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Abstract
We compute the open Gromov-Witten disk invariants and the relative quantum cohomology of the Chiang La-
grangian 𝐿� ⊂ C𝑃3. Since 𝐿� is not fixed by any anti-symplectic involution, the invariants may augment straight-
forward J-holomorphic disk counts with correction terms arising from the formalism of Fukaya 𝐴∞-algebras and
bounding cochains. These correction terms are shown in fact to be nontrivial for many invariants. Moreover, exam-
ples of nonvanishing mixed disk and sphere invariants are obtained.

We characterize a class of open Gromov-Witten invariants, called basic, which coincide with straightforward
counts of J-holomorphic disks. Basic invariants for the Chiang Lagrangian are computed using the theory of
axial disks developed by Evans-Lekili and Smith in the context of Floer cohomology. The open WDVV equations
give recursive relations which determine all invariants from the basic ones. The denominators of all invariants are
observed to be powers of 2 indicating a nontrivial arithmetic structure of the open WDVV equations. The magnitude
of invariants is not monotonically increasing with degree. Periodic behavior is observed with periods 8 and 16.
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1. Introduction

The main result of the present paper is a complete computation of the open Gromov-Witten disk invariants
of the Chiang Lagrangian [8] in C𝑃3. The Chiang Lagrangian is not fixed by any anti-symplectic
involution [10]. Multiple phenomena are observed that have not appeared in previous computations of
open Gromov-Witten invariants for Lagrangian submanifolds fixed by anti-symplectic involutions. Our
computation relies on direct geometric arguments combined with general structure theorems governing
the invariants including the open WDVV equations of [48] and results of the present paper.

1.1. Invariants

To formulate our results, we recall relevant background on open and closed Gromov-Witten invariants.
Let (𝑋, 𝜔) be a symplectic manifold of real dimension 2𝑛, let 𝐿 ⊂ 𝑋 be a Lagrangian submanifold
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and let J be an 𝜔-tame almost complex structure. For simplicity, assume L is a connected, spin
Lagrangian submanifold with 𝐻∗(𝐿;R) � 𝐻∗(𝑆𝑛;R) and [𝐿] = 0 ∈ 𝐻𝑛 (𝑋;R). We refer the reader
to [46] for a fuller account of settings where open Gromov-Witten invariants can be defined. Write
𝐻∗(𝑋, 𝐿;R) = 𝐻0 (𝐿;R) ⊕ 𝐻>0 (𝑋, 𝐿;R). Let 𝑦 : 𝐻𝑛 (𝐿;R) → 𝐻𝑛+1(𝑋, 𝐿;R) denote the boundary
map from the short exact sequence of the pair (𝑋, 𝐿). Choose a map 𝑃R : 𝐻𝑛+1 (𝑋, 𝐿;R) → 𝐻𝑛 (𝐿;R)
left-inverse to 𝑦. For 𝛽 ∈ 𝐻2 (𝑋, 𝐿;Z) and 𝑘, 𝑙 ≥ 0, let

𝑂𝐺𝑊𝛽,𝑘 : 𝐻∗(𝑋, 𝐿;R) ⊗𝑙 → R

denote the open Gromov-Witten invariants of [48]. The multilinear maps 𝑂𝐺𝑊𝛽,𝑘 are invariants of
the symplectic manifold and the Lagrangian submanifold L up to Hamiltonian isotopy. When 𝛽 be-
longs to the image of the natural map 𝜛 : 𝐻2(𝑋;Z) → 𝐻2 (𝑋, 𝐿;Z), the invariants 𝑂𝐺𝑊𝛽,0 depend
on the choice of 𝑃R. Explicit formulas for this dependence are given in Propositions 1.1 and 8.1
below.

The invariants 𝑂𝐺𝑊 can be described as follows. Let 𝐴1, . . . , 𝐴𝑙 ∈ 𝐻∗(𝑋, 𝐿;R). Assume first that
either 𝑘 > 0 or 𝛽 does not belong to the image of 𝜛. The invariant 𝑂𝐺𝑊𝛽,𝑘 (𝐴1, . . . , 𝐴𝑙) counts J-
holomorphic disks 𝑢 : (𝐷, 𝜕𝐷) → (𝑋, 𝐿) representing 𝛽 with boundary passing through k chosen
points on L and interior passing through chosen cycles on X Poincaré dual to 𝐴1, . . . , 𝐴𝑙 , together with
correction terms that compensate for disk bubbling. The correction terms come from bounding cochains
in the Fukaya 𝐴∞ algebra associated to 𝐿. The assumption 𝐻∗(𝐿;R) � 𝐻∗(𝑆𝑛;R) is used in [46] to
show vanishing of obstruction classes that arise in the construction of the bounding cochains following
the method of Fukaya-Oh-Ohta-Ono [14].

In the case 𝑘 = 0 and 𝛽 ∈ Im𝜛, it is necessary to add an additional correction term to the above-
mentioned counts of J-holomorphic disks to obtain an invariant. The additional correction term counts
J-holomorphic spheres in X passing through an 𝑛+1 chain C in X with 𝜕𝐶 = 𝐿.This term compensates for
the fact that the boundary of a J-holomorphic disk can collapse to a point in L forming a J-holomorphic
sphere. The topological type of the chain C is characterized by the map 𝑃R : 𝐻𝑛+1 (𝑋, 𝐿;R) →
𝐻𝑛 (𝐿;R) mentioned above, which is given by the integration of differential forms over 𝐶. See
Remark 4.12 in [48].

Suppose L is fixed by an anti-symplectic involution, dim 𝐿 = 2 or 3, and either 𝑘 > 0 or 𝛽 ∉
Im𝜛. Then, it is shown in [46] that the invariants 𝑂𝐺𝑊𝛽,𝑘 (· · · ) coincide with invariants defined by
straightforward counting of J-holomorphic disks [9, 45] or real J-holomorphic spheres [50, 51]. When
L is the Chiang Lagrangian, which is not fixed by any anti-symplectic involution, the invariants 𝑂𝐺𝑊
do not coincide with straightforward disk counts in general. See Section 1.2.2 below. Closely related
invariants were defined in [52], and a comparison can be found in [5].

Although the definition of the invariants 𝑂𝐺𝑊 is quite abstract, they have a rich structure that makes
them explicitly computable in many situations. This structure includes the open WDVV equations
recalled in Theorem 2.2, the open axioms recalled in Proposition 2.2, and the wall-crossing formula
recalled in Theorem 2.3. Moreover, the relative quantum cohomology ring of the pair (𝑋, 𝐿) recalled
in Section 2.8 encodes the invariants 𝑂𝐺𝑊 along with the genus zero closed Gromov-Witten invariants
of X.

The genus zero closed Gromov-Witten invariants of X are given by multilinear maps

𝐺𝑊𝛽 : 𝐻∗(𝑋;Q) ⊗𝑙 → Q

for 𝛽 ∈ 𝐻2(𝑋;Z) and 𝑙 ≥ 0. For 𝐴1, . . . , 𝐴𝑙 ∈ 𝐻∗(𝑋;Q), the invariant 𝐺𝑊𝛽 (𝐴1, . . . , 𝐴𝑙) counts J-
holomorphic maps 𝑆2 → 𝑋 representing the class 𝛽 and passing through chosen cycles Poincaré dual
to 𝐴1, . . . , 𝐴𝑙 . We recall the basic properties of these invariants in Section 2.
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1.2. Statement of results

Let 𝐿� denote the Chiang Lagrangian in C𝑃3. In particular, 𝐿� is a rational homology sphere, so the
open Gromov-Witten invariants𝑂𝐺𝑊𝛽,𝑘 are defined. The definition of 𝐿� is recalled in Section 3. Write
Γ0 = [1] ∈ 𝐻0 (𝐿�;R) = 𝐻0(C𝑃3, 𝐿�;R), and for 𝑗 = 1, 2, 3, write

Γ 𝑗 = [𝜔 𝑗 ] ∈ 𝐻2 𝑗 (C𝑃3, 𝐿�;R) = 𝐻2 𝑗 (C𝑃3, 𝐿�;R).

Write Δ 𝑗 = [𝜔 𝑗 ] ∈ 𝐻∗(C𝑃3;R). Take 𝑃R to be the unique left-inverse of y such that ker(𝑃R) =
span{Γ2}. In light of Lemma 3.4 below, we identify 𝐻2 (C𝑃3, 𝐿�;Z) � Z. Our main results are the
following.

Theorem 1.1. The open WDVV equations imply the following relations for the invariants 𝑂𝐺𝑊𝛽,𝑘 of
(C𝑃3, 𝐿�).

1. For 𝑘 ≥ 1, 𝑙 ≥ 1, and 𝐼 = { 𝑗2, . . . , 𝑗𝑙},

𝑂𝐺𝑊𝛽,𝑘 (Γ 𝑗1 , Γ 𝑗2 , . . . , Γ 𝑗𝑙 )

= −
∑

𝜛 (𝛽)+𝛽1=𝛽
𝛽1≠𝛽

𝐼1�𝐼2=𝐼

3∑
𝑖=0

𝐺𝑊𝛽 (Δ 𝑗1−1,Δ1,Δ 𝐼1 ,Δ 𝑖)𝑂𝐺𝑊𝛽1 ,𝑘 (Γ3−𝑖 , Γ𝐼2 )

+
∑

𝛽1+𝛽2=𝛽
𝑘1+𝑘2=𝑘−1
𝐼1�𝐼2=𝐼

(
𝑘 − 1
𝑘1

) (
𝑂𝐺𝑊𝛽1 ,𝑘1 (Γ 𝑗1−1, Γ1, Γ𝐼1 )𝑂𝐺𝑊𝛽2 ,𝑘2+2(Γ𝐼2)

− 𝑂𝐺𝑊𝛽1 ,𝑘1+1 (Γ 𝑗1−1, Γ𝐼1 )𝑂𝐺𝑊𝛽2 ,𝑘2+1(Γ1, Γ𝐼2 )
)
.

2. For 𝑘 ≥ 2, 𝑙 ≥ 0, and 𝐼 = { 𝑗1, . . . , 𝑗𝑙},

𝑂𝐺𝑊𝛽,𝑘 (Γ 𝑗1 , . . . , Γ 𝑗𝑙 )𝑂𝐺𝑊2,0 (Γ2, Γ2)

=
∑

𝜛 (𝛽)+𝛽1=𝛽+2
𝐼1�𝐼2=𝐼

3∑
𝑖=0

𝐺𝑊𝛽 (Δ2,Δ2,Δ 𝐼1 ,Δ 𝑖)𝑂𝐺𝑊𝛽1 ,𝑘−1 (Γ3−𝑖 , Γ𝐼2)

+
∑

𝛽1+𝛽2=𝛽+2
𝑘1+𝑘2=𝑘−2
𝐼1�𝐼2=𝐼

(
𝑘 − 2
𝑘1

)
𝑂𝐺𝑊𝛽1 ,𝑘1+1(Γ2, Γ𝐼1)𝑂𝐺𝑊𝛽2 ,𝑘2+1(Γ2, Γ𝐼2 )

−
∑

𝛽1+𝛽2=𝛽+2
𝑘1+𝑘2=𝑘−2
𝐼1�𝐼2=𝐼

(𝛽1 ,𝑘1)≠(𝛽,𝑘−2)

(
𝑘 − 2
𝑘1

)
𝑂𝐺𝑊𝛽1 ,𝑘1+2(Γ𝐼1 )𝑂𝐺𝑊𝛽2 ,𝑘2 (Γ2, Γ2, Γ𝐼2 ).
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3. For 𝑙 ≥ 2, and 𝐼 = { 𝑗3, . . . , 𝑗𝑙},

𝑂𝐺𝑊𝛽,𝑘 (Γ 𝑗1 , . . . , Γ 𝑗𝑙 ) = 𝑂𝐺𝑊𝛽,𝑘 (Γ 𝑗1−1, Γ 𝑗2+1, Γ 𝑗3 , . . . , Γ 𝑗𝑙 )

+
∑

𝜛 (𝛽)+𝛽1=𝛽
𝛽1≠𝛽

𝐼1�𝐼2=𝐼

3∑
𝑖=0

(
𝐺𝑊𝛽 (Δ1,Δ 𝑗2 ,Δ 𝐼1 ,Δ 𝑖)𝑂𝐺𝑊𝛽1 ,𝑘 (Γ3−𝑖 , Γ 𝑗1−1, Γ𝐼2 )

− 𝐺𝑊𝛽 (Δ1,Δ 𝑗1−1,Δ 𝐼1 ,Δ 𝑖)𝑂𝐺𝑊𝛽1 ,𝑘 (Γ3−𝑖 , Γ 𝑗2 , Γ𝐼2)
)

+
∑

𝛽1+𝛽2=𝛽
𝑘1+𝑘2=𝑘
𝐼1�𝐼2=𝐼

(
𝑘

𝑘1

) (
𝑂𝐺𝑊𝛽1 ,𝑘1 (Γ1, Γ 𝑗1−1, Γ𝐼1 )𝑂𝐺𝑊𝛽2 ,𝑘2+1(Γ 𝑗2 , Γ𝐼2 )

− 𝑂𝐺𝑊𝛽1 ,𝑘1 (Γ1, Γ 𝑗2 , Γ𝐼1)𝑂𝐺𝑊𝛽2 ,𝑘2+1(Γ 𝑗1−1, Γ𝐼2)
)
.

Theorem 1.2. Consider the choice of spin structure and orientation on 𝐿� given in Section 3.2. Then

𝑂𝐺𝑊1,1 = −3, 𝑂𝐺𝑊1,0(Γ2) = 1
4
, 𝑂𝐺𝑊2,0 (Γ3) = 1.

It follows from the open WDVV equations that 𝑂𝐺𝑊2,0 (Γ2, Γ2) = 35
64 .

We call the invariants 𝑂𝐺𝑊1,1, 𝑂𝐺𝑊1,0 (Γ2) and 𝑂𝐺𝑊2,0(Γ) basic invariants. Theorem 1.6 below
shows that these invariants are given by straightforward counts of J-holomorphic disks without correction
terms. Thus, we can compute the basic invariants using the theory of axial disks developed by Evans-
Lekili [10] and Smith [43, 44] for computing the Floer cohomology of the Chiang Lagrangian and other
homogeneous Lagrangian submanifolds. Since the Chiang Lagrangian is not fixed by an anti-symplectic
involution, the techniques of real algebraic geometry used in other computations of open Gromov-Witten
invariants [7, 28, 29, 48] are not available.

Corollary 1.3. The genus zero open Gromov-Witten invariants of (C𝑃3, 𝐿�) are entirely determined by
the open WDVV equations, the axioms of 𝑂𝐺𝑊, the wall-crossing formula Theorem 2.3, the genus zero
closed Gromov-Witten invariants of C𝑃3, and the values computed in Theorem 1.2.

Samples values for the invariants 𝑂𝐺𝑊 computed using Theorems 1.1 and 1.2 are given in Tables 1
and 2.

1.2.1. Monotonicity versus periodicity
In other computations [30, 31, 32, 40, 48, 28, 11, 7], the absolute values of 𝑂𝐺𝑊𝛽,𝑘 or invariants of a
similar flavor are monotonically increasing in 𝛽. In the case of (C𝑃3, 𝐿�), we see that these values are
not monotonically increasing. Interestingly, it appears that the only persistent violation of monotonicity
occurs periodically: |𝑂𝐺𝑊𝛽−1,𝛽−1 | > |𝑂𝐺𝑊𝛽,𝛽 | for 𝛽 ∈ 8Z at least up to 𝛽 = 32.

Another unusual periodicity is visible in the signs of the invariants presented in Table 1, which repeat
with period 16. Moreover, the sign is inverted when 𝛽 is increased by 8.

1.2.2. Bounding cochain corrections and denominators
In [10], Evans-Lekili proved that there are exactly two J-holomorphic disks representing the class
𝛽 = 2 ∈ 𝐻2 (C𝑃3, 𝐿�;Z) passing through a specific choice of two points in 𝐿�. This does not coincide
with our computation 𝑂𝐺𝑊2,2 = − 5

4 . The discrepancy reflects correction terms arising from a bounding
cochain in the Fukaya 𝐴∞ algebra of 𝐿� . The correction terms need not be whole numbers. In fact,
all invariants with only boundary constraints that are not whole numbers indicate the presence of

https://doi.org/10.1017/fms.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.6


6 A. Hollands et al.

Table 1. Values of invariants with boundary constraints only..

𝛽 = 𝑘 𝑂𝐺𝑊𝛽,𝑘 exact value round value 𝛽 = 𝑘 𝑂𝐺𝑊𝛽,𝑘 round value

1 −3 −3.00 17 −1.38 · 107

2 − 5
4 −1.25 18 −7.68 · 107

3 7
16 0.44 19 3.17 · 108

4 3
4 0.75 20 6.78 · 109

5 105
256 0.41 21 2.24 · 1010

6 − 85
64 −1.33 22 −3.73 · 1011

7 − 16005
4096 −3.91 23 −4.65 · 1012

8 0 0 24 −8.08 · 1010

9 2123349
65536 32.40 25 4.84 · 1014

10 91035
1024 88.90 26 4.05 · 1015

11 − 201485745
1048576 −192.15 27 −2.48 · 1016

12 − 9045
4 −2261.25 28 −7.68 · 1017

13 − 72025175295
16777216 −4293.03 29 −3.62 · 1018

14 695299995
16384 42437.74 30 8.50 · 1019

15 87325406388675
268435456 325312.49 31 1.47 · 1021

16 4860 4860.00 32 1.82 · 1019

Table 2. Values of 𝑂𝐺𝑊𝛽,0 (Γ⊗𝑙2
2 , Γ⊗𝑙3

3 ) . The value of 𝑙2 is determined by 𝛽 and 𝑙3 by the open
degree axiom..

𝑙3

𝛽 1 2 3 4 5 6 7 8

0 1
4

35
64

507
1024

723
1024

427725
262144

1180259
262144

839314095
67108864

39117
1024

1 0 1 3
8

11
32

1251
2048

5003
4096

1481235
524288

15033
2048

2 0 0 0 1
4

5
16

23
64

2943
4096

25
16

3 0 0 0 0 0 0 7
32

3
8

nontrivial correction terms. Table 1 provides several examples. When interior constraints are present,
open Gromov-Witten invariants may be non-integral even in the absence of correction terms [28].

As far as we have calculated, for the Chiang Lagrangian 𝐿�, the denominators appearing in the
invariants 𝑂𝐺𝑊𝛽,𝑘 with only boundary constraints are always powers of 4. In the presence of interior
constraints, powers of 2 appear as well. Examining the proof of the existence of bounding cochains
in [46], we can see where denominators of 4 arise. Namely, the proof uses a 1-cochain h with real
coefficients with coboundary equal to a 2-cocycle g representing the generator of 𝐻2 (𝐿�;Z) � Z/4Z.
Since [4𝑔] = 0 ∈ 𝐻2 (𝐿�;Z), there exists an integral 1-cochain ℎ̃ with coboundary equal to 4𝑔. So, we
can take ℎ = ℎ̃

4 . This is the source of the powers of 4 in the denominators of the invariants 𝑂𝐺𝑊𝛽,𝑘 .

