)\|\psi(n)f\| \leq u(n)\|f\|, \quad \text{for every } n \in \mathbb{N} \text{ and } f \in l^\infty
\]

and hence by Theorem 2.1, \(M_\psi \) is a multiplication operator on \(CV_b(X, T) \).

2.9 Example. Let \(X = \mathbb{N} \), the set of natural numbers with discrete topology, \(T = l^2 \) and let \(B(l^2) \) be the Banach space of bounded linear operators on \(l^2 \). Let \(v(n) = n \), for every \(n \in \mathbb{N} \). Then \(V = \{\lambda v: \lambda \geq 0\} \) is a system of weights on \(\mathbb{N} \). Let us define \(\psi: \mathbb{N} \to B(l^2) \) as \(\psi(n) = A^n \), where \(A \) is the multiplication operator on \(l^2 \) induced by the constant function \(2 \), that is, \(A: l^2 \to l^2 \) is defined as

\[
A(x_1, x_2, \ldots) = 2(x_1, x_2\ldots).
\]

Then clearly one can check that

\[
v(n)\|\psi(n)x\| \leq u(n)\|x\|.
\]

Thus \(\psi \) does not induce a multiplication operator \(M_\psi \) on \(CV_b(\mathbb{N}, l^2) \). In fact \(M_\psi \) is not even an into map. For, take \(f: \mathbb{N} \to l^2 \) as \(f(n) = 1/n^2 \). Then
obviously $f \in CV_b(N, l^2)$ but $\psi f(n) = \psi(n)f(n) = A^n(1/n^2) = 2^n/n^2 \to \infty$ as $n \to \infty$ and therefore $\psi f \notin CV_b(N, l^2)$. In this example, if we take V as the system of positive constant weights on N, even then ψ does not induce a multiplication operator M_ψ on $CV_b(N, l^2)$. If fact, if $f(n) = 1/n$, then $f \in CV_b(N, l^2)$ but $\psi f \notin CV_b(N, l^2)$.

3. Dynamical systems induced by multiplication operators

Throughout this section we shall take X to be the real line R (with the usual topology) and T to be a Banach space. We shall denote by $B(T)$, the Banach algebra of all bounded linear operators on T and by $F_b(R)$, the set of all continuous bounded functions on R. Let V be a system of weights on R. Then clearly $CV_b(R, T)$ is a locally convex Hausdorff topological vector space with the weighted topology defined in the last section. Now let U be a countable set of non-negative upper semicontinuous functions on R such that $W = \{\lambda u: \lambda \geq 0, \ u \in U\}$ is a system of weights on R with $W \approx V$. Then one can easily prove that the weighted space $CV_b(R, T)$ is metrizable. In case $T = C$, the metrizable weighted space $CV_b(R)$ is a special case of the result proved by Summers [10, Theorem 2.10].

Now, fix $g \in F_b(R)$ and $A \in B(T)$. For each $t \in R$, we define $\psi_t: R \to B(T)$ as $\psi_t(w) = e^{tg(w)}A$, for every $w \in R$. We can easily see that ψ_t is a bounded operator-valued mapping from $R \to B(T)$ and hence by Remark 2.2(ii), ψ_t induces a multiplication operator M_{ψ_t} on the weighted metrizable locally convex Hausdorff space $CV_b(R, T)$.

3.1 Theorem. Let $g \in F_b(R)$, $A \in B(T)$ and let $\Pi_{A, g}: R \times CV_b(R, T) \to C(R, T)$ be the function defined by $\Pi_{A, g}(t, f) = M_{\psi_t}f$ for $t \in R$ and $f \in CV_b(R, T)$. Then $\Pi_{A, g}$ is a dynamical system on $CV_b(R, T)$.

Proof. Since M_{ψ_t} is a multiplication operator on $CV_b(R, T)$ for every $t \in R$, we can conclude that $\Pi_{A, g}(t, f)$ belongs to $CV_b(R, T)$ whenever $t \in R$ and $f \in CV_b(R, T)$. Thus $\Pi_{A, g}$ is a function from $R \times CV_b(R, T)$ to $CV_b(R, T)$. It can be easily seen that $\Pi_{A, g}(0, f) = f$, and

$$\Pi_{A, g}(t + s, f) = \Pi_{A, g}(t, \Pi_{A, g}(s, f))$$

for all $t, s \in R$ and $f \in CV_b(R, T)$.

In order to show that $\Pi_{A, g}$ is a dynamical system on $CV_b(R, T)$, it is enough to show that $\Pi_{A, g}$ is a separately continuous map since joint continuity follows from [3, Theorem 1]. Let us first prove the continuity of
\[\Pi_{A,g}(t_n, f) \to \Pi_{A,g}(t, f)\] in \(CV_b(\mathbb{R}, T)\). Let \(v \in V\). Then
\[
\|\Pi_{A,g}(t_n, f) - \Pi_{A,g}(t, f)\|_v = \|\psi_{t_n}f - \psi_tf\|_v
= \sup\{v(w)\|\psi_{t_n}(w) - \psi_t(w)(f(w))\| : w \in \mathbb{R}\}
= \sup\{v(w)\|e^{t_n A}(f(w)) - e^{tA}(f(w))\| : w \in \mathbb{R}\}
\leq \sup\{v(w)\|e^{t_n A}(f(w)) - e^{tA}(f(w))\| : w \in \mathbb{R}\}
\leq \sup\{v(w)\|e^{t_n A}(f(w)) - e^{tA}(f(w))\| : w \in \mathbb{R}\}
\leq \sup\{v(w)\|e^{t_n A}(f(w)) - e^{tA}(f(w))\| : w \in \mathbb{R}\}
\leq \sup\{v(w)\|e^{t_n A}(f(w)) - e^{tA}(f(w))\| : w \in \mathbb{R}\}
\leq \sup\{v(w)\|e^{t_n A}(f(w)) - e^{tA}(f(w))\| : w \in \mathbb{R}\}
\leq \|f\|_v \to 0\] as \(|t_n - t| \to 0\).

This proves the continuity of \(\Pi_{A,g}\) in the first argument. Now, we shall prove the continuity of \(\Pi_{A,g}\) in the second argument. Let \(\{f_{\alpha}\}\) be a net in \(CV_b(\mathbb{R}, T)\) such that \(f_{\alpha} \to f\) in \(CV_b(\mathbb{R}, T)\). Then \(\|f_{\alpha} - f\|_v \to 0\) for every \(v \in V\). We shall show that
\[\Pi_{A,g}(t, f_{\alpha}) \to \Pi_{A,g}(t, f)\] in \(CV_b(\mathbb{R}, T)\).

For this, let \(v \in V\). Then
\[
\|\Pi_{A,g}(t, f_{\alpha}) - \Pi_{A,g}(t, f)\|_v = \|\psi_tf_{\alpha} - \psi_tf\|_v
= \sup\{v(w)\|\psi_t(w)(f_{\alpha}(w) - f(w))\| : w \in \mathbb{R}\}
\leq \sup\{v(w)\|f_{\alpha}(w) - f(w)\| : w \in \mathbb{R}\}
= \|f_{\alpha} - f\|_v \to 0\]

This proves the continuity of \(\Pi_{A,g}\) in the second argument and hence \(\Pi_{A,g}\) is a (linear) dynamical system on the weighted space \(CV_b(\mathbb{R}, T)\).

References

University of Jammu
Jammu-180004
India