In contrast, the invariants 𝑂𝐺𝑊𝛽,𝑘 with only boundary constraints for the Lagrangian submanifold
R𝑃𝑛 ⊂ C𝑃𝑛 with n odd are shown in [48] to be whole numbers. For 𝑛 = 3, these invariants are shown in
[46] to be straightforward disk counts, but for 𝑛 ≥ 5, they presumably include correction terms arising
from bounding cochains. Since 𝐻2𝑖 (R𝑃𝑛;Z) � Z/2 for 0 < 𝑖 < 𝑛/2, by the reasoning of the preceding
paragraph, one might expect to see powers of 2 in the denominators of the invariants 𝑂𝐺𝑊𝛽,𝑘 . However,
since R𝑃𝑛 is fixed by an anti-symplectic involution, (i.e., complex conjugation), holomorphic disks
come in pairs. So, in the proof of the existence of bounding cochains in [46], one needs only a (2𝑖 − 1)-
cochain h with coboundary equal to twice a 2𝑖-cocycle g representing the generator of 𝐻2𝑖 (R𝑃𝑛;Z). But
[2𝑔] = 0 ∈ 𝐻2𝑖 (R𝑃𝑛;Z), so h can be chosen to be integral. This explains the absence of denominators.

https://doi.org/10.1017/fms.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.6


Forum of Mathematics, Sigma 7

A similar argument should apply for other Lagrangian submanifolds L fixed by an anti-symplectic
involution. If all torsion in 𝐻2𝑖 (𝐿;Z) has order 2, then the invariants 𝑂𝐺𝑊𝛽,𝑘 should be integral.
More generally, if 𝐻2𝑖 (𝐿;Z) contains torsion of even order, the rate of growth of the power of 2 in the
denominator of 𝑂𝐺𝑊𝛽,𝑘 as a function of 𝜔(𝛽) should be slower when L is fixed by an anti-symplectic
involution than otherwise. In particular, the behavior of denominators in the invariants 𝑂𝐺𝑊𝛽,𝑘 could
potentially be used to prove that a Lagrangian submanifold is not fixed by an anti-symplectic involution.

1.2.3. Mixed disk and sphere invariants
As mentioned above, the invariants 𝑂𝐺𝑊𝛽,𝑘 for 𝛽 ∈ Im𝜛 and 𝑘 = 0 count J-holomorphic disks and
J-holomorphic spheres together. In other computations [48, 29], these mixed disk and sphere invariants
vanish for a natural choice of 𝑃R. Another family of invariants combining counts of J-holomorphic
maps of different topology has also been shown to vanish in certain examples [11].

We show that the mixed disk and sphere invariants of (C𝑃3, 𝐿�) do not vanish. As shown in
Lemma 3.4 below, the map 𝜛 : 𝐻2 (C𝑃3;Z) → 𝐻2 (C𝑃3, 𝐿�;Z) � Z is given by multiplication by 4.
So, the nonvanishing of mixed disk and sphere invariants is visible in Table 2 for 𝛽 = 4, 8. In fact,
Corollary 1.4 below asserts that this nonvanishing persists for any choice of 𝑃R.

Let 𝜌 : 𝐻4 (C𝑃3, 𝐿�;R) → 𝐻4 (C𝑃3;R) denote the natural map. Let 𝑃R, 𝑃
′
R

be two choices of
left inverse maps of y with associated invariants 𝑂𝐺𝑊𝛽,𝑘 and 𝑂𝐺𝑊 ′

𝛽,𝑘 , respectively. The long exact
sequence of the pair (C𝑃3, 𝐿�) implies there exists a map

𝔭R : 𝐻4(C𝑃3;R) → 𝐻3 (𝐿�;R)

such that 𝔭R ◦ 𝜌 = 𝑃R − 𝑃′
R
. We use Poincaré duality to identify 𝐻3(𝐿�;R) � R.

Theorem 1.1. For 𝛽 ∈ Im𝜛, we have

𝑂𝐺𝑊𝛽,0(Γ𝑖1 , . . . , Γ𝑖𝑙 ) − 𝑂𝐺𝑊 ′
𝛽,0 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) =

𝛽

4
𝐺𝑊 𝛽

4
(Δ 𝑖1 , . . . ,Δ 𝑖𝑙 )𝔭R(Δ2).

Corollary 1.4. There is no map 𝑃R : 𝐻4 (C𝑃3, 𝐿�;R) → 𝐻3(𝐿�;R) such that 𝑂𝐺𝑊𝛽,𝑘 vanishes for
every 𝛽 ∈ Im𝜛 and 𝑘 = 0.

Proposition 1.1 is a special case of Proposition 8.1, which gives the analogous statement for X a general
symplectic manifold and L a connected spin Lagrangian submanifold with 𝐻∗(𝐿;R) � 𝐻∗(𝑆𝑛;R) and
[𝐿] = 0 ∈ 𝐻𝑛 (𝑋;R). In fact, Proposition 8.1 remains valid in all situations where the invariants 𝑂𝐺𝑊
are defined in [48].

1.2.4. Relative quantum cohomology
It follows from Corollary 1.3 that we can compute the big relative quantum cohomology of (C𝑃3, 𝐿�).
The resulting ring does not appear to have a tractable presentation by generators and relations. However,
the small relative quantum cohomology of (C𝑃3, 𝐿�) is more accessible.

Theorem 1.5. The small relative quantum cohomology of (C𝑃3, 𝐿�) is given by

𝑄𝐻∗(C𝑃3, 𝐿�) � R[[𝑞1/4]] [𝑥, 𝑦]/𝐼,

with

𝐼 = (𝑥4 − 𝑞 − 1
2
𝑞1/2𝑦 − 3

64
𝑞1/4𝑦, 𝑦2 + 5

4
𝑞1/2𝑦, 𝑥𝑦 − 3

4
𝑞1/4𝑦).

Computations of small relative quantum cohomology for a variety of pairs (𝑋, 𝐿) are given in [29].
However, all Lagrangian submanifolds considered there are fixed by an anti-symplectic involution. The
definitions of big and small quantum cohomology are recalled in Section 2.8.
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1.2.5. Invariants without corrections
The proof of Theorem 1.2 depends on the following general result, which says when the invariants
𝑂𝐺𝑊𝛽,𝑘 can be computed without taking into account correction terms from bounding cochains. For
simplicity, we continue as in Section 1.1 with L a connected spin Lagrangian with𝐻∗ (𝐿;R) � 𝐻∗(𝑆𝑛;R).
A similar result holds in other settings where the invariants 𝑂𝐺𝑊 can be defined. For 𝛽 ∈ 𝐻2(𝑋, 𝐿;Z),
define

𝑃𝛽 = {𝛽 ∈ 𝐻2(𝑋, 𝐿;Z) | 𝜔(𝛽) > 𝜔(𝛽) > 0}. (1.1)

Let 𝜎𝑘 = (𝑘 − 1)! for 𝑘 ∈ Z>0 and let 𝜎0 = 1.

Theorem 1.6. Let 𝑘 ∈ Z≥0 and 𝛽 ∈ 𝐻2(𝑋, 𝐿;Z) satisfy either 𝑘 > 0 or 𝛽 ∉ Im𝜛. Let 𝐴 𝑗 ∈ 𝐻∗(𝑋, 𝐿;R).
Let �̄� ∈ 𝐴𝑛 (𝐿;R) such that PD([�̄�]) = 𝑝𝑡, and let 𝑎 𝑗 be a representative of 𝐴 𝑗 . Suppose that for every

𝛽 ∈ 𝑃𝛽 , 0 ≤ 𝑗 ≤ 𝑘, 𝐼 ⊂ {1, . . . , 𝑙},

one of the following two conditions is satisfied:

1. 1 − 𝜇(𝛽) + 𝑗 (𝑛 − 1) +
∑

𝑖∈𝐼 (|𝐴𝑖 | − 2) < 0, or
2. 1 − 𝜇(𝛽) + 𝑗 (𝑛 − 1) +

∑
𝑖∈𝐼 (|𝐴𝑖 | − 2) ≥ 𝑛 − 1.

Then,

𝑂𝐺𝑊𝛽,𝑘 (𝐴1, . . . , 𝐴𝑙) = (−1)𝑛𝜎𝑘

∫
M𝑘,𝑙 (𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 �̄�.

Theorem 1.6 is a special case of Theorem 4.19. The basic invariants 𝑂𝐺𝑊1,1, 𝑂𝐺𝑊1,0 (Γ2) and
𝑂𝐺𝑊2,0 (Γ3) of Theorem 1.2 are exactly the invariants to which Theorem 1.6 applies for L the Chiang
Lagrangian.

1.2.6. Orientation, spin structure and signs
We prove general formulas governing the dependence of the invariants 𝑂𝐺𝑊𝛽,𝑘 on the spin structure
and orientation of L, which appear as the spin axiom 7 and the orientation axiom 8 of Proposition 2.2.
See also Lemmas 4.5 and 4.6. We use the spin and orientation axioms to deduce vanishing results for
certain open Gromov-Witten invariants, which are formulated in Corollaries 4.7 and 4.8.

A significant part of the present paper is devoted to computing the signs of the three basic invariants of
Theorem 1.2. The spin and orientation axioms show that by changing the orientation and spin structure
on 𝐿�, one can adjust the signs of any two of the basic invariants arbitrarily. Moreover, changing the
orientation and spin structure only affects the signs of invariants but not their absolute values.

However, it can be seen from the proof of Lemma 6.1 that if the sign of one of the three basic invariants
is changed while the two others are held fixed, then the absolute values of non-basic invariants change.
Qualitatively, the denominators of invariants cease to be powers of two.

1.2.7. Arithmetic structure of the open WDVV equations
From the perspective of Theorem 1.1, it is surprising that only powers of 2 appear in the denominators of
the invariants 𝑂𝐺𝑊 for the Chiang Lagrangian 𝐿� . Indeed, to use relation 2 for recursive computations,
it is necessary to divide by 𝑂𝐺𝑊2,0 (Γ2, Γ2) = 35

64 . A priori, this should introduce factors of 5 and 7 in
denominators, but unexpected cancellations occur so that only factors of 2 remain.

To test the rigidity of these cancellations, we searched for rational numbers 𝑣 ≠ 1/4 that upon
substitution for the value of 𝑂𝐺𝑊1,0(Γ2) in the recursive scheme of Corollary 1.3 yield 𝑂𝐺𝑊𝑘,𝑘 with
denominator a power of 2 for 𝑘 = 1, . . . , 𝑀. As M increases, the magnitudes of the possible numerators
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and denominators of v increase. For 𝑀 = 4, the v with smallest numerator and denominator that we
found is

𝑣 = −46, 912, 496, 118, 431
17, 592, 186, 044, 416

≈ −2.66.

For this choice of 𝑣, the value for 𝑂𝐺𝑊5,5 given by the recursive scheme has denominator 7.
Therefore, we reach the following conclusion. Suppose it were possible to formalize the heuristic

argument of Section 1.2.2 to prove geometrically that the invariants 𝑂𝐺𝑊𝛽,𝑘 can only have powers of
2 for denominators. Then, it seems reasonable to expect that the basic invariant 𝑂𝐺𝑊1,0(Γ2) could be
deduced from the other two basic invariants, the open WDVV equations, the axioms of 𝑂𝐺𝑊, and the
closed Gromov-Witten invariants of C𝑃3.

If it were necessary to compute only two basic invariants geometrically, it would not be necessary to
compute their signs. Indeed, these signs could be adjusted arbitrarily by changing the orientation and
spin structure on 𝐿� as noted in Section 1.2.6. Thus, the computations of this paper could be simplified
significantly. In fact, this strategy can be generalized for an arbitrary pair (𝑋, 𝐿) as outlined below.

1.3. Directions for future research

Remarkably, Theorem 1.6 applies exactly for those invariants that are needed as initial values for
the recursions given by Theorem 1.1. It is an interesting question to determine to what extent this
phenomenon persists more generally.

We expect the techniques of the present paper to extend to the other Platonic Lagrangians studied by
Smith [43] and more general homogeneous Lagrangians [3, 23, 33]

Motivated by the discussion of Section 1.2.7, we formulate the following two hypotheses. These
hypotheses should hold for a large class of Lagrangian submanifolds 𝐿 ⊂ 𝑋 , but some restrictions are
necessary.

1. The invariants 𝑂𝐺𝑊𝛽,𝑘 are rational of the form 𝑚
𝑝
𝑎1
1 · · ·𝑝𝑎𝑁

𝑁

where 𝑝1, . . . , 𝑝𝑁 are the primes that
occur as orders of torsion elements in 𝐻∗(𝐿;Z).

2. Let A be a minimal set of the invariants 𝑂𝐺𝑊𝛽,𝑘 from which all other invariants can be deduced
using the open WDVV equations, the axioms of 𝑂𝐺𝑊, the wall-crossing formula, and the closed
GW invariants of X. Let B ⊂ A be defined in the same way as A except that we are also allowed to
use hypothesis 1 to deduce the other invariants. Then B is a proper subset of A.

Hypothesis 1 follows from the heuristic argument of Section 1.2.2 applied to L of general topology.
It should admit a geometric proof. Hypothesis 2 is a statement about the arithmetic structure of the
open WDVV equation. In the case of the Chiang Lagrangian, we can take A to be the basic invariants
𝑂𝐺𝑊1,1, 𝑂𝐺𝑊1,0 (Γ2) and 𝑂𝐺𝑊2,0 (Γ3). Then, the calculations presented in Section 1.2.7 indicate that
the invariants 𝑂𝐺𝑊1,1 and 𝑂𝐺𝑊2,0(Γ3) suffice for B. However, in the case (𝑋, 𝐿) = (C𝑃𝑛,R𝑃𝑛), one
can see that hypothesis 2 does not hold as follows. It is shown in [48, Corollary 1.9] that one can take
A to consist of a single invariant. It follows from either the spin axiom 7 or the orientation axiom 8 of
Proposition 2.2 that by changing the spin structure or orientation on L, the sign of this single invariant
can be changed without affecting the absolute value of the others – in particular, without violating
hypothesis 1. Thus, B cannot be smaller than A. Another case where hypothesis 2 does not hold is
when X is the quadric hypersurface in C𝑃𝑛+1 given by

∑𝑛
𝑖=0 𝑧

2
𝑖 − 𝑧2

𝑛+1 = 0 and L is the real locus. This
is explained in Remark 4.9 based on results of [29], which are related to the orientation axiom.

We observe the following common feature of the forgoing exceptions to hypothesis 2. In both cases,
one can take A to contain a single invariant, while there are one or more geometric degree of freedom
affecting the values of the invariants: in the case (𝑋, 𝐿) = (C𝑃𝑛,R𝑃𝑛), there are choices of spin structure
and orientation, and in the case of the quadric, there is the choice of orientation. The presence of more
geometric degrees of freedom than the size of A forces a measure of flexibility in the open WDVV
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equations. In contrast, for the Chiang Lagrangian, A contains three invariants, while there are only two
geometric degrees of freedom, the choices of spin structure and orientation. So, the equations can be
sufficiently rigid for hypothesis 2 to hold.

1.4. Outline

In Section 2, we recall general definitions and results on closed and open Gromov-Witten invariants
that will be useful in the other sections. This includes the closed and open axioms, the closed and the
open WDVV equations, the wall-crossing formula, and the definitions of small and big relative quantum
cohomology.

In Section 3, we recall from [43] a family of Lagrangian homology spheres in Fano threefolds called
Platonic Lagrangians. We focus mainly on the Chiang Lagrangian 𝐿�, which is a special case of this
construction, and recall some of its basic properties.

Section 4 contains results related to Fukaya 𝐴∞ algebras, bounding cochains and the superpotential.
We recall definitions and results on obstruction theory for bounding cochains from [46]. These are used
to prove Theorem 4.19, which gives a criterion for open Gromov-Witten invariants to coincide with
straightforward counts of J-holomorphic disks. Theorem 1.6, which is needed for Section 5, is obtained
as a special case. We also prove Lemmas 4.5 and 4.6, from which we deduce the spin axiom 7 and the
orientation axiom 8 of Proposition 2.2.

The goal of Section 5 is to compute the basic invariants that serve as initial values for the recursive
formulas. In Sections 5.1-5.3, we recall definitions and results about the anticanonical divisor, the
Maslov class and axial disks. In Section 5.4, we give the definition of a spin Riemann-Hilbert pair, recall
results on canonical orientations, and prove some new ones. Section 5.5 contains results concerning
Riemann-Hilbert pairs arising from a certain type of axial disk. We use these results to compute the
basic invariants geometrically in Sections 5.6-5.8.

Section 6 contains the proofs of Theorem 1.1 and Corollary 1.3, which give recursive formulas that
determine all open Gromov-Witten invariants of (C𝑃3, 𝐿�) from the three basic invariants.

In Section 7, we compute the small relative cohomology of (C𝑃3, 𝐿�).
In Section 8, we recall definitions and results concerning the map 𝑃R from [48]. These results are used

to prove Proposition 8.1, which shows how the invariants 𝑂𝐺𝑊 depend on the map 𝑃R. Proposition 1.1
is obtained as a special case. Finally, we prove Corollary 1.4.

2. Background

In this section, we recall definitions and properties of open and closed Gromov-Witten invariants and
relative quantum cohomology.

2.1. Invariants

Let (𝑋, 𝜔) be a closed symplectic manifold. For 𝛽 ∈ 𝐻2(𝑋;Z) and 𝑙 ≥ 0, let

𝐺𝑊𝛽 : 𝐻∗(𝑋;Q) ⊗𝑙 → Q

denote the standard closed genus zero Gromov-Witten invariant. This invariant counts J-holomorphic
maps 𝑆2 → 𝑋 representing the class 𝛽 passing through cycles Poincaré dual to l cohomology classes
on 𝑋.

Let 𝐿 ⊂ 𝑋 be a closed Lagrangian submanifold. Genus zero open Gromov-Witten invariants are
analogous invariants that count J-holomorphic maps (𝐷, 𝜕𝐷) → (𝑋, 𝐿) along with correction terms
arising from bounding cochains. To simplify the exposition, we focus on the case that L is connected
and spin, with 𝐻∗(𝐿;R) � 𝐻∗(𝑆𝑛;R) and [𝐿] = 0 ∈ 𝐻𝑛 (𝑋;R). These conditions hold for the Chiang
Lagrangian. Similar results are known [46] in the case that L is only relatively spin or [𝐿] ≠ 0 ∈
𝐻𝑛 (𝑋;R).
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Consider the subcomplex of differential forms on X consisting of those with trivial integral on 𝐿,

𝐴∗(𝑋, 𝐿;R) :=
{
𝜂 ∈ 𝐴∗(𝑋;R)




 ∫
𝐿
𝜂 |𝐿 = 0
}
.

For an R-algebra Υ, write

𝐴∗(𝑋, 𝐿;Υ) := 𝐴∗(𝑋, 𝐿;R) ⊗ Υ, 𝐻∗(𝑋, 𝐿;Υ) := 𝐻∗(𝐴∗(𝑋, 𝐿;Υ), 𝑑).

Observe that

𝐻∗(𝑋, 𝐿;Υ) � 𝐻0(𝐿;Υ) ⊕ 𝐻>0 (𝑋, 𝐿;Υ).

For 𝛽 ∈ 𝐻2(𝑋, 𝐿;Z) and 𝑘, 𝑙 ≥ 0, let

𝑂𝐺𝑊𝛽,𝑘 : 𝐻∗(𝑋, 𝐿;R) ⊗𝑙 → R

denote the open Gromov-Witten invariants of [46]. The definition is recalled in Section 4.2. For 𝛽 ∈
𝐻2 (𝑋, 𝐿;Z) and 𝑘, 𝑙 ≥ 0, let

𝑂𝐺𝑊𝛽,𝑘 : 𝐻∗(𝑋, 𝐿;R) ⊗𝑙 → R

denote the enhanced invariants defined in [48]. The definition is recalled in 8. These invariants combine
counts of J-holomorphic disks and J-holomorphic spheres. With the exception of the case that 𝛽 belongs
to the image of the natural map

𝜛 : 𝐻2 (𝑋;Z) → 𝐻2(𝑋, 𝐿;Z)

and 𝑘 = 0, we have 𝑂𝐺𝑊𝛽,𝑘 = 𝑂𝐺𝑊𝛽,𝑘 . In the exceptional case, 𝑂𝐺𝑊𝛽,𝑘 = 0, but 𝑂𝐺𝑊𝛽,𝑘 need not
vanish. By the assumption [𝐿] = 0 ∈ 𝐻𝑛 (𝑋;R), there is a short exact sequence

0 → 𝐻𝑛 (𝐿;R)
𝑦

−→ 𝐻𝑛+1 (𝑋, 𝐿;R)
𝜌

−→ 𝐻𝑛+1 (𝑋;R) → 0. (2.1)

For 𝑘 = 0 and 𝛽 ∈ Im𝜛, the definition of the enhanced invariants 𝑂𝐺𝑊𝛽,𝑘 depends on the choice of a
linear map

𝑃R : 𝐻𝑛+1(𝑋, 𝐿;R) → 𝐻𝑛 (𝐿;R) � R

that is a left-inverse to the map y in the short exact sequence. A choice of 𝑃R is equivalent to a splitting of
(2.1). We extend 𝑃R to a map 𝑃R : 𝐻∗(𝑋, 𝐿;R) → 𝐻𝑛 (𝐿;R) by setting it to zero outside 𝐻𝑛+1(𝑋, 𝐿;R).

2.2. Axioms

The closed Gromov-Witten invariants satisfy the following properties [4, 22, 34, 36, 38, 37, 41, 42].

Theorem 2.1. Let 𝛽 ∈ 𝐻2(𝑋,Z) and let 𝐴1, . . . , 𝐴𝑘 ∈ 𝐻∗(𝑋;R).

1. (Effective) If 𝜔(𝛽) < 0, then 𝐺𝑊𝛽 (𝐴1, . . . , 𝐴𝑘 ) = 0.
2. (Symmetry) For each permutation 𝜎 ∈ 𝑆𝑘 ,

𝐺𝑊𝛽 (𝐴𝜎 (1) , . . . , 𝐴𝜎 (𝑘) ) = (−1)𝑠𝜎 (𝐴)𝐺𝑊𝛽 (𝐴1, . . . , 𝐴𝑘 ),

where 𝑠𝜎 (𝐴) :=
∑

𝑖< 𝑗
𝜎 (𝑖)<𝜎 ( 𝑗)

|𝐴𝑖 | · |𝐴 𝑗 |.
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3. (Degree) If 𝐺𝑊𝛽 (𝐴1, . . . , 𝐴𝑘 ) ≠ 0, then

𝑘∑
𝑖=1

|𝐴𝑖 | − 2𝑘 + 6 = 2𝑛 + 2𝑐1 (𝛽).

4. (Fundamental Class) If (𝛽, 𝑘) ≠ (0, 3) and 𝑘 ≥ 1, then

𝐺𝑊𝛽 (𝐴1, . . . , 𝐴𝑘−1, 1) = 0.

5. (Divisor) If (𝛽, 𝑘) ≠ (0, 3), |𝐴𝑘 | = 2 and 𝑘 ≥ 1, then

𝐺𝑊𝛽 (𝐴1, . . . , 𝐴𝑘 ) = 𝐺𝑊𝛽 (𝐴1, . . . , 𝐴𝑘−1) ·
∫
𝛽
𝐴𝑘 .

6. (Zero) If 𝑘 ≠ 3, then 𝐺𝑊0 (𝐴1, . . . , 𝐴𝑘 ) = 0. If 𝑘 = 3, then

𝐺𝑊0 (𝐴1, 𝐴2, 𝐴3) =
∫
𝑋
𝐴1 ⌣ 𝐴2 ⌣ 𝐴3.

7. (Deformation invariance) The invariants𝐺𝑊𝛽 remain constant under deformations of the symplectic
form 𝜔.

The enhanced open invariants 𝑂𝐺𝑊 satisfy the following properties.

Theorem 2.2. Let 𝛽 ∈ 𝐻2(𝑋, 𝐿;Z), let 𝑘 ∈ Z≥0 and let 𝐴1, . . . , 𝐴𝑙 ∈ 𝐻∗(𝑋, 𝐿;R).

1. (Effective) If 𝜔(𝛽) < 0, then 𝑂𝐺𝑊𝛽,𝑘 (𝐴1, . . . , 𝐴𝑘 ) = 0.
2. (Symmetry) For each permutation 𝜎 ∈ 𝑆𝑙 ,

𝑂𝐺𝑊𝛽,𝑘 (𝐴𝜎 (1) , . . . , 𝐴𝜎 (𝑙) ) = (−1)𝑠𝜎 (𝐴)𝑂𝐺𝑊𝛽 (𝐴1, . . . , 𝐴𝑙),

where 𝑠𝜎 (𝐴) :=
∑

𝑖< 𝑗
𝜎 (𝑖)<𝜎 ( 𝑗)

|𝐴𝑖 | · |𝐴 𝑗 |.

3. (Degree) If 𝑂𝐺𝑊𝛽,𝑘 (𝐴1, . . . , 𝐴𝑙) ≠ 0, then

𝑛 − 3 + 𝜇(𝛽) + 𝑘 + 2𝑙 = 𝑘𝑛 +
𝑙∑
𝑗=1

|𝐴 𝑗 |.

4. (Unit/ Fundamental class)

𝑂𝐺𝑊𝛽,𝑘 (1, 𝐴1, . . . , 𝐴𝑙−1) =
⎧⎪⎪⎨⎪⎪⎩

−1, (𝛽, 𝑘, 𝑙) = (𝛽0, 1, 1)
𝑃R (𝐴1), (𝛽, 𝑘, 𝑙) = (𝛽0, 0, 2)
0, otherwise.

5. (Zero)

𝑂𝐺𝑊𝛽0 ,𝑘 (𝐴1, . . . , 𝐴𝑙) =
⎧⎪⎪⎨⎪⎪⎩

−1, (𝑘, 𝑙) = (1, 1) 𝑎𝑛𝑑 𝐴1 = 1
𝑃R (𝐴1 ⌣ 𝐴2), (𝑘, 𝑙) = (0, 2)
0, otherwise.

6. (Divisor) If |𝐴𝑙 | = 2, then

𝑂𝐺𝑊𝛽,𝑘 (𝐴1, . . . , 𝐴𝑙) =
∫
𝛽
𝐴𝑙 · 𝑂𝐺𝑊𝛽,𝑘 (𝐴1, . . . , 𝐴𝑙−1).
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7. (Spin) Changing the spin structure on L by the action of 𝛼 ∈ 𝐻1(𝐿;Z/2Z) changes the sign of
𝑂𝐺𝑊𝛽,𝑘 (𝐴1, ..., 𝐴𝑙) by the sign (−1)𝛼(𝜕𝛽) .

8. (Orientation) Changing the orientation of L changes the sign of 𝑂𝐺𝑊𝛽,𝑘 (𝐴1, ..., 𝐴𝑙) by the sign
(−1)𝑘+1.

9. (Deformation invariance) The invariants 𝑂𝐺𝑊𝛽,𝑘 remain constant under deformations of the sym-
plectic form 𝜔 for which L remains Lagrangian.

Proof. Axioms 3–6 are given in Proposition 4.19 from [48]. The analogs of Axioms 2 and 9 for the
invariants 𝑂𝐺𝑊 are given in Theorem 4 of [46]. The analogs of Axioms 7 and 8 for the invariants 𝑂𝐺𝑊
are given in Lemmas 4.5 and 4.6 below, respectively. The extension to the invariants 𝑂𝐺𝑊 is similar to
the proof of Proposition 4.19 in [48]. Axiom 1 follows from the fact that the Novikov ring Λ consists of
power series in 𝑇𝛽 for 𝜔(𝛽) ≥ 0. Indeed, the enhanced superpotential Ω is defined in Section 1.3.3 in
[48] as an element of the ring 𝑅𝑊 . �

2.3. Bases

LetΔ 𝑖 ∈ 𝐻∗(𝑋;R) for 𝑖 = 0, . . . , 𝑁, be a basis and let Γ𝑖 ∈ ker(𝑃R) ⊂ 𝐻∗(𝑋, 𝐿;R) be the unique classes
such that 𝜌(Γ𝑖) = Δ 𝑖 . Let Γ𝑁+1 = 𝑦(1). We also write Γ� = 𝑦(1). For convenience, set Δ𝑁+1 = 0.

2.4. Novikov rings

Let 𝜇 : 𝐻2 (𝑋, 𝐿;Z) → Z denote the Maslov index. Define Novikov coefficients rings

Λ :=

{ ∞∑
𝑖=0

𝑎𝑖𝑇
𝛽𝑖 |𝑎𝑖 ∈ R, 𝛽𝑖 ∈ 𝐻2(𝑋, 𝐿;Z), 𝜔(𝛽𝑖) ≥ 0, lim

𝑖→∞
𝜔(𝛽𝑖) = ∞

}
,

Λ𝑐 :=
⎧⎪⎨⎪⎩

∞∑
𝑗=0

𝑎 𝑗𝑇
𝜛 (𝛽 𝑗 ) |𝑎 𝑗 ∈ R, 𝛽 𝑗 ∈ 𝐻2 (𝑋;Z), 𝜔(𝛽 𝑗 ) ≥ 0, lim

𝑗→∞
𝜔(𝛽 𝑗 ) = ∞

⎫⎪⎬⎪⎭ � Λ.

Gradings on Λ,Λ𝑐 are defined by declaring |𝑇𝛽 | = 𝜇(𝛽). Let

𝑅𝑊 = Λ[[𝑡0, . . . , 𝑡𝑁+1, 𝑠]],
𝑄𝑊 = Λ𝑐 [[𝑡0, . . . , 𝑡𝑁+1]], 𝑄𝑈 = Λ𝑐 [[𝑡0, . . . , 𝑡𝑁 ]] .

Gradings on 𝑅𝑊 , 𝑄𝑊 , 𝑄𝑈 , are defined by declaring |𝑡𝑖 | = 2 − |Γ𝑖 |, |𝑠 | = 1 − 𝑛.

2.5. Potentials

The closed Gromov-Witten potential is given by

Φ(𝑡0, . . . , 𝑡𝑁 ) =
∑

𝛽∈𝐻2 (𝑋 ;Z)
𝑟𝑖 ≥0

𝑇𝜛 (𝛽) 𝑡𝑟𝑁𝑁 · · · 𝑡𝑟0
0

𝑟𝑁 ! · · · 𝑟0!
𝐺𝑊𝛽 (Δ ⊗𝑟0

0 ⊗ · · · ⊗ Δ ⊗𝑟𝑁
𝑁 ) ∈ 𝑄𝑈 .

The enhanced superpotential, which encodes the enhanced open Gromov-Witten invariants 𝑂𝐺𝑊𝛽,𝑘 , is
given by

Ω(𝑠, 𝑡0, . . . , 𝑡𝑁+1) =
∑

𝛽∈𝐻2 (𝑋,𝐿;Z)
𝑘≥0
𝑟𝑖 ≥0

𝑇𝛽𝑠𝑘 𝑡𝑟𝑁+1
𝑁+1 · · · 𝑡𝑟0

0
𝑘!𝑟𝑁+1! · · · 𝑟0!

𝑂𝐺𝑊𝛽,𝑘 (Γ⊗𝑟0
0 ⊗ · · · ⊗ Γ⊗𝑟𝑁+1

𝑁+1 ) ∈ 𝑅𝑊 . (2.2)
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2.6. WDVV equations

Let

𝑔𝑖 𝑗 =
∫
𝑋
Δ 𝑖 ⌣ Δ 𝑗 , 𝑖, 𝑗 = 0, . . . , 𝑁,

and let 𝑔𝑖 𝑗 denote the inverse matrix. The following WDVV equations hold for the closed Gromov-
Witten potential [4, 22, 34, 36, 38, 37, 41, 42, 53].

Theorem 2.1 (Closed WDVV equations). For all quadruples of integers 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {0, . . . , 𝑛}, the
function Φ = ΦC𝑃

𝑛 satisfies

𝑁∑
𝜇,𝜈=0

𝜕𝑡𝑖𝜕𝑡 𝑗 𝜕𝑡𝜈Φ · 𝑔𝜈𝜇 · 𝜕𝑡𝜇𝜕𝑡𝑘 𝜕𝑡𝑙Φ =
𝑁∑

𝜇,𝜈=0
𝜕𝑡 𝑗 𝜕𝑡𝑘 𝜕𝑡𝜈Φ · 𝑔𝜈𝜇 · 𝜕𝑡𝜇𝜕𝑡𝑖𝜕𝑡𝑙Φ.

The following is Corollary 1.6 from [48].

Theorem 2.2 (Open WDVV equations). For 𝑢, 𝑣, 𝑤 = 0, . . . , 𝑁 + 1, we have the open WDVV equations

𝑁∑
𝑙,𝑚=0

𝜕𝑡𝑢𝜕𝑡𝑙Ω · 𝑔𝑙𝑚 · 𝜕𝑡𝑚𝜕𝑡𝑤 𝜕𝑡𝑣Φ − 𝜕𝑡𝑢𝜕𝑠Ω · 𝜕𝑡𝑤 𝜕𝑡𝑣Ω

=
𝑁∑

𝑙,𝑚=0
𝜕𝑡𝑢𝜕𝑡𝑤 𝜕𝑡𝑙Φ · 𝑔𝑙𝑚 · 𝜕𝑡𝑚𝜕𝑡𝑣Ω − 𝜕𝑡𝑢𝜕𝑡𝑤Ω · 𝜕𝑡𝑣 𝜕𝑠Ω, (2.3)

𝑁∑
𝑙,𝑚=0

𝜕𝑠𝜕𝑡𝑙Ω · 𝑔𝑙𝑚 · 𝜕𝑡𝑚𝜕𝑡𝑤 𝜕𝑡𝑣Φ − 𝜕2
𝑠Ω · 𝜕𝑡𝑤 𝜕𝑡𝑣Ω = −𝜕𝑠𝜕𝑡𝑤Ω · 𝜕𝑡𝑣 𝜕𝑠Ω. (2.4)

2.7. Wall-crossing

Define

Γ� = 𝑦(1) ∈ 𝐻∗(𝑋, 𝐿;R).

The following is Theorem 6 from [48].

Theorem 2.3 (Wall crossing). Suppose [𝐿] = 0. Then the invariants 𝑂𝐺𝑊𝛽,𝑘 satisfy

𝑂𝐺𝑊𝛽,𝑘+1(𝜂1, . . . , 𝜂𝑙) = −𝑂𝐺𝑊𝛽,𝑘 (Γ�, 𝜂1, . . . , 𝜂𝑙).

2.8. Relative quantum cohomology

Abbreviate

Δ =
𝑁∑
𝑖=0

𝑡𝑖Δ 𝑖 , Γ =
𝑁+1∑
𝑖=0

𝑡𝑖Γ𝑖 .

The underlying module of the big relative quantum cohomology is

𝑄𝐻∗
big (𝑋, 𝐿) := 𝐻∗(𝑋, 𝐿;Λ[[𝑡0, . . . , 𝑡𝑁+1]]).
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The big relative quantum product

bigמ : 𝑄𝐻∗
big (𝑋, 𝐿) ⊗ 𝑄𝐻∗

big (𝑋, 𝐿) → 𝑄𝐻∗
big (𝑋, 𝐿)

is given by

big(Γ𝑣מ , Γ𝑢) =
∑

0≤𝑙,𝑚≤𝑁
𝛽∈𝐻2 (𝑋 ;Z)

𝑝≥0

𝑇𝜛 (𝛽)

𝑝!
𝐺𝑊𝛽 (Δ ⊗𝑝 ⊗ Δ 𝑣 ⊗ Δ𝑢 ⊗ Δ 𝑙) · 𝑔𝑙𝑚 · Γ𝑚

+
∑

𝛽∈𝐻2 (𝑋,𝐿;Z)
𝑝≥0

𝑇𝛽

𝑝!
𝑂𝐺𝑊𝛽,0 (Γ⊗𝑝 ⊗ Γ𝑣 ⊗ Γ𝑢) · Γ�. (2.5)

In Theorem 7 of [48], it is shown that the product bigמ is associative and graded commutative. Though
in [48] the definition of bigמ is based on a chain-level construction, the above explicit formula follows
from Lemma 5.11 in [48].

The underlying module of the small relative quantum cohomology is

𝑄𝐻∗(𝑋, 𝐿) = 𝐻∗(𝑋, 𝐿;Λ).

The small relative quantum product

מ : 𝑄𝐻∗(𝑋, 𝐿) ⊗ 𝑄𝐻∗(𝑋, 𝐿) → 𝑄𝐻∗(𝑋, 𝐿)

is given by specializing the big relative quantum product to 𝑡0 = · · · = 𝑡𝑁+1 = 0. So, it too is associated
and graded commutative. Explicitly, מ is given by

Γ𝑢)מ , Γ𝑣 ) =
∑

0≤𝑙,𝑚≤𝑁
𝛽∈𝐻2 (𝑋 ;Z)

𝑇𝜛 (𝛽) · 𝐺𝑊𝛽 (Δ𝑢 ,Δ 𝑣 ,Δ 𝑙) · 𝑔𝑙𝑚 · Γ𝑚

+
∑

𝛽∈𝐻2 (𝑋,𝐿;Z)
𝑇𝛽 · 𝑂𝐺𝑊𝛽,0(Γ𝑢 , Γ𝑣 ) · Γ�. (2.6)

3. The Chiang Lagrangian

In this section, we describe the construction of the Chiang Lagrangian along with an orientation and
spin structure. Then, we prove some lemmas concerning its topology.

3.1. Geometric construction

The following is largely based on [43]. Consider the fundamental representation V of SL(2,C). Pro-
jectifying, we obtain an action of SL(2,C) on C𝑃1 = P(𝑉). Taking the d-fold symmetric product, we
obtain an action of SL(2,C) on Sym𝑑C𝑃1 = C𝑃𝑑 . Equivalently, we can consider the d-fold symmetric
power 𝑆𝑑𝑉 and projectify to obtain an action of SL(2,C) on P(𝑆𝑑𝑉) = C𝑃𝑑 .

Fix 𝑑 ≥ 3, and a configuration C of d distinct points in C𝑃1. Then, the SL(2,C)-orbit of C in
Sym𝑑C𝑃1 � P𝑆𝑑𝑉 is a three-dimensional complex submanifold, of which the SU(2)-orbit is a three-
dimensional totally real submanifold. The stabilizer of C in SL(2,C) is a finite subgroup of SU(2)
which we denote by Γ𝐶 . In [1], Aluffi and Faber identify those configurations C for which the SL(2,C)-
orbit has smooth closure 𝑋𝐶 in P𝑆𝑑𝑉 . There are four cases: the vertices of an equilateral triangle on a
great circle in C𝑃1, which we denote by �, and the vertices of a regular tetrahedron, octahedron and
icosahedron in C𝑃1, which we denote by 𝑇,𝑂 and I, respectively.

https://doi.org/10.1017/fms.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.6


16 A. Hollands et al.

In each case, the restriction of the SU(2)-action to 𝑋𝐶 with the Fubini- Study Kähler form is
Hamiltonian with the moment map 𝑚 : P𝑆𝑑𝑉 → 𝔰𝔲(2)∗ which is defined by

〈𝑚([𝑧]), 𝜉〉 = 𝑖

2
𝑧†𝜑(𝜉)𝑧
𝑧†𝑧

, 𝜉 ∈ 𝔰𝔲(2),

where 𝜑 : 𝔰𝔲(2) → Mat(𝑑+1)×(𝑑+1) (C) is given by the representation 𝑆𝑑𝑉. The SU(2)-orbits of the
configurations �, 𝑇, 𝑂 and I all lie in the zero sets of the respective moment maps, so they are Lagrangian.
We denote these orbits by 𝐿𝐶 .

The Chiang Lagrangian is 𝐿� ⊂ 𝑋� = P𝑆3𝑉 � C𝑃3. It is the space of all the equilateral triangles on
great circles in C𝑃1. Topologically, 𝐿� is the quotient of SU(2) by the binary dihedral subgroup Γ� of
order 12.

To work with the Chiang Lagrangian, we will need the following additional notations. Let𝑊� denote
the Zariski open SL(2,C)-orbit in C𝑃3, and let 𝑌� denote its complement. 𝑌� consists of those 3-point
configurations in C𝑃3 where at least 2 of the points coincide. Let 𝑁� ⊂ 𝑌� be the subvariety consisting
of those configurations where all 3 points coincide. If [𝑧0 : . . . : 𝑧3] are standard coordinates on P𝑆3𝑉 ,
then the roots of the polynomial

𝑓 (𝑇) :=
∑

𝑧 𝑗 (−𝑇) 𝑗

correspond (with multiplicity) to the 3-tuple of points obtained by viewing [𝑧] as a point of Sym3C𝑃1.
We count ∞ as a root with multiplicity 3 − deg 𝑓 . Consequently, 𝑌� is defined by the vanishing of the
discriminant �( 𝑓 ) of f.

3.2. Orientation and spin structure

Let 𝛼, 𝛽, 𝛾 be a basis of 𝔰𝔲(2) corresponding to infinitesimal right-handed rotations about a right-handed
set of orthonormal axes. The infinitesimal group action gives rise to a frame for 𝑇𝐿�,

𝛼 · 𝑧, 𝛽 · 𝑧, 𝛾 · 𝑧,

where 𝑧 ∈ 𝐿� . Let 𝔬� be the orientation on 𝐿� such that this frame is positively oriented. Let 𝔰� be the
spin structure on 𝐿� such that this frame can be lifted to the associated double cover of the frame bundle.

3.3. Topological lemmas

Equip P𝑆3𝑉 � C𝑃3 with the Fubini-Study Kähler form 𝜔 such that
∫
C𝑃1 𝜔 = 1. The following lemma

is given in Section 4.3 of [10].

Lemma 3.1. 𝐻1(𝐿�;Z) = Z/4Z.

Lemma 3.2. 𝐻2(𝐿�;Z) = 0.

Proof. By Poincaré duality, it suffices to show 𝐻1(𝐿;Z) = 0. By the universal coefficients theorem, we
get the following short exact sequence

0 → Ext1 (𝐻0 (𝐿�;Z),Z) → 𝐻1 (𝐿�;Z) → Hom(𝐻1 (𝐿�;Z),Z) → 0.

By Lemma 3.1 𝐻1 (𝐿�;Z) = Z/4Z. In addition, 𝐿� is connected, so 𝐻0(𝐿�;Z) = Z. Hence, we get an
exact sequence 0 → 𝐻1(𝐿�;Z) → 0, which yields 𝐻1 (𝐿�;Z) = 0. �

The following is Lemma 4.4.1 from [10].

Lemma 3.3. The Chiang Lagrangian 𝐿� has minimal Maslov number equal to 2.
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For 𝜁 ∈ 𝐻2 (C𝑃3;Z), we denote by 𝑐1 (𝜁) the evaluation of the first Chern class of C𝑃3 on 𝜁 . Let
𝜉 = [C𝑃1] ∈ 𝐻2 (C𝑃3;Z), so 𝑐1 (𝜉) = 4.

Lemma 3.4. The long exact sequence of the pair (C𝑃3, 𝐿�) gives the short exact sequence

0 → 𝐻2 (C𝑃3;Z) 𝜛→ 𝐻2(C𝑃3, 𝐿�;Z) → 𝐻1(𝐿�;Z) → 0,

with 𝐻2 (C𝑃3, 𝐿�;Z) � Z � 𝐻2 (C𝑃3;Z), and the map 𝜛 is given by multiplication by 4.

Proof. Consider the long exact sequence

. . . → 𝐻2(𝐿�;Z) → 𝐻2 (C𝑃3;Z) 𝜛→ 𝐻2 (C𝑃3, 𝐿�;Z) → 𝐻1 (𝐿�;Z) → 𝐻1(C𝑃3;Z) → . . . ,

where

𝐻1(C𝑃3;Z) = 0, 𝐻2(C𝑃3;Z) � Z,

and Lemma 3.1 gives 𝐻1 (𝐿�;Z) � Z/4Z. By Lemma 3.2, we have 𝐻2(𝐿�;Z) = 0, so we get the short
exact sequence

0 → Z 𝜛→ 𝐻2(C𝑃3, 𝐿�;Z) → Z/4Z→ 0. (3.1)

We have two possibilities:

1. The short exact sequence (3.1) is split, so 𝐻2(C𝑃3, 𝐿�;Z) � Z ⊕ Z/4Z. Thus, (3.1) is isomorphic to

0 → Z 𝜛→ Z ⊕ Z/4Z→ Z/4Z→ 0,

where

𝜛(𝑥) = (𝑥, 0).

2. The short exact sequence (3.1) is not split, so 𝐻2(C𝑃3, 𝐿�;Z) = Z. Thus, (3.1) is isomorphic to

0 → Z 𝜛→ Z→ Z/4Z→ 0,

where

𝜛(𝑥) = 4𝑥.

In case 1, the Maslov index is given by

𝜇 : Z ⊕ Z/4Z→ Z,

𝜇(𝑎, 𝑏) = 𝑘𝑎, 𝑘 ∈ Z.

Since 𝜇(𝜛(𝜉)) = 2𝑐1 (𝜉) = 8, it follows that 𝑘 = 8 is in contradiction to Lemma 3.3. Therefore, we
must be in case 2. �

In light of Lemma 3.4, let 𝜉 ∈ 𝐻2 (C𝑃3, 𝐿�;Z) be the generator such that 𝜛(𝜉) = 4𝜉. Recall
Γ1 = [𝜔] ∈ 𝐻2(C𝑃3, 𝐿�;Z).

Lemma 3.5. We have ∫
𝜉
Γ1 =

1
4
.
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Proof. We have

4
∫
𝜉
Γ1 =
∫
𝜛 ( 𝜉 )

𝜔 =
∫
𝜉
𝜔 = 1.

�

4. Bounding cochains and open Gromov-Witten invariants

In this section, we recall the definition of the Fukaya 𝐴∞ algebra of a Lagrangian submanifold following
[12, 13, 17, 15, 16, 14, 47]. We recall the notion of bounding cochains from [14] and the invariants
𝑂𝐺𝑊𝛽,𝑘 of [46] mentioned in Section 2.1. Additionally, we recall results concerning bounding cochains
from [46]. We use these results to prove Theorem 4.19, from which Theorem 1.6 follows as a special
case. These theorems give a class of open Gromov-Witten invariants which coincide with straightforward
counts of J-holomorphic disks without corrections from bounding chains. Theorem 1.6 plays an essential
role in the computation of the basic invariants of Theorem 1.2. We also prove Lemmas 4.5 and 4.6
concerning the affect of change of spin structure and orientation on the invariants 𝑂𝐺𝑊. These lemmas
are used to prove parts 7 and 8 of Proposition 2.2.

Throughout this section, (𝑋, 𝜔) is a symplectic manifold of real dimension 2𝑛 and 𝐿 ⊂ 𝑋 is a
connected Lagrangian submanifold with relative spin structure 𝔰. The notion of a relative spin structure
appeared in [14]. See also [49]. In particular, a relative spin structure determines an orientation on L.
Let J be an 𝜔-tame almost complex structure on X.

4.1. Moduli spaces

Denote by M𝑘+1,𝑙 (𝛽) the moduli space of J-holomorphic genus zero open stable maps 𝑢 : (𝐷, 𝜕𝐷) →
(𝑋, 𝐿) of degree 𝛽 with one boundary component, 𝑘 + 1 boundary marked points and l interior marked
points. The boundary points are labeled according to their cyclic order. We denote elements inM𝑘+1,𝑙 (𝛽)
by [𝑢; 𝑧0, . . . , 𝑧𝑘 , 𝑤1, . . . , 𝑤𝑙], where 𝑧𝑖 ∈ 𝜕𝐷 and 𝑤𝑖 ∈ int 𝐷. Denote by

𝑒𝑣𝑏
𝛽
𝑗 : M𝑘+1,𝑙 (𝛽) → 𝐿, 𝑗 = 0, . . . , 𝑘,

𝑒𝑣𝑖
𝛽
𝑗 : M𝑘+1,𝑙 (𝛽) → 𝑋, 𝑗 = 1, . . . , 𝑙,

the evaluation maps associated to boundary marked points and to the interior marked points respectively.
Denote by M𝑆

𝑘,𝑙 (𝛽) the moduli space of genus zero J-holomorphic open stable maps 𝑢 : (𝐷, 𝜕𝐷) →
(𝑋, 𝐿) of degree 𝛽 with one boundary component, k unordered boundary points, and l interior marked
points. It comes with evaluation maps as in the case of M𝑘,𝑙 (𝛽).

We assume that all J-holomorphic genus zero open stable maps with one boundary component are
regular and the moduli spaces M𝑘+1,𝑙 (𝛽),M𝑆

𝑘,𝑙 (𝛽) are smooth orbifolds with corners. In addition,
we assume that the evaluation maps 𝑒𝑣𝑏𝛽0 are proper submersions. These assumptions should hold for
(𝑋, 𝐿) = (C𝑃3, 𝐿�) and J the standard complex structure on C𝑃3 by Remark 1.6 of [47] in light of the
transitive action of SL(4,C) on C𝑃3 and the transitive action of the subgroup SU(2) ⊂ SL(4,C) on 𝐿�.
The arguments of the present section extend to arbitrary targets (𝑋, 𝜔, 𝐿) and arbitrary 𝜔-tame almost
complex structures J given the virtual fundamental class techniques of [12, 13, 14, 15, 16, 17, 19, 18,
20, 21, 22]. Alternatively, it should be possible to use the polyfold theory of [24, 27, 26, 25, 35]. The
relative spin structure 𝔰 determines an orientation on M𝑘+1,𝑙 (𝛽),M𝑆

𝑘,𝑙 (𝛽) as in Chapter 8 of [14].

4.2. The Fukaya 𝐴∞ algebra

Denote by 𝐴∗(𝑋;R) the ring of differential forms on X with coefficients in R. For 𝑚 > 0, denote by
𝐴𝑚(𝑋, 𝐿;R) differential m-forms on X that vanish on L, and denote by 𝐴0(𝑋, 𝐿;R) functions on X that
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are constant on L. Define

𝐻∗(𝑋, 𝐿;R) := 𝐻∗(𝐴∗(𝑋, 𝐿;R), 𝑑).

By Lemma 5.14 from[46], if 𝐻∗(𝐿;R) � 𝐻∗(𝑆𝑛;R), then 𝐻∗(𝑋, 𝐿;R) � 𝐻∗(𝑋, 𝐿;R). Denote by 𝛽0
the zero element of 𝐻2(𝑋, 𝐿;Z).

Recall the definition of the Novikov ring Λ from Section 2.4. Let 𝑠, 𝑡0, . . . , 𝑡𝑀 , be formal variables
with degrees in Z. Set

𝑅 := Λ[[𝑠, 𝑡0, . . . , 𝑡𝑀 ]], 𝑄 := R[[𝑡0, . . . , 𝑡𝑀 ]] ⊂ 𝑅,

thought of as differential graded algebras with trivial differential. Define a valuation

𝜈 : 𝑅 → R≥0

by

𝜈
���

∞∑
𝑗=0

𝑎 𝑗𝑇
𝛽 𝑗 𝑠𝑘 𝑗

𝑀∏
𝑎=0

𝑡
𝑙𝑎 𝑗
𝑎
��� = inf

𝑗
𝑎 𝑗≠0

(
𝜔(𝛽 𝑗 ) + 𝑘 𝑗 +

𝑀∑
𝑎=0

𝑙𝑎 𝑗

)
.

Whenever a tensor product (resp. direct sum) of modules with valuation is written, we mean the
completed tensor product (resp. direct sum). Set

𝐶 := 𝐴∗(𝐿) ⊗ 𝑅, 𝐷 := 𝐴∗(𝑋, 𝐿) ⊗ 𝑄.

In particular, the gradings on C and D take into account the degrees of 𝑇𝛽 , 𝑠, 𝑡 𝑗 , and the degrees of the
differential forms. The valuation 𝜈 induces valuations on Λ, 𝑄, 𝐶, 𝐷 and their tensor products, which
we also denote by 𝜈. Let

Λ+ = {𝛼 ∈ Λ| 𝜈(𝛼) > 0}.

Let

𝑅+ := 𝑅Λ+ ⊳ 𝑅, I𝑅 := {𝛼 ∈ 𝑅 | 𝜈(𝛼) > 0} ⊳ 𝑅, I𝑄 := {𝛼 ∈ 𝑄 | 𝜈(𝛼) > 0} ⊳ 𝑄.

Let 𝛾 ∈ I𝑄𝐷 be a closed form with |𝛾 | = 2. For example, given closed differential forms 𝛾 𝑗 ∈
𝐴∗(𝑋, 𝐿;R) for 𝑗 = 0, . . . , 𝑀, take 𝑡 𝑗 of degree 2 − |𝛾 𝑗 | and 𝛾 :=

∑𝑀
𝑗=0 𝑡 𝑗𝛾 𝑗 . Define maps

𝔪𝛾,𝛽
𝑘 : 𝐶⊗𝑘 → 𝐶

by

𝔪𝛾,𝛽0
1 (𝛼) = 𝑑𝛼,

and for 𝑘 ≥ 0 when (𝑘, 𝛽) ≠ (1, 𝛽0), by

𝔪𝛾,𝛽
𝑘 (𝛼1, . . . , 𝛼𝑘 ) := (−1)

∑𝑘
𝑗=1 𝑗 ( |𝛼𝑗 |+1)+1

∑
𝑙≥0

1
𝑙!
𝑒𝑣𝑏

𝛽
0 ∗(

𝑙∧
𝑗=1

(𝑒𝑣𝑖𝛽𝑗 )∗𝛾 ∧
𝑘∧
𝑗=1

(𝑒𝑣𝑏𝛽𝑗 )
∗𝛼 𝑗 ). (4.1)

https://doi.org/10.1017/fms.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.6


20 A. Hollands et al.

The push-forward 𝑒𝑣𝑏
𝛽
0∗

is given by integration over the fiber, which is well-defined because 𝑒𝑣𝑏
𝛽
0 is a

proper submersion. Define also

𝔪𝛾
𝑘 : 𝐶⊗𝑘 → 𝐶

by

𝔪𝛾
𝑘 :=

∑
𝛽∈𝐻2 (𝑋,𝐿;Z)

𝑇𝛽𝔪𝛾,𝛽
𝑘 .

Furthermore, define

𝔪𝛾
−1 :=

∑
𝛽∈𝐻2 (𝑋,𝐿;Z) ,

𝑙≥0

1
𝑙!
𝑇𝛽

∫
M0,𝑙 (𝛽)

𝑙∧
𝑗=1

(𝑒𝑣𝑖𝛽𝑗 )∗𝛾.

The following is Proposition 2.6 from [47].

Theorem 4.1. The operations {𝔪𝛾
𝑘 }𝑘≥0 define an 𝐴∞ structure on C. That is, for any 𝛼1, . . . , 𝛼𝑘+1 ∈ 𝐶

and 𝑘 ∈ Z≥0,∑
𝑘1+𝑘2=𝑘+1

1≤𝑖≤𝑘1

(−1)
∑𝑖−1

𝑗=1 ( |𝛼𝑗 |+1)𝔪𝑘1 (𝛼1, . . . , 𝛼𝑖−1,𝔪𝑘2 (𝛼𝑖 , . . . , 𝛼𝑖+𝑘2−1), 𝛼𝑖+𝑘2 , . . . , 𝛼𝑘 ) = 0.

The following is Proposition 3.1 from [47].

Theorem 4.2. The operations 𝔪𝑘 are R-multilinear. Namely, for any 𝛼1, . . . , 𝛼𝑘+1 ∈ 𝐶 and 𝑎 ∈ 𝑅,

𝔪𝛾
𝑘 (𝛼1, . . . , 𝛼𝑖−1, 𝑎 · 𝛼𝑖 , . . . , 𝛼𝑘 ) = (−1) |𝑎 | · (𝑖+Σ𝑖−1

𝑗=1 |𝛼𝑗 |)𝑎 · 𝔪𝛾
𝑘 (𝛼1, . . . , 𝛼𝑘 ) + 𝛿1,𝑘 · 𝑑𝑎 · 𝛼1. (4.2)

Theorem 4.3. For 𝑘 ≥ 0 and 𝜔(𝛽) = 0,

𝔪𝛾,𝛽
𝑘 (𝛼1, . . . , 𝛼𝑘 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑑𝛼1, (𝛽, 𝑘) = (𝛽0, 1),
(−1) |𝛼1 |𝛼1 ∧ 𝛼2, (𝛽, 𝑘) = (𝛽0, 2),
−𝛾1 |𝐿 , (𝛽, 𝑘) = (𝛽0, 0),
0, otherwise.

Proof. If 𝛽 ≠ 𝛽0 and 𝜔(𝛽) = 0, then M𝑘+1,𝑙 = ∅. If 𝛽 = 𝛽0, see Proposition 3.8 in [47]. �

Let 〈 , 〉 denote the Poincaré pairing

〈𝜉, 𝜂〉 := (−1) |𝜂 |
∫
𝐿
𝜉 ∧ 𝜂. (4.3)

The following is Proposition 3.1 from [47].

Theorem 4.4. Let 𝑎 ∈ 𝑅 and 𝛼1, . . . , 𝛼𝑘+1 ∈ 𝐶. The Poincaré pairing satisfies the following:

〈𝑎 · 𝛼1, 𝛼2〉 = 𝑎〈𝛼1, 𝛼2〉, 〈𝛼1, 𝑎 · 𝛼2〉 = (−1) |𝑎 | · (1+|𝛼1 |)𝑎 · 〈𝛼1, 𝛼2〉. (4.4)

The following is Proposition 3.3 from [47].

Theorem 4.5. For 𝛼1, . . . , 𝛼𝑘+1 ∈ 𝐶,

〈𝔪𝛾
𝑘 (𝛼1, . . . , 𝛼𝑘 ), 𝛼𝑘+1〉 = (−1) ( |𝛼𝑘+1 |+1)

∑𝑘
𝑗+1 ( |𝛼𝑗 |+1) 〈𝔪𝛾

𝑘 (𝛼𝑘+1, 𝛼1, . . . , 𝛼𝑘−1), 𝛼𝑘〉. (4.5)
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4.3. Bounding pairs, the superpotential and invariants

Definition 4.1. A bounding pair with respect to J is a pair (𝛾, 𝑏) where 𝛾 ∈ I𝑄𝐷 is closed with |𝛾 | = 2
and 𝑏 ∈ I𝑅𝐶 with |𝑏 | = 1, such that∑

𝑘≥0
𝔪𝛾

𝑘 (𝑏⊗𝑘 ) = 𝑐 · 1, 𝑐 ∈ I𝑅, |𝑐 | = 2.

In this situation, b is called a bounding cochain for 𝔪𝛾 .

The definition of bounding pair appeared in [46], and the definition of bounding cochain appeared
in [14].

Let 𝛾 ∈ I𝑄𝐷, 𝑏 ∈ I𝑅𝐶. The standard superpotential [13] is given by

Ω̂(𝛾, 𝑏) := Ω̂𝐽 (𝛾, 𝑏) := (−1)𝑛
(∑
𝑘≥0

1
𝑘 + 1

〈𝔪𝛾
𝑘 (𝑏⊗𝑘 ), 𝑏〉 + 𝔪𝛾

−1

)
.

Intuitively, Ω̂ counts J-holomorphic disks with constraints 𝛾 in the interior and b on the boundary.
Modification is necessary in order to avoid J-holomorphic disks the boundary of which can degenerate
to a point, forming a J-holomorphic sphere. We say that a monomial element of R is of type D if it
has the form 𝑎 𝑇𝛽𝑠0𝑡

𝑗0
0 · · · 𝑡 𝑗𝑁𝑁 with 𝑎 ∈ R and 𝛽 ∈ Im(𝜛). Following [46], in the present paper, the

superpotential is defined by

Ω(𝛾, 𝑏) := Ω𝐽 (𝛾, 𝑏) := Ω̂𝐽 (𝛾, 𝑏) − all monomials of type D in Ω̂𝐽 .

Definition 3.12 from [46] gives a notion of gauge equivalence between a bounding pair (𝛾, 𝑏) with
respect to J and a bounding pair (𝛾′, 𝑏′) with respect to another almost complex structure 𝐽 ′. Let ∼
denote the resulting equivalence relation. For a graded module M, we denote by (𝑀) 𝑗 the degree j part
of the module.

Define a map

𝜚 : {bounding pairs}/∼ −→ (I𝑄𝐻∗(𝑋, 𝐿;𝑄))2 ⊕ (I𝑅)1−𝑛

by

𝜚([𝛾, 𝑏]) :=
(
[𝛾],
∫
𝐿
𝑏

)
.

By Lemma 3.16 in [46], 𝜚 is well defined. The following is Theorem 1 from [46].

Theorem 4.2. If (𝛾, 𝑏) ∼ (𝛾′, 𝑏′), then Ω𝐽 (𝛾, 𝑏) = Ω𝐽 ′ (𝛾′, 𝑏′).

The following is Theorem 2 from [46].

Theorem 4.3. Assume 𝐻∗(𝐿;R) = 𝐻∗(𝑆𝑛;R). Then 𝜚 is bijective.

Fix Γ0, . . . , Γ𝑀 a basis of 𝐻∗(𝑋, 𝐿;R), set |𝑡 𝑗 | = 2 − |Γ 𝑗 |, and take

Γ :=
𝑀∑
𝑗=0

𝑡 𝑗Γ 𝑗 ∈ (I𝑄𝐻∗(𝑋, 𝐿;R))2.

By Theorem 4.3, choose a bounding pair (𝛾, 𝑏) such that

𝜚([𝛾, 𝑏]) = (Γ, 𝑠).

By Theorem 4.2, the superpotential Ω = Ω(𝛾, 𝑏) is independent of the choice of (𝛾, 𝑏).
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Definition 4.4. The open Gromov-Witten invariants of (𝑋, 𝐿),

OGW𝛽,𝑘 : 𝐻∗(𝑋, 𝐿;R) ⊗𝑙 → R,

are defined by setting

OGW𝛽,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) := the coefficient of 𝑇𝛽 in 𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 𝜕
𝑘
𝑠 Ω|𝑠=0,𝑡 𝑗=0

and extending linearly to general input.

The following is Proposition 5.2 from [46].

Theorem 4.6. The invariants OGW𝛽,𝑘 are independent of the choice of a basis.

4.4. Changes of spin structure and orientation

The following Lemmas describe the dependence of the invariants 𝑂𝐺𝑊𝛽,𝑘 on the spin structure and
the orientation of 𝐿.

Lemma 4.5. Changing the spin structure on L by the action of 𝛼 ∈ 𝐻1 (𝐿;Z/2Z) changes𝑂𝐺𝑊𝛽,𝑘 (· · · )
by multiplication by (−1)𝛼(𝜕𝛽) .

Proof. In the following proof, we add a superscript 𝔰 to the 𝐴∞ operations, superpotential and open
Gromov-Witten invariants to indicate the spin structure used to construct them. By Lemma 2.10 of [45],
the orientations of M𝑘+1,𝑙 (𝛽) induced by 𝔰 and 𝛼 · 𝔰 differ by a sign of (−1)𝛼(𝜕𝛽) . So,

𝔪𝛾,𝛽,𝔰
𝑘 = (−1)𝛼(𝜕𝛽)𝔪𝛾,𝛽,𝛼 ·𝔰

𝑘 .

Let 𝔣𝑅 : 𝑅 → 𝑅 be the R algebra automorphism that sends 𝑇𝛽 to (−1)𝛼(𝜕𝛽)𝑇𝛽 and acts trivially on the
other formal variables. Then, the R module automorphism

𝔣 = 𝔣𝑅 ⊗ Id𝐴∗ (𝐿) : 𝐶 → 𝐶

is a strict 𝐴∞ homomorphism between the 𝐴∞ structures 𝔪𝔰
𝑘 and 𝔪𝛼 ·𝔰

𝑘 and preserves the pairing 〈·, ·〉.
So, if b is a bounding cochain for 𝔪𝔰

𝑘 with
∫
𝐿
𝑏 = 𝑠, then 𝔣(𝑏) is a bounding cochain for 𝔪𝛼 ·𝔰

𝑘 with∫
𝐿
𝔣(𝑏) = 𝑠 and 𝔣(Ω𝔰 (𝛾, 𝑏)) = Ω𝛼 ·𝔰 (𝛾, 𝔣(𝑏)). By Definition 4.4, we obtain

𝑂𝐺𝑊 𝛼 ·𝔰
𝛽,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) = [𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 𝜕

𝑘
𝑠 Ω

𝛼 ·𝔰 (𝛾, 𝔣(𝑏))) |𝑠=0,𝑡 𝑗=0

= [𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 𝜕
𝑘
𝑠 𝔣(Ω𝔰 (𝛾, 𝑏)) |𝑠=0,𝑡 𝑗=0

= (−1)𝛼(𝜕𝛽) [𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 𝜕
𝑘
𝑠 (Ω𝔰 (𝛾, 𝑏)) |𝑠=0,𝑡 𝑗=0

= (−1)𝛼(𝜕𝛽)𝑂𝐺𝑊𝔰
𝛽,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ).

�

Lemma 4.6. Changing the orientation of L changes𝑂𝐺𝑊 𝛽,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) by multiplication by (−1)𝑘+1.

Proof. In the following proof, we add a superscript 𝔬 to the 𝐴∞ operations, superpotential, Poincaré
pairing,

∫
𝐿

and open Gromov-Witten invariants to indicate the orientation used to construct them. By
Lemma 2.9 from [45], changing the orientation of L reverses the orientation of M𝑘+1,𝑙 (𝛽). Since the
relative orientation is not changed, it follows that

𝔪𝛾,𝛽,𝔬
𝑘 = 𝔪𝛾,𝛽,−𝔬

𝑘 .
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Let 𝔣𝑅 : 𝑅 → 𝑅 be the R algebra automorphism that sends s to −𝑠 and acts trivially on the other formal
variables. Then, the R module automorphism

𝔣 = 𝔣𝑅 ⊗ Id𝐴∗ (𝐿) : 𝐶 → 𝐶

is a strict 𝐴∞ homomorphism between the 𝐴∞ structures 𝔪𝔬
𝑘 and 𝔪−𝔬

𝑘 that satisfies

〈·, ·〉𝔬 = −〈·, ·〉−𝔬 .

Similarly,
∫ 𝔬
𝐿

= −
∫ −𝔬
𝐿

. So, if b is a bounding cochain for 𝔪𝔬
𝑘 with
∫ 𝔬
𝐿
𝑏 = 𝑠, then 𝔣(𝑏) is a bounding

cochain for 𝔪−𝔬
𝑘 with
∫ −𝔬
𝐿

𝔣(𝑏) = 𝑠 and 𝔣(Ω𝔬 (𝛾, 𝑏)) = −Ω−𝔬 (𝛾, 𝔣(𝑏)). By Definition 4.4, we obtain

𝑂𝐺𝑊−𝔬
𝛽,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) := [𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 𝜕

𝑘
𝑠 (Ω−𝔬 (𝛾, 𝔣(𝑏))) |𝑠=0,𝑡 𝑗=0

= −[𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 𝜕
𝑘
𝑠 𝔣(Ω𝔬 (𝛾, 𝑏)) |𝑠=0,𝑡 𝑗=0

= (−1)𝑘+1 [𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 𝜕
𝑘
𝑠 (Ω𝔬 (𝛾, 𝑏)) |𝑠=0,𝑡 𝑗=0

= (−1)𝑘+1𝑂𝐺𝑊𝔬
𝛽,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ).

�

We apply the preceding lemmas to prove vanishing results for the invariants 𝑂𝐺𝑊 of certain La-
grangian submanifolds 𝐿 ⊂ 𝑋. The case 𝑛 = 3 and k even of the following corollary has been proved
previously in [6, Proposition 1.3] by a different method, which goes back to an observation of Mikhalkin
[51, Remark 2.4].

Corollary 4.7. Consider (𝑋, 𝐿) = (C𝑃𝑛,R𝑃𝑛) with n odd. Let 𝛼 ∈ 𝐻1(R𝑃𝑛;Z) be the generator. The
invariants 𝑂𝐺𝑊𝛽,𝑘 (· · · ) vanish when 𝑘 + 𝛼(𝜕𝛽) is even.

Proof. We identify 𝐻2 (C𝑃𝑛,R𝑃𝑛;Z) with Z by the isomorphism taking the generator with positive
symplectic area to 1 ∈ Z. It is shown in [48, Corollary 1.9] that all the invariants 𝑂𝐺𝑊𝛽,𝑘 (· · · ) are
determined by the open WDVV equations, the axioms of 𝑂𝐺𝑊, the wall-crossing formula Theorem 2.3,
the closed Gromov-Witten invariants of C𝑃𝑛, and the value of 𝑂𝐺𝑊1,2. If we simultaneously change
the spin structure on R𝑃𝑛 by 𝛼 and reverse the orientation, then Lemma 4.5 and Lemma 4.6 imply that
𝑂𝐺𝑊𝛽,𝑘 (· · · ) changes by multiplication by (−1)𝑘+1+𝛼(𝜕𝛽) . In particular 𝑂𝐺𝑊1,2 remains unchanged.
But since all the invariants 𝑂𝐺𝑊𝛽,𝑘 (· · · ) are determined from 𝑂𝐺𝑊1,2 in a way that does not depend on
the spin structure or the orientation of R𝑃𝑛, they must also remain unchanged. So, when 𝑘 + 1 + 𝛼(𝜕𝛽)
is odd, 𝑂𝐺𝑊𝛽,𝑘 (· · · ) must vanish. �

The following was obtained by a different method in [29, Lemma 6.8].

Corollary 4.8. Take X to be the quadric hypersurface in C𝑃𝑛+1 given by
∑𝑛

𝑖=0 𝑧
2
𝑖 − 𝑧2

𝑛+1 = 0 and L to be
the real locus. Then 𝑂𝐺𝑊𝛽,𝑘 (· · · ) vanishes when k is even.

Proof. We identify 𝐻2(𝑋, 𝐿;Z) withZ by the isomorphism taking the generator with positive symplectic
area to 1 ∈ Z. It is shown in [29, Theorem 7] that all the invariants 𝑂𝐺𝑊𝛽,𝑘 (· · · ) are determined by
the open WDVV equations, the axioms of 𝑂𝐺𝑊, the wall-crossing formula Theorem 2.3, the closed
Gromov-Witten invariants of C𝑃𝑛, and the value of 𝑂𝐺𝑊1,3. If we reverse the orientation of L, then
Lemma 4.6 asserts that 𝑂𝐺𝑊𝛽,𝑘 (· · · ) changes by multiplication by (−1)𝑘+1. In particular, 𝑂𝐺𝑊1,3
remains unchanged. But since all the invariants 𝑂𝐺𝑊𝛽,𝑘 (· · · ) are determined from 𝑂𝐺𝑊1,3 in a way
that does not depend on the orientation of 𝐿, they must also remain unchanged. So, when 𝑘 + 1 is odd,
𝑂𝐺𝑊𝛽,𝑘 (· · · ) must vanish. �

Remark 4.9. Let (𝑋, 𝐿) be as in Corollary 4.8. It is shown in [29, Prop. 6.9] that the vanishing result of
Corollary 4.8 implies that changing the sign of the invariant 𝑂𝐺𝑊1,3, from which all the other invariants
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𝑂𝐺𝑊are determined by a recursion, does not affect the absolute value of other invariants. Consequently,
hypothesis 2 of Section 1.3 cannot hold for this choice of (𝑋, 𝐿). The proof of Corollary 4.8 is based
on the tension between the fact that all invariants are determined recursively from a single invariant,
and the freedom in the choice of the orientation of L, which affects the values of invariants through
Lemma 4.6. Thus, it seems natural to restrict hypothesis 2 to (𝑋, 𝐿) where such tension is not present.
That is, the number of geometric degrees of freedom in the definition of invariants should not exceed
the number of invariants from which all others are determined by recursions that do not depend on these
degrees of freedom.

4.5. Obstruction theory

The goal of the present section is the proof of Lemma 4.18, which refines the existence result for
bounding cochains given in Proposition 3.4 of [46]. For this purpose, we recall relevant parts of the
obstruction theoretic construction of bounding cochains given there. The basic idea goes back to [14].

Let

𝑇 (𝐶) :=
⊕
𝑘≥0

𝐶⊗𝑘

denote the completed tensor algebra. For 𝑥 ∈ I𝑅𝐶, abbreviate

𝑒𝑥 = 1 ⊕ 𝑥 ⊕ (𝑥 ⊗ 𝑥) ⊕ (𝑥 ⊗ 𝑥 ⊗ 𝑥) ⊗ . . . ∈ 𝑇 (𝐶).

Moreover, define

𝔪𝛾 : 𝑇 (𝐶) → 𝐶

by

𝔪𝛾 (⊗𝑘≥0𝜂𝑘 ) =
∑
𝑘≥0

𝔪𝛾
𝑘 (𝜂𝑘 ).

Any element 𝛼 ∈ 𝐶 can be written as

𝛼 =
∞∑
𝑖=1

𝜆𝑖𝛼𝑖 , 𝛼𝑖 ∈ 𝐴∗(𝐿), 𝜆𝑖 = 𝑇𝛽𝑖 𝑠𝑘𝑖
𝑀∏
𝑎=0

𝑡
𝑙𝑎𝑖
𝑎 , lim

𝑖
𝜈(𝜆𝑖) = ∞. (4.6)

Define a filtration 𝐹𝐸 on R, C by

𝜆 ∈ 𝐹𝐸𝐶 ⇐⇒ 𝜈(𝜆) > 𝐸.

Definition 4.10. A multiplicative submonoid 𝐺 ⊂ 𝑅 is sababa if it can be written as a list

𝐺 = {±𝜆0 = ±𝑇𝛽0 ,±𝜆1,±𝜆2, . . .} (4.7)

such that 𝑖 < 𝑗 ⇒ 𝜈(𝜆𝑖) ≤ 𝜈(𝜆 𝑗 ).

For 𝑗 = 1, . . . , 𝑚, and elements𝛼 𝑗 =
∑

𝑖 𝜆𝑖 𝑗𝛼𝑖 𝑗 ∈ 𝐶 decomposed as in (4.6), denote by𝐺 (𝛼1, . . . , 𝛼𝑚)
the multiplicative monoid generated by {±𝑇𝛽 | 𝛽 ∈ Π∞}, {𝑡 𝑗 }𝑁𝑗=0, and {𝜆𝑖 𝑗 }𝑖, 𝑗 . The following is Lemma
3.3 from [46].

Lemma 4.11. For 𝛼1, . . . , 𝛼𝑚 ∈ I𝑅, the monoid 𝐺 (𝛼1, . . . , 𝛼𝑚) is sababa.

For 𝛼1, . . . , 𝛼𝑚 ∈ I𝑅, write the image of 𝐺 = 𝐺 (𝛼1, . . . , 𝛼𝑚) under 𝜈 as the sequence {𝐸𝐺
0 = 0,

𝐸𝐺
1 , 𝐸𝐺

2 , . . .} with 𝐸𝐺
𝑖 < 𝐸𝐺

𝑖+1. Let 𝜅𝐺𝑖 ∈ Z≥0 be the largest index such that 𝜈(𝜆𝜅𝐺𝑖 ) = 𝐸𝐺
𝑖 . In the future,
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we omit G from the notation and simply write 𝐸𝑖 , 𝜅𝑖 since G will be fixed in each instance and no
confusion should occur.

Given 𝛼 ∈ 𝐶, a differential form with coefficients in R, we denote by (𝛼) 𝑗 ∈ 𝐶 the summand of
differential form of degree j in 𝛼. Let Υ′ be anR−vector space, let Υ′′ = 𝑅,𝑄, or Λ, and let Υ = Υ′ ⊗Υ′′.
For 𝑥 ∈ Υ and a monomial 𝜆 ∈ Υ′′, denote by [𝜆] (𝑥) ∈ Υ′ the coefficient of 𝜆 in x.

Fix a sababa multiplicative monoid 𝐺 = {𝜆 𝑗 }∞
𝑗=0 ⊂ 𝑅 ordered as in (4.7). Let 𝑙 ≥ 0. Suppose we

have 𝑏 (𝑙) ∈ 𝐶 with |𝑏 (𝑙) | = 1, and

𝔪𝛾 (𝑒𝑏(𝑙) ) ≡ 𝑐 (𝑙) · 1(mod 𝐹𝐸𝑙𝐶), 𝑐 (𝑙) ∈ (I𝑅)2.

Define the obstruction cochains 𝑜 𝑗 ∈ 𝐴∗(𝐿) for 𝑗 = 𝜅𝑙 + 1, . . . , 𝜅𝑙+1 to be

𝑜 𝑗 := [𝜆 𝑗 ] (𝔪𝛾 (𝑒𝑏(𝑙) )).

Lemmas 4.12–4.17 are Lemmas 3.5–3.10 from [46].

Lemma 4.12. |𝑜 𝑗 | = 2 − |𝜆 𝑗 |.

Lemma 4.13. 𝑑𝑜 𝑗 = 0.

Lemma 4.14. If |𝜆 𝑗 | = 2, then 𝑜 𝑗 = 𝑐 𝑗 · 1 for some 𝑐 𝑗 ∈ R. If |𝜆 𝑗 | ≠ 2, then 𝑜 𝑗 ∈ 𝐴>0 (𝐿;R).

Lemma 4.15. If |𝜆 𝑗 | = 2 − 𝑛 and (𝑑𝑏 (𝑙) )𝑛 = 0, then 𝑜 𝑗 = 0.

Lemma 4.16. Suppose for all 𝑗 ∈ {𝜅𝑙 + 1, . . . , 𝜅𝑙+1} such that |𝜆 𝑗 | ≠ 2, there exist 𝑏 𝑗 ∈ 𝐴1−|𝜆 𝑗 | (𝐿;R)
such that (−1) |𝜆 𝑗 |𝑑𝑏 𝑗 = −𝑜 𝑗 . Then

𝑏 (𝑙+1) := 𝑏 (𝑙) +
∑

𝜅𝑙+1≤ 𝑗≤𝜅𝑙+1
|𝜆 𝑗 |≠2

𝜆 𝑗𝑏 𝑗

satisfies

𝔪𝛾 (𝑒𝑏(𝑙+1) ) ≡ 𝑐 (𝑙+1) · 1(mod 𝐹𝐸𝑙+1𝐶), 𝑐 (𝑙+1) ∈ (I𝑅)2.

Lemma 4.17. Let 𝜁 ∈ I𝑅𝐶. Then 𝔪𝛾 (𝑒𝜁 ) ≡ 0(mod 𝐹𝐸0𝐶).

Lemma 4.18. Let 𝑏0 ∈ 𝐶 such that

|𝑏0 | = 1, (𝑑𝑏0)𝑛 = 0, 𝔪𝛾 (𝑒𝑏0) ≡ 𝑐 · 1(mod 𝑅+𝐶), 𝑐 ∈ (I𝑅)2.

Then there exists a bounding cochain b, such that

1. 𝑏 ≡ 𝑏0(mod 𝑅+),
2.
∫
𝐿
𝑏 =
∫
𝐿
𝑏0,

3. (𝑏) 𝑗 = (𝑏0) 𝑗 where 𝑗 ∈ {𝑛 − 1, 𝑛}.

Proof. We follow the proof of Proposition 3.4 from [46]. Define 𝑏 (0) := 𝑏0. By Lemma 4.17, the
cochain 𝑏 (0) satisfies

𝔪𝛾 (𝑒𝑏(0) ) ≡ 0 = 𝑐 (0) · 1(mod 𝐹𝐸0𝐶), 𝑐 (0) = 0.
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Moreover, |𝑏 (0) | = 1,
∫
𝐿
𝑏 (0) =
∫
𝐿
𝑏0, (𝑑𝑏 (0) )𝑛 = 0, and (𝑏 (0) ) 𝑗 = (𝑏0) 𝑗 where 𝑗 ∈ {𝑛 − 1, 𝑛}. Observe

also that 𝐹𝐸0𝐶 ⊂ 𝑅+𝐶. Proceed by induction. Suppose we have 𝑏 (𝑙) ∈ 𝐶 such that |𝑏 (𝑙) | = 1, 𝑏 (𝑙) ≡ 𝑏0
(mod 𝑅+𝐶), and

(𝑑𝑏 (𝑙) )𝑛 = 0,
∫
𝐿
𝑏 (𝑙) =
∫
𝐿
𝑏0,

(𝑏 (𝑙) ) 𝑗 = (𝑏0) 𝑗 𝑗 ∈ {𝑛 − 1, 𝑛}, 𝔪𝛾 (𝑒𝑏(𝑙) ) ≡ 𝑐 (𝑙) · 1(mod 𝐹𝐸𝑙𝐶), 𝑐 (𝑙) ∈ (I𝑅)2.

By Lemma 4.13, we have 𝑑𝑜 𝑗 = 0, and by Lemma 4.12, we have 𝑜 𝑗 ∈ 𝐴2−|𝜆 𝑗 | (𝐿;R). In order to
apply Lemma 4.16, we need to find forms 𝑏 𝑗 ∈ 𝐴1−|𝜆 𝑗 | (𝐿;R) such that (−1) |𝜆 𝑗 |𝑑𝑏 𝑗 = −𝑜 𝑗 for all
𝑗 ∈ {𝜅𝑙 + 1, . . . , 𝜅𝑙+1} such that |𝜆 𝑗 | ≠ 2. Since 𝐹𝐸𝑙𝐶 ⊂ 𝑅+𝐶, we have

𝔪𝛾 (𝑒𝑏(𝑙) ) ≡ 𝑐 (𝑙) · 1(mod 𝑅+𝐶).

It follows that 𝑜 𝑗 = 0 when 𝜆 𝑗 ∉ 𝑅+, so we choose 𝑏 𝑗 = 0. Hence, we may assume 𝜆 𝑗 ∈ 𝑅+. If
|𝜆 𝑗 | = 2 − 𝑛, since (𝑑𝑏 (𝑙) )𝑛 = 0, Lemma 4.15 gives 𝑜 𝑗 = 0, so we choose 𝑏 𝑗 = 0. If 2 − 𝑛 < |𝜆 𝑗 | < 2,
then 0 < |𝑜 𝑗 | < 𝑛. The assumption 𝐻∗(𝐿;R) � 𝐻∗(𝑆𝑛;R) implies [𝑜 𝑗 ] = 0 ∈ 𝐻∗(𝐿;R), so we choose
𝑏 𝑗 such that (−1) |𝜆 𝑗 |𝑑𝑏 𝑗 = −𝑜 𝑗 . For other possible values of |𝜆 𝑗 |, degree considerations imply 𝑜 𝑗 = 0,
so we choose 𝑏 𝑗 = 0. By Lemma 4.16, 𝑏 (𝑙+1) := 𝑏 (𝑙) +

∑
𝜅𝑙+1≤ 𝑗≤𝜅𝑙+1

|𝜆 𝑗 |≠2
𝜆 𝑗𝑏 𝑗 satisfies

𝔪𝛾 (𝑒𝑏(𝑙+1) ) ≡ 𝑐 (𝑙+1) · 1(mod 𝐹𝐸𝑙+1𝐶), 𝑐 (𝑙+1) ∈ (I𝑅)2.

Since 𝑏 𝑗 = 0 when 𝜆 𝑗 ∉ 𝑅+, it follows that 𝑏 (𝑙+1) ≡ 𝑏 (𝑙) ≡ 𝑏0(mod 𝑅+𝐶). Since 𝑏 𝑗 = 0 when
|𝜆 𝑗 | = 2 − 𝑛, it follows that (𝑏 (𝑙+1) )𝑛−1 = (𝑏 (𝑙) )𝑛−1 = (𝑏 (0) )𝑛−1, and that (𝑑𝑏 (𝑙+1) )𝑛 = (𝑑𝑏 (𝑙) )𝑛 = 0. In
addition, 𝑏 𝑗 = 0 when |𝜆 𝑗 | = 1 − 𝑛. Thus, (𝑏 (𝑙+1) )𝑛 = (𝑏 (𝑙) )𝑛 = (𝑏 (0) )𝑛, and

∫
𝐿
𝑏 (𝑙+1) =

∫
𝐿
𝑏 (𝑙) =
∫
𝐿
𝑏0.

The inductive process gives rise to a convergent sequence {𝑏 (𝑙) }∞
𝑙=0 where 𝑏 (𝑙) is bounding modulo

𝐹𝐸𝑙𝐶. Taking the limit as l goes to infinity, we obtain

𝑏 := lim
𝑙
𝑏 (𝑙) , |𝑏 | = 1, 𝑏 ≡ 𝑏0(mod 𝑅+𝐶),

∫
𝐿
𝑏 =
∫
𝐿
𝑏0,

(𝑏) 𝑗 = (𝑏0) 𝑗 𝑗 ∈ {𝑛 − 1, 𝑛}, 𝔪𝛾 (𝑒𝑏) = 𝑐 · 1, 𝑐 = lim
𝑙
𝑐 (𝑙) ∈ (I𝑅)2.

�

4.6. Straightforward counts

In the following, we will be using the following notation conventions. For 𝑘 ≥ 1, denote by [𝑘] the set
[𝑘] := {1, . . . , 𝑘}. For 𝑁 > 0, we denote 𝑡 := (𝑡1, . . . , 𝑡𝑁 ). Similarly, we denote by 𝛼 an N-tuple where
all the components are taken from the set Z≥0; that is,

𝛼 := (𝛼1, . . . , 𝛼𝑁 ), 𝛼𝑖 ∈ Z≥0.

We denote 𝑡𝛼 := 𝑡𝛼1
1 · · · 𝑡𝛼𝑁

𝑁 . Recall the definition of 𝑃𝛽 from (1.1).
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Theorem 4.19. Let 𝐴 𝑗 ∈ 𝐻∗(𝑋, 𝐿;R). Let �̄� ∈ 𝐴𝑛 (𝐿;R) such that PD([�̄�]) = 𝑝𝑡, and let 𝑎 𝑗 be a
representative of 𝐴 𝑗 . Let 𝜎𝑘 = (𝑘 − 1)! for 𝑘 ∈ Z>0 and let 𝜎0 = 1. Then,

𝑂𝐺𝑊𝛽,𝑘 (𝐴1, . . . , 𝐴𝑙) = (−1)𝑛𝜎𝑘

∫
M𝑘,𝑙 (𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 �̄�

= (−1)𝑛
∫
M𝑆

𝑘,𝑙
(𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 �̄�

if for every

𝛽 ∈ 𝑃𝛽 , 0 ≤ 𝑗 ≤ 𝑘, 𝐼 ⊂ [𝑙],

one of the following two conditions is satisfied:

1. 1 − 𝜇(𝛽) + 𝑗 (𝑛 − 1) +
∑

𝑖∈𝐼 (|𝐴𝑖 | − 2) < 0, or
2. 1 − 𝜇(𝛽) + 𝑗 (𝑛 − 1) +

∑
𝑖∈𝐼 (|𝐴𝑖 | − 2) ≥ 𝑛 − 1.

Proof. Let Γ0, . . . , Γ𝑀 be a basis of 𝐻∗(𝑋, 𝐿;R) with Γ0 = 1. From multilinearity of 𝑂𝐺𝑊 and
Proposition 4.6, it suffices to prove the lemma for OGW𝛽,𝑘 (Γ⊗𝑟0

0 ⊗ · · · ⊗ Γ⊗𝑟𝑀
𝑀 ). By the unit axiom 4,

we can assume that 𝑟0 = 0, and by the zero axiom 5, we can assume that 𝛽 ≠ 𝛽0. We have 𝛾 =
∑𝑀

𝑖=1 𝑡𝑖𝛾𝑖 ,
where 𝛾𝑖 is a representative of Γ𝑖 ∈ 𝐻∗(𝑋, 𝐿;R). Let 𝑏0,1,0 ∈ 𝐴𝑛 (𝐿;R) be a representative of the
Poincaré dual of a point. Since by Proposition 4.3 we have

𝔪𝛾 (𝑒𝑏0,1,0 ) ≡ 𝑑𝑏0,1,0 − 𝑏0,1,0 ∧ 𝑏0,1,0 + 𝛾 |𝐿 ≡ 0(mod 𝑅+𝐶),

it follows by Lemma 4.18 that there exists a bounding cochain 𝑏 ∈ 𝐶 such that 𝑏 ≡ 𝑠 · 𝑏0,1,0(mod 𝑅+𝐶),
and

(𝑏)𝑛 = 𝑏0,1,0, (𝑏)𝑛−1 = 0. (4.8)

Write 𝑏 = 𝑠 · 𝑏0,1,0 +
∑
𝑇𝛽𝑠 𝑗 𝑡𝛼𝑏𝛽, 𝑗,𝛼, where

𝛽 ∈ 𝐻2 (𝑋, 𝐿;Z), 𝜔(𝛽) > 0, 𝛼 = (𝛼1, . . . , 𝛼𝑀 ) ∈ Z𝑀≥0, 𝑗 ∈ Z≥0, 𝑏𝛽, 𝑗,𝛼 ∈ 𝐴∗(𝐿;R).

Since

|𝑏 | = 1, |𝑠 | = 1 − 𝑛, |𝑇𝛽 | = 𝜇(𝛽), |𝑡𝑖 | = 2 − |𝛾𝑖 |,

it follows that

|𝑏𝛽, 𝑗,𝛼 | = 1 − 𝜇(𝛽) − 𝑗 (1 − 𝑛) −
𝑀∑
𝑖=1

𝛼𝑖 (2 − |𝛾𝑖 |).

Hence, if conditions 1 and 2 are satisfied, then by (4.8) we must have 𝑏𝛽, 𝑗,𝛼 = 0 when

𝛽 ∈ 𝑃𝛽 , 0 ≤ 𝛼𝑖 ≤ 𝑟𝑖 , 0 ≤ 𝑗 ≤ 𝑘.

Define

𝐽 := 𝑅+ + (𝑠𝑘+1, 𝑡0, 𝑡
𝑟1+1
1 , . . . , 𝑡𝑟𝑀+1

𝑀 ) ⊳ 𝑅,
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and denote

𝑏′ = 𝑠 · 𝑏0,1,0 +
∑

𝜔 (𝛽)=𝜔 (𝛽)
0≤ 𝑗≤𝑘

0≤𝛼𝑖 ≤𝑟𝑖

𝑇𝛽𝑠 𝑗 𝑡𝛼𝑏𝛽, 𝑗,𝛼 .

Since 𝑏′ ≡ 𝑏(mod 𝐽𝐶), it follows that

[𝑇𝛽] (𝜕𝑟1
𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 𝜕𝑘𝑠 Ω(𝛾, 𝑏) |𝑠=0,𝑡 𝑗=0) = [𝑇𝛽] (𝜕𝑟1

𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 𝜕𝑘𝑠 Ω(𝛾, 𝑏′) |𝑠=0,𝑡 𝑗=0).

Hence, it suffices to consider Ω(𝛾, 𝑏′) instead of Ω(𝛾, 𝑏) in the computation of OGW𝛽,𝑘 (Γ⊗𝑟1
1 ⊗ · · · ⊗

Γ⊗𝑟𝑀
𝑀 ). Since

𝑑𝑏0,1,0 = 0, 𝑏0,1,0 ∧ 𝑏0,1,0 = 0, 𝛾 |𝐿 = 0,

by Proposition 4.3, for every 𝑚 ≥ 0, 0 ≤ 𝑗 ≤ 𝑘 and 𝛽 ∈ 𝐻2(𝑋, 𝐿;Z) such that 𝜔(𝛽) = 0, we get

〈𝔪𝛾,𝛽
𝑚 (𝑏⊗𝑚

0,1,0), 𝑏𝛽−𝛽, 𝑗,𝛼〉 = 0.

So, by Proposition 4.5 for every 1 ≤ 𝑖 ≤ 𝑚, we get

〈𝔪𝛾,𝛽
𝑚 (𝑏⊗𝑖−1

0,1,0 ⊗ 𝑏𝛽−𝛽, 𝑗,𝛼 ⊗ 𝑏⊗𝑚−𝑖
0,1,0 ), 𝑏0,1,0〉 = 0.

Hence,

[𝑇𝛽] (𝜕𝑟1
𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 𝜕𝑘𝑠 (〈

∑
𝑚≥0

𝔪𝛾
𝑚(𝑏′⊗𝑚), 𝑏′〉)) =

= (𝜕𝑟1
𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 𝜕𝑘𝑠 (〈𝔪𝛾,𝛽

𝑘−1(𝑠 · 𝑏0,1,0, . . . , 𝑠 · 𝑏0,1,0), 𝑠 · 𝑏0,1,0〉)). (4.9)

Denote 𝑙 =
∑𝑀

𝑖=1 𝑟𝑖 . For 𝑘 = 0, we get

𝑂𝐺𝑊𝛽,0 (Γ⊗𝑟1
1 ⊗ · · · ⊗ Γ⊗𝑟𝑀

𝑀 ) = [𝑇𝛽] (𝜕𝑟1
𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 𝜕𝑘𝑠 Ω|𝑠=0,𝑡 𝑗=0)

= (−1)𝑛 [𝑇𝛽] (𝜕𝑟1
𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 𝔪𝛾

−1)

= (−1)𝑛
∫
M0,𝑙 (𝛽)

𝑟1∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾1 · · ·

𝑟𝑀∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾𝑀 ,

where M0,𝑙 (𝛽) = M𝑆
0,𝑙 (𝛽). For 𝑘 ≠ 0, we get

𝑂𝐺𝑊𝛽,𝑘 (Γ⊗𝑟1
1 ⊗ · · · ⊗ Γ⊗𝑟𝑀

𝑀 ) =
= [𝑇𝛽] (𝜕𝑟1

𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 𝜕𝑘𝑠 Ω|𝑠=0,𝑡 𝑗=0)

(4.9)
= (−1)𝑛 1

𝑘
· [𝑇𝛽] (𝜕𝑟1

𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 𝜕𝑘𝑠 〈𝔪𝛾

𝑘−1((𝑠 · 𝑏0,1,0) ⊗𝑘−1), 𝑠 · 𝑏0,1,0〉)
(4.2)+(4.4)

= (−1)1+(1−𝑛) 𝑘 (𝑘−1)
2 · (𝑘 − 1)! · [𝑇𝛽] (𝜕𝑟1

𝑡1
. . . 𝜕𝑟𝑀𝑡𝑀 〈𝔪𝛾

𝑘−1(𝑏⊗𝑘−1
0,1,0 ), 𝑏0,1,0〉)

(4.1)
= (𝑘 − 1)! ·

〈
𝑒𝑣𝑏

𝛽
0∗

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾𝑎 𝑗

𝑘−1∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 (𝑏0,1,0)), 𝑏0,1,0

〉
(4.3)
= (−1)𝑛 (𝑘 − 1)!

∫
M𝑘,𝑙 (𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 (𝑏0,1,0).
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The diffeomorphism of M𝑆
𝑘,𝑙 (𝛽) corresponding to relabeling boundary marked points by a permutation

𝜎 ∈ 𝑆𝑘 preserves or reverses orientation depending on 𝑠𝑔𝑛(𝜎). Let 𝜎 ∈ 𝑆𝑘 be a permutation. Denote by
M𝜎 (𝑘) ,𝑙 (𝛽) the moduli space obtained from M𝑘,𝑙 (𝛽) by relabeling boundary marked points by 𝜎. So,∫

M𝑘,𝑙 (𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 (𝑏0,1,0) = 𝑠𝑔𝑛(𝜎)

∫
M𝜎 (𝑘) ,𝑙 (𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝜎 ( 𝑗) (𝑏0,1,0)

= 𝑠𝑔𝑛(𝜎)2
∫
M𝜎 (𝑘) ,𝑙 (𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 (𝑏0,1,0)

=
∫
M𝜎 (𝑘) ,𝑙 (𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 (𝑏0,1,0).

Therefore, since M𝑆
𝑘,𝑙 (𝛽) =

∐
𝜎∈𝑆𝑘 M𝜎 (𝑘) ,𝑙 (𝛽), it follows that

𝑂𝐺𝑊𝛽,𝑘 (Γ⊗𝑟1
1 ⊗ · · · ⊗ Γ⊗𝑟𝑀

𝑀 ) = (−1)𝑛
∫
M𝑆

𝑘,𝑙
(𝛽)

𝑙∧
𝑗=1

𝑒𝑣𝑖
𝛽∗
𝑗 𝛾𝑎 𝑗

𝑘∧
𝑗=1

𝑒𝑣𝑏
𝛽∗
𝑗 (𝑏0,1,0).

�

Proof of Theorem 1.6. By Lemma 5.14 of [46], if 𝐻∗(𝐿;R) � 𝐻∗(𝑆𝑛;R), then 𝐻∗(𝑋, 𝐿;R) �
𝐻∗(𝑋, 𝐿;R). Recall that if 𝑘 ≠ 0 or 𝛽 ∉ Im𝜛, then 𝑂𝐺𝑊𝛽,𝑘 = 𝑂𝐺𝑊𝛽,𝑘 . Thus, when 𝑘 ≠ 0 or
𝛽 ∉ Im𝜛, Theorem 4.19 yields Theorem 1.6. �

Remark 4.20. In the case of the Chiang Lagrangian, by Lemma 3.4, 𝐻2(𝑋, 𝐿�;Z) = Z and 𝜛 is given
by multiplication by 4. Hence, Theorem 1.6 holds for 𝑂𝐺𝑊𝛽,0 (· · · ) when 𝛽 ∉ 4Z.

5. Computation of basic invariants

In order to use the recursive formula to compute the open Gromov Witten invariants of the Chiang
Lagrangian 𝐿�, we need the initial values for the recursive formula, which are given by the following
theorems. Fix the orientation 𝔬� and the spin structure 𝔰� on 𝐿� as defined in Section 3.2.

Theorem 5.1. 𝑂𝐺𝑊1,1 = −3.

Theorem 5.2. 𝑂𝐺𝑊1,0 (Γ2) = 1
4 .

Theorem 5.3. 𝑂𝐺𝑊2,0 (Γ3) = 1.

The proofs appear below.

5.1. Intersections with the compactification divisor

Recall from Section 3.1 the definition of the Chiang Lagrangian 𝐿� ⊂ 𝑋� � C𝑃3 � Sym3C𝑃1. Recall
also the definitions of the discriminant locus 𝑌� ⊂ 𝑋� and the subvariety 𝑁� ⊂ 𝑌� .

Lemma 5.4. C𝑃3 is Fano with anticanonical divisor 𝑌�.

Proof. The proof is part of Section 3.4 in [43]. �

The following is Lemma 3.1 from [2].

Lemma 5.5. If L is special Lagrangian in the complement of an anticanonical divisor Y in a compact
Kähler manifold X, then the Maslov index of a disk 𝑢 : (𝐷, 𝜕𝐷) → (𝑋, 𝐿) is given by twice the algebraic
intersection number [𝑢] · [𝑌 ].
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The following is Lemma 3.7 from [43].

Lemma 5.6. A clean intersection of a holomorphic disk u with 𝑁� contributes at least 2 to the inter-
section number [𝑢] · [𝑌�]. A non-clean intersection contributes at least 3.

5.2. Axial disks

The following is Definition 2.1 from [43].

Definition 5.7. If X is a complex manifold carrying an action of a compact Lie group K by holomorphic
automorphisms, and L is a totally real submanifold which is an orbit of the K-action, then we say (𝑋, 𝐿)
is K-homogeneous.

Example 5.8. The pair (C𝑃3, 𝐿�) is SU(2)-homogeneous as explained in Section 3.1.

The following is Definition 2.3 from [43].

Definition 5.9. Let (𝑋, 𝐿) be K-homogeneous. If 𝑢 : (𝐷, 𝜕𝐷) → (𝑋, 𝐿) is a holomorphic disk, and
there exists a smooth group homomorphism 𝑅 : R→ 𝐾 such that (possibly after reparametrizing u) we
have 𝑢(𝑒𝑖 𝜃 𝑧) = 𝑅(𝜃)𝑢(𝑧) for all 𝑧 ∈ 𝐷 and all 𝜃 ∈ R, then we say u is axial. Let 𝜉 ∈ 𝔨 = Lie(𝐾). We
say that u is axial of type 𝜉 if �𝑅(0) belongs to the orbit of 𝜉 under the adjoint action of K.

Thinking of C𝑃1 as C∪ {∞}, we identify C𝑃1 � 𝑆2 by stereographic projection from the north pole.
Thus, the complex structure on the 2-sphere is given by left-handed rotation around the outward normal
by an angle of 𝜋/2.

For concreteness, we choose � to be the triangle with vertices

𝑐1 = (0, 0, 1), 𝑐2 =

(√
3

2
, 0,−1

2

)
, 𝑐3 =

(
−

√
3

2
, 0,−1

2

)
.

By abuse of notation, we also denote by � the point [𝑐1, 𝑐2, 𝑐3] ∈ Sym3C𝑃1.
Let 𝜉𝑣 ∈ 𝔰𝔲(2) be the infinitesimal right-handed rotation about the z axis and let 𝜉 𝑓 ∈ 𝔰𝔲(2)

be the infinitesimal right-handed rotation about the y axis scaled so that for 𝜉 = 𝜉𝑣 , 𝜉 𝑓 , we have
{𝑡 ∈ R : 𝑒2𝜋 𝜉𝑡 · � = �} = Z. Thus, 𝜉𝑣 , 𝜉 𝑓 , are generators of rotations about the vertex 𝑐1 and the center
of the face of the triangle, respectively, as shown in Figure 1.

Example 5.10 (Axial Maslov 2 disk). Consider the homomorphism

𝑅 : R→ SU(2)

given by

𝑅(𝜃) = 𝑒𝜃 𝜉𝑣 .

Let 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) be given by 𝑢(𝑧) = 𝑒−𝑖 𝜉𝑣 log 𝑧 · �. See below for more explicit formulas.
Then u satisfies 𝑢(𝑒𝑖 𝜃 𝑧) = 𝑅(𝜃)𝑢(𝑧), so it is an axial disk of type 𝜉𝑣 .

Recall we denote by 𝑐1, 𝑐2, 𝑐3 the vertices of the triangle �. The stereographic projection from the
north pole

𝑝 : 𝑆2 → C ∪ {∞}

is given by

𝑝(𝑥, 𝑦, 𝑧) =
{ 𝑥+𝑖𝑦

1−𝑧 , 𝑧 ≠ 1
∞, 𝑧 = 1.

https://doi.org/10.1017/fms.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.6


Forum of Mathematics, Sigma 31

Figure 1. The choice of 𝜉𝑣 , 𝜉 𝑓 for the configuration �.

We have

𝑐1 := 𝑝(𝑐1) = ∞, 𝑐2 := 𝑝(𝑐2) = 1
√

3
, 𝑐3 := 𝑝(𝑐3) = −1

√
3
.

Since 𝜉𝑣 is the generator of a rotation about the vertex 𝑐1, the flow of 𝜉𝑣 is given by

𝜑𝑡𝜉𝑣 (𝑤) := 𝑒 𝜉𝑣 𝑡 · 𝑤 = 𝑒𝜒𝑖𝑡𝑤, 𝑤 ∈ C ∪ {∞}

for some 𝜒 ∈ R. Since 𝜉𝑣 is normalized so that

Z = {𝑡 ∈ R : 𝑒2𝜋 𝜉𝑣 𝑡 · � = �} = {𝑡 ∈ R : 𝜑2𝜋𝑡
𝜉𝑣

(𝑐2) = 𝑐2 or 𝑐3} = {𝑡 ∈ R : 2𝜋𝜒𝑡 ∈ 𝜋Z},

we have 𝜒 = 1
2 and

𝜑𝑡𝜉𝑣 (𝑤) = 𝑒
1
2 𝑖𝑡𝑤, 𝑤 ∈ C ∪ {∞}.

Hence, for 𝑧 ∈ 𝐷, we get

𝑢(𝑧) = 𝑒−𝑖 𝜉𝑣 log 𝑧 · �

=
[

[1 : 𝜑−𝑖 log 𝑧
𝜉𝑣

(𝑐1)], [1 : 𝜑−𝑖 log 𝑧
𝜉𝑣

(𝑐2)], [1 : 𝜑−𝑖 log 𝑧
𝜉𝑣

(𝑐3)]
]

=
[

[0 : 1], [1 :
√

𝑧

3
], [1 : −

√
𝑧

3
]
]

∈ Sym3(C𝑃1).

Hence, we can write 𝑢(𝑧) = [0 : 1 : 0 : − 𝑧
3 ] ∈ C𝑃3.

We can describe u geometrically as follows. The boundary of u is obtained by the action of 𝑅(𝜃) on
�. Call an isosceles triangle narrow if the congruent sides are longer than the base. A point in the interior
of u is described by a narrow isosceles triangle on a great circle where the north pole is the apex. For
example, the triangle 𝑐1𝑑2𝑑3 in Figure 2 represents a point in the interior of u. Note that as 𝑧 → 0, the
vertices 𝑐2 and 𝑐3 move toward the south pole, so u intersects 𝑌� in a single point. So, [𝑢] · [𝑌�] ≥ 1.
The proof of Lemma 3.8 in [43] shows that equality holds. Hence, by Lemma 5.5, u is a Maslov 2 disk.
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Figure 2. A Maslov 2 disk passing through �.

Example 5.11 (Axial Maslov 4 disk). Consider the homomorphism

𝑅 : R→ SU(2),

given by

𝑅(𝜃) = 𝑒𝜃 𝜉 𝑓 .

The disk 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) given by 𝑢(𝑧) = 𝑒−𝑖 𝜉 𝑓 log 𝑧 · � satisfies 𝑢(𝑒𝑖 𝜃 𝑧) = 𝑅(𝜃)𝑢(𝑧), so it is
axial of type 𝜉 𝑓 .

We can describe u geometrically as follows. The boundary of u is obtained by the action of 𝑅(𝜃)
on �. The interior of u is given by all the equilateral triangles on northern lines of latitude if we take
𝑟 := (0,−1, 0) for the north pole. For example, the triangle 𝑠1𝑠2𝑠3 in Figure 3 represents an interior point
of 𝑢. Since u intersects 𝑁� at the unique point [𝑟, 𝑟, 𝑟], it follows by Lemma 5.6 that [𝑢] · [𝑌�] ≥ 2.
The proof of Lemma 3.8 in [43] shows that equality holds. Hence, by Lemma 5.5, u is a Maslov 4 disk.

5.3. Classification of holomorphic disks

The following definition is given in Section 4 from [43].

Definition 5.12. The intersection points of a holomorphic disk 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) with the
compactification divisor 𝑌� are called poles of u.

The following is Definition 4.6 from [43]. Recall from Section 3.1 the definition of Γ� .

Definition 5.13. A pole germ is the germ (at 0) of a holomorphic map 𝑢, from an open neighborhood of
0 in C to C𝑃3, such that 𝑢−1 (𝑌�) contains 0 as an isolated point. More generally, for a Riemann surface
Σ and a point 𝑎 ∈ Σ, one can speak of a pole germ at 𝑎. If we do not specify ‘at a’, then we are implicitly
working at 0 in C. We define an equivalence relation on pole germs at a by 𝑢1 ∼ 𝑢2 if and only if there
exists a germ of holomorphic map 𝐴, from a neighborhood of a in Σ to SL(2,C), such that 𝑢2 = 𝐴 · 𝑢1.
The principal part of a pole germ u is its equivalence class [𝑢]𝑎 under this relation.
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Figure 3. A Maslov 4 disk passing through �.

We say a pole germ u is of type 𝜉 ∈ 𝔰𝔲(2) and order 𝑘 ∈ Z≥1 if its principal part is

[𝑧 ↦→ 𝑒−𝑖𝑘 𝜉 log 𝑧 · �]0,

and 𝜉 is scaled so that {𝑡 ∈ R : 𝑒2𝜋 𝜉𝑡 ∈ Γ�} = Z.

Example 5.14. An axial disk of type 𝜉 has a pole germ of type 𝜉 and order 1.

The following is Lemma 4.10 from [43].

Lemma 5.15. A pole germ u is of type 𝜉𝑣 if and only if 𝑢(0) ∈ 𝑌�\𝑁�.

The following is Corollary 4.13 from [43].

Lemma 5.16. All Maslov index 2 holomorphic disks 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) are, up to
reparametrization, of the form

𝑢(𝑧) = 𝐴 · 𝑒−𝑖 𝜉𝑣 log 𝑧 · �

for 𝐴 ∈ SU(2). In particular, they are all axial.

The following is Corollary 4.14 from [43].

Lemma 5.17. Suppose 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) is a holomorphic disk of Maslov index 4. Then either
u has two poles of type 𝜉𝑣 and order 1, one pole of type 𝜉𝑣 and order 2, or one pole of type 𝜉 𝑓 and
order 1. In the last case, the disk is axial of type 𝜉 𝑓 .

Recall the notation for moduli spaces of holomorphic disks from Section 4.1. The following is
Corollary 4.21 from [43].

Lemma 5.18. Let 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) be an axial disk of type 𝜉 𝑓 . Then for any 𝑤 ∈ int 𝐷, the
evaluation map

𝑒𝑣𝑖1 : M0,1 (2) → C𝑃3

is a submersion at [𝑢;𝑤].

Lemma 5.19. Let 𝑎, 𝑏 ∈ C𝑃1 be two sufficiently close points. There exists a unique point 𝑐 ∈ C𝑃1

such that there exists a holomorphic disk 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) of Maslov index 2 passing through
[𝑎, 𝑏, 𝑐] ∈ Sym3C𝑃1 = C𝑃3. This disk is unique up to reparameterization.
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Proof. Following Example 5.10, we call an isosceles triangle narrow if the congruent sides are longer
than the base. Since 𝑎, 𝑏, are sufficiently close, they cannot belong to an equilateral triangle on a
great circle, so a point of the form [𝑎, 𝑏, 𝑐] must be in C𝑃3 \ 𝐿� . Thus, if a J-holomorphic disk
𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) passes through a point of the form [𝑎, 𝑏, 𝑐], then [𝑎, 𝑏, 𝑐] ∈ 𝑢(int 𝐷). By
Lemma 5.16, all J-holomorphic disks 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) of Maslov index 2 have the form
𝑢(𝑧) = 𝐴 · 𝑒−𝑖 𝜉𝑣 log 𝑧 · �. For such 𝑢, it follows from the geometric explanation given in Example 5.10
that a point of 𝑢(int 𝐷) is given by the vertices of a narrow isosceles triangle with apex 𝐴 · (0, 0, 1).
So, since 𝑎, 𝑏, are sufficiently close, if u passes through [𝑎, 𝑏, 𝑐], then 𝑎, 𝑏, 𝑐, must be the vertices of a
narrow isosceles triangle on a great circle with apex 𝑐 = 𝐴 · (0, 1, 1). We claim that such c is unique.
Indeed, the points a and b are sufficiently close, so they determine a unique great circle. In addition,
there exists a unique point c on the great circle such that the triangle with vertices 𝑎, 𝑏, 𝑐, is narrow
isosceles. The condition 𝑐 = 𝐴 · (0, 0, 1) determines A up to the action of 𝑆1 = Stab(0,0,1) ⊂ SU(2).
This 𝑆1 acts on u by reparameterization. �

Lemma 5.20. Let 𝑝 ∈ 𝑁� . There exists an axial disk of type 𝜉 𝑓 that passes through 𝑝. This disk is
unique up to reparameterization.

Proof. Let 𝑞 ∈ C𝑃1 such that 𝑝 := [𝑞, 𝑞, 𝑞] . Denote 𝑟 := (0,−1, 0). By definition, the general axial
disk of type 𝜉 𝑓 has the form 𝑢(𝑧) = 𝐴 · 𝑒−𝑖 𝜉 𝑓 log 𝑧 · �. It follows from Example 5.11 that such a disk
intersects 𝑁� at the unique point [𝐴 · 𝑟, 𝐴 · 𝑟, 𝐴 · 𝑟] . Let 𝐴 ∈ SU(2) be a rotation such that 𝐴 · 𝑟 = 𝑞.
Then 𝑢(0) = 𝑝. However, the condition 𝐴 · 𝑟 = 𝑞 determines A up to the action of 𝑆1 = Stab𝑞 ⊂ SU(2).
This 𝑆1 acts on u by reparameterization. �

5.4. Riemann-Hilbert pairs

Definition 5.21. A Riemann-Hilbert pair consists of holomorphic rank n vector bundle 𝐸 → 𝐷 over
the closed unit disk with a smooth totally real n-dimensional subbundle 𝐹 ⊂ 𝐸 |𝜕𝐷 . A spin Riemann-
Hilbert pair is a Riemann-Hilbert pair (𝐸, 𝐹) along with an orientation and spin structure on 𝐹.

Definition 5.22. Let (𝐸, 𝐹), (𝐸 ′, 𝐹 ′) be spin Riemann-Hilbert pairs. An isomorphism of Riemann-
Hilbert pairs (𝐸, 𝐹) → (𝐸 ′, 𝐹 ′) consists of

1. a biholomorphism 𝑓 : 𝐷 → 𝐷, and
2. a holomorphic isomorphism of bundles 𝜙 : 𝐸 → 𝐸 ′ covering f such that 𝜙|𝜕𝐷 takes F to 𝐹 ′.

If (𝐸, 𝐹) and (𝐸 ′, 𝐹 ′) are spin Riemann-Hilbert pairs, we say that ( 𝑓 , 𝜙) is an isomorphism if addition-
ally, 𝜙|𝐹 : 𝐹 → 𝐹 ′ preserves orientation and spin structure. We may refer to the pair ( 𝑓 , 𝜙) by 𝜙 alone.

Let (𝐸, 𝐹) be a Riemann-Hilbert pair. Since D is contractible, we identify E with the trivial bundle
C𝑛, and thus, the pair is determined by the subbundle F. A totally real subspace of C𝑛 is described by
𝐴 · R𝑛 where 𝐴 ∈ 𝐺𝐿(𝑛,C). Moreover, 𝐴′ ∈ 𝐺𝐿(𝑛,C) gives the same totally real subspace if and only
if 𝐴−1𝐴′ ∈ 𝐺𝐿(𝑛,R). The fibers of a totally real subbundle 𝐹 ⊂ C𝑛 can be written as 𝐹𝑧 = 𝐴(𝑧) · R𝑛
where 𝐴(𝑧) ∈ 𝐺𝐿(𝑛,C), so such a family of matrices {𝐴(𝑧)}𝑧∈𝜕𝐷 determines a Riemann-Hilbert pair.

Let 𝐹𝜅 ⊂ C denote the totally real subbundle given by 𝐹𝜅
𝑧 = 𝑧𝜅/2R and let 𝐹𝜅1 ,𝜅2 ⊂ C2 denote the

totally real subbundle given by 𝐹𝜅1 ,𝜅2
𝑧 = 𝑧𝜅1/2R ⊕ 𝑧𝜅2/2R. The following is Theorem 1 from [39].

Theorem 5.23. Any Riemann-Hilbert pair (𝐸, 𝐹) splits as a direct sum of Riemann-Hilbert pairs

(𝐸, 𝐹) � ⊕𝑛
𝑖=1(C, 𝐹𝜅𝑖 ),

where 𝜅𝑖 ∈ Z.
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If the boundary real subbundle F is orientable, which is equivalent to having even total index, by
Theorem 5.23, we can write

(𝐸, 𝐹) � ⊕𝑚
𝑖=1(C, 𝐹𝜅𝑖 ) ⊕𝑙

𝑖=1 (C2, 𝐹𝜅1𝑖 ,𝜅2𝑖 ),

where 𝜅𝑖 and 𝜅1𝑖 + 𝜅2𝑖 are even numbers. Hence, each summand is orientable.
For a Riemann-Hilbert pair (𝐸, 𝐹), let

𝜕(𝐸,𝐹 ) : Γ((𝐷, 𝜕𝐷), (𝐸, 𝐹)) → Γ(𝐷,Ω0,1(𝐸))

denote the Cauchy-Riemann operator determined by the holomorphic structure on E. Let det 𝜕(𝐸,𝐹 )
denote the Fredholm determinant. Abbreviate

𝜕𝜅 := 𝜕(C,𝐹 𝜅 ) , 𝜕𝜅1 ,𝜅2 := 𝜕(C2 ,𝐹 𝜅1 ,𝜅2 ) .

The following is a special case of Proposition 2.8 from [45].

Theorem 5.1. Let (𝐸, 𝐹) be a spin Riemann-Hilbert pair. Then det 𝜕(𝐸,𝐹 ) admits a canonical orien-
tation. If 𝜙 : (𝐸, 𝐹) → (𝐸 ′, 𝐹 ′) is an isomorphism of spin Riemann-Hilbert pairs, then the induced
isomorphism

𝜙 : det 𝜕(𝐸,𝐹 ) → det 𝜕 ′
(𝐸′,𝐹 ′)

preserves the canonical orientation. Furthermore, the canonical orientation varies continuously in a
family of Cauchy-Riemann operators.

The following is a consequence of the proof of a special case of Lemma 8.1 from [45].

Lemma 5.24. Suppose

0 → 𝑉 ′ → 𝑉 → 𝑉 ′′ → 0

is a short exact sequence of real vector bundles over a base 𝐵. Then an orientation on any two of𝑉, 𝑉 ′, 𝑉 ′′

naturally induces an orientation on the third. A spin structure on any two of𝑉,𝑉 ′, 𝑉 ′′ naturally induces
a spin structure on the third.

Suppose now that 𝑉 ′, 𝑉 ′′ are oriented and spin and equip 𝑉 = 𝑉 ′ ⊕ 𝑉 ′′ with the induced orientation
and spin structure. If 𝜉 ′

1, . . . , 𝜉
′
𝑘′ (resp. 𝜉 ′′

1 , . . . , 𝜉
′′
𝑘′′ ) is an oriented frame of 𝑉 ′ (resp. 𝑉 ′′) that lifts to

the associated spin bundle, then 𝜉 ′
1 ⊕ 0, . . . , 𝜉 ′

𝑘′ ⊕ 0, 0 ⊕ 𝜉 ′′
1 , . . . , 0 ⊕ 𝜉 ′′

𝑘′′ is an oriented frame of 𝑉 ′ ⊕𝑉 ′′

that lifts to the associated spin bundle.

In light of Lemma 5.24, the direct sum of spin Riemann-Hilbert pairs is naturally a spin Riemann-
Hilbert pair. The following can be deduced from the proof of Proposition 8.4 from [45].

Lemma 5.25. Let (𝐸, 𝐹) be a spin Riemann-Hilbert pair. If (𝐸, 𝐹) splits as a direct sum of spin
Riemann-Hilbert pairs (𝐸 ′, 𝐹 ′) ⊕ (𝐸 ′′, 𝐹 ′′), then the isomorphism

det 𝜕(𝐸,𝐹 ) � det 𝜕(𝐸′,𝐹 ′) ⊗ det 𝜕(𝐸′′,𝐹 ′′)

is orientation-preserving.

Remark 5.26. An oriented real line bundle has a canonical spin structure. So, a one-dimensional
Riemann-Hilbert pair with an orientation on the real bundle determines a spin Riemann-Hilbert pair.
We will use this implicitly below.

The proof of the following lemma is given as a part of the proof of Theorem C.4.1 in [38].
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Lemma 5.27. If 𝜅 ≥ −1, then ker 𝜕𝜅 can be written explicitly as

ker 𝜕𝜅 = {
𝜅∑
𝑗=0

𝑎 𝑗 𝑧
𝑗 | 𝑎 𝑗 ∈ C and 𝑎 𝑗 = �̄�𝜅− 𝑗 }

and Coker(𝜕𝜅 ) = 0. In particular, dim ker 𝜕𝜅 = 𝜅 + 1.

Below, we often use the fact that if (𝐸, 𝐹) is a Riemann-Hilbert pair with Coker 𝜕(𝐸,𝐹 ) = 0, then an
orientation of det 𝜕(𝐸,𝐹 ) is the same as an orientation of ker 𝜕(𝐸,𝐹 ) .

Lemma 5.28. Evaluation at 1 defines an orientation-preserving isomorphism

𝑓0 : ker 𝜕0 → 𝐹0
1 .

Proof. This follows from the definition of the orientation on det(𝜕0) given in Section 2 of [45]. �

The following is Lemma A.2.1 from [44].

Lemma 5.29. Let (𝐸, 𝐹) be a rank 1 Riemann-Hilbert pair of Maslov index 2. Evaluation at 0 and 1
defines an isomorphism

𝑓2 : ker 𝜕(𝐸,𝐹 ) → 𝐸0 ⊕ 𝐹1.

Moreover, for any choice of orientation on 𝐹, this isomorphism is orientation-preserving if the codomain
is oriented by the complex structure on 𝐸0 and the orientation on 𝐹1.

We choose an orientation on 𝐹2 such that the frame z is positively oriented. By Remark 5.26, this
choice of orientation determines a spin structure on 𝐹2.

Lemma 5.30. The orientation on ker 𝜕2 is determined by the ordered basis

(𝑧2 + 1), 𝑖(1 − 𝑧2), 𝑧.

Proof. By Lemma 5.27, we have

ker 𝜕2 = 𝑠𝑝𝑎𝑛R{(𝑧2 + 1), 𝑖(1 − 𝑧2), 𝑧}.

Consider the map

𝑓2 : ker 𝜕2 → C0 ⊕ 𝐹2
1

from Lemma 5.29. Orient the fiber C0 by its complex structure and the fiber 𝐹2
1 = R ⊂ C1 by the basis

1. By Lemma 5.29, the map 𝑓2 is orientation-preserving. Since

𝑓2 ((𝑧2 + 1)) = (1, 2), 𝑓2 (𝑖(1 − 𝑧2)) = (𝑖, 0), 𝑓2(𝑧) = (0, 1)

is an oriented basis, it follows that the basis

(𝑧2 + 1), 𝑖(1 − 𝑧2), 𝑧

determines the orientation on ker 𝜕2. �

We choose the orientation on 𝐹1,1 such that the frame

𝜁 (𝑧) =
( 𝑧+1

4
−𝑖 (1−𝑧)

4

)
, 𝜂(𝑧) =

( 𝑖 (1−𝑧)
4
𝑧+1

4

)
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is positively oriented. In addition, we choose the spin structure on 𝐹1,1 such that this frame can be lifted
to the associated double cover of the frame bundle.

Lemma 5.31. Evaluation at zero

𝑓1,1 : ker 𝜕1,1 → C2
0

defines an isomorphism. If the codomain is oriented by the complex structure on C2
0, this isomorphism

is orientation-preserving.

Proof. By Lemma 5.27, the map 𝑓1,1 defines an isomorphism. We degenerate (C2, 𝐹1,1) to (C2, 𝐹0,2)
in order to determine the orientation on ker 𝜕1,1. Consider the family of loops

𝐴𝑡 : 𝜕𝐷 → 𝐺𝐿(2,C), 𝑡 ∈ [0, 1]

given by

𝐴𝑡 (𝑧) =
(

1+𝑡2𝑧
2

𝑡 (𝑧−1)
2𝑖

𝑡 (1−𝑧)
2𝑖

𝑡2+𝑧
2

)
.

We claim that the family of boundary conditions 𝐹 (𝑡) given by 𝐹 (𝑡)𝑧 = 𝐴𝑡 (𝑧) · R2 is a degeneration
from 𝐹1,1 to 𝐹0,2. Indeed,

𝐴0(𝑧) =
(
1 0
0 𝑧

) ( 1
2 0
0 1

2

)
, 𝐴1(𝑧) =

(
𝑧

1
2 0

0 𝑧
1
2

)���
𝑧− 1

2 +𝑧
1
2

2
𝑧

1
2 −𝑧− 1

2
2𝑖

𝑧− 1
2 −𝑧

1
2

2𝑖
𝑧− 1

2 +𝑧
1
2

2

���,
where the matrix

���
𝑧− 1

2 +𝑧
1
2

2
𝑧

1
2 −𝑧− 1

2
2𝑖

𝑧− 1
2 −𝑧

1
2

2𝑖
𝑧− 1

2 +𝑧
1
2

2

���
is an invertible real matrix for every 𝑧 ∈ 𝜕𝐷. The family of frames given by the columns of 𝐴𝑡

gives rise to a continuous family of orientations and spin structures on 𝐹 (𝑡). The orientation on 𝐹 (1)
coincides with the orientation on 𝐹1,1. The orientation on 𝐹 (0) coincides with the direct sum orientation
𝐹0,2 = 𝐹0 ⊕ 𝐹2. The spin structure on 𝐹 (1) coincides with the spin structure on 𝐹1,1 and the spin
structure on 𝐹 (0) coincides with the direct sum spin structure on 𝐹0,2 as in Lemma 5.24. Let

𝑅(𝑡) :=
(
1 0
0 𝑡

)
, 𝐵(𝑡, 𝑧) :=

1
4

(
(3 + 𝑡2) + (𝑡2 − 1)𝑧 𝑖(1 − 𝑡2) + 𝑖(𝑡2 − 1)𝑧
𝑖( 1

𝑡 − 𝑡) + 𝑖(𝑡 − 1
𝑡 )𝑧 (3𝑡 + 1

𝑡 ) + ( 1
𝑡 − 𝑡)𝑧

)
.

Then 𝐵(𝑡, 𝑧) is an invertible holomorphic matrix on D for every 𝑡 ∈ (0, 1], and the matrices satisfy

𝐵(𝑡, 𝑧) |𝜕𝐷𝐴1 (𝑧)𝑅(𝑡) = 𝐴𝑡 (𝑧), 𝑡 ∈ (0, 1], 𝑧 ∈ 𝜕𝐷.

Hence, 𝐵(𝑡, 𝑧) is an isomorphism between (C2, 𝐹 (1)) and (C2, 𝐹 (𝑡)) for every 𝑡 ∈ (0, 1]. Denote by
𝜕 (𝑡) the family of the Cauchy-Riemann operators obtained from (C2, 𝐹 (𝑡)) for 𝑡 ∈ (0, 1]. Note that
ker 𝜕 (1) = ker 𝜕1,1. By Lemma 5.27, the vectors(

1 + 𝑧
0

)
,

(
𝑖(1 − 𝑧)

0

)
,

(
0

1 + 𝑧

)
,

(
0

𝑖(1 − 𝑧)

)
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form a basis for ker 𝜕1,1. So, the following vectors form a basis for ker 𝜕 (𝑡):

𝑣1,𝑡 (𝑧) := 𝐵(𝑡, 𝑧)
(
1 + 𝑧

0

)
, 𝑣2,𝑡 (𝑧) := 𝐵(𝑡, 𝑧)

(
𝑖(1 − 𝑧)

0

)
,

𝑣3,𝑡 (𝑧) := 𝐵(𝑡, 𝑧)
(

0
1 + 𝑧

)
, 𝑣4,𝑡 (𝑧) := 𝐵(𝑡, 𝑧)

(
0

𝑖(1 − 𝑧)

)
.

Let

𝑤1,𝑡 (𝑧) := 𝑣1,𝑡 (𝑧) − 𝑣4,𝑡 (𝑧) =
(
𝑧𝑡2 + 1
𝑖𝑧𝑡 − 𝑖𝑡

)
,

𝑤2,𝑡 (𝑧) := 𝑣1,𝑡 (𝑧) + 𝑣4,𝑡 (𝑧) =
1
2

(
𝑧2(𝑡2 − 1) + 2𝑧 + 𝑡2 + 1

𝑖𝑧2(𝑡 − 1
𝑡 ) + 𝑖(𝑡 + 1

𝑡 ) − 2𝑖𝑧𝑡

)
,

𝑤3,𝑡 (𝑧) := 𝑣2,𝑡 (𝑧) − 𝑣3,𝑡 (𝑧) =
1
2

(
𝑖𝑧2(1 − 𝑡2) + (1 + 𝑡2)𝑖 − 2𝑖𝑧
𝑧2(𝑡 − 1

𝑡 ) − 𝑡 − 1
𝑡 − 2𝑧𝑡

)
,

𝑤4,𝑡 (𝑧) := 𝑣2,𝑡 (𝑧) + 𝑣3,𝑡 (𝑧) =
(
−𝑖𝑧 + 𝑖
𝑡 + 𝑧

𝑡

)
.

For 𝑖 = 2, 3, 4, define 𝑢𝑖,𝑡 (𝑧) := 𝑡𝑤𝑖,𝑡 (𝑧) when 𝑡 > 0, and 𝑢𝑖,0(𝑧) := lim𝑡→0 𝑡𝑤𝑖,𝑡 (𝑧). In addition, define
𝑢1,𝑡 (𝑧) := 𝑤1,𝑡 (𝑧). Note that the bases

{𝑣1,𝑡 , 𝑣2,𝑡 , 𝑣3,𝑡 , 𝑣4,𝑡 }, {𝑤1,𝑡 , 𝑤2,𝑡 , 𝑤3,𝑡 , 𝑤4,𝑡 }, {𝑢1,𝑡 , 𝑢2,𝑡 , 𝑢3,𝑡 , 𝑢4,𝑡 }

determine the same orientation on ker 𝜕 (𝑡) for 𝑡 ∈ (0, 1]. We have

𝑢1,0(𝑧) =
(
1
0

)
,

𝑢2,0(𝑧) = 1
2

(
0

𝑖(1 − 𝑧2)

)
,

𝑢3,0(𝑧) = −1
2

(
0

𝑧2 + 1

)
,

𝑢4,0(𝑧) =
(
0
𝑧

)
.

By Lemma 5.30, the basis {−𝑢3,0, 𝑢2,0, 𝑢4,0} determines the orientation on ker 𝜕2, and by Lemma 5.28,
the vector 𝑢1,0 (𝑧) determines the orientation on ker 𝜕0. Hence, by Lemma 5.25, the basis

{𝑢1,0, 𝑢2,0, 𝑢3,0, 𝑢4,0}

determines the orientation on ker 𝜕 (0). Continuity implies that {𝑢1,𝑡 , 𝑢2,𝑡 , 𝑢3,𝑡 , 𝑢4,𝑡 } is positively oriented
for every 𝑡 ∈ [0, 1], and so is {𝑣1,𝑡 , 𝑣2,𝑡 , 𝑣3,𝑡 , 𝑣4,𝑡 } for 𝑡 ∈ (0, 1]. Hence, the basis

𝑣1,1 =

(
1 + 𝑧

0

)
, 𝑣2,1 =

(
𝑖(1 − 𝑧)

0

)
, 𝑣3,1 =

(
0

1 + 𝑧

)
, 𝑣4,1 =

(
0

𝑖(1 − 𝑧)

)
is positively oriented. Therefore, 𝑓1,1 is orientation-preserving. �

The orientation convention for 𝜕𝐷 is the counter-clockwise orientation. For a point 𝑧 ∈ 𝜕𝐷, we
identify 𝑇𝑧𝜕𝐷 with 𝑖𝑧R, so 𝑖𝑧 is a positively oriented basis. The following definition is the orientation
convention for PSL(2,R) in [14].
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Definition 5.32. Let 𝑧0, 𝑧1, 𝑧2 ∈ 𝜕𝐷 be three distinct points in anticlockwise order. Consider the
embedding

𝐹 : PSL(2,R) → 𝜕𝐷 × 𝜕𝐷 × 𝜕𝐷,

𝑔 ↦→ (𝑔 · 𝑧0, 𝑔 · 𝑧1, 𝑔 · 𝑧2).

The orientation on PSL(2,R) is determined such that F is orientation-reversing.

Consider the Lie algebra 𝔭𝔰𝔩(2,R). Let

𝜂1 =

(
1 0
0 −1

)
, 𝜂2 =

(
0 0
1 0

)
, 𝜂3 =

(
0 1
0 0

)
be a basis for this algebra.

Lemma 5.33. {𝜂1, 𝜂2, 𝜂3} is a positively oriented basis of 𝔭𝔰𝔩(2,R).
Proof. Let H denote the closed upper half plane and let H denote the compactification by adding a
point at infinity. Since there is a biholomorphism 𝐷 → H, we can identify the range of the map F from
Definition 5.32 with 𝜕H × 𝜕H × 𝜕H. Choose

𝑧0 = −1, 𝑧1 = 0, 𝑧2 = 1.

The orientation of

𝑇−1𝜕H × 𝑇0𝜕H × 𝑇1𝜕H

is determined by the basis

(1, 0, 0), (0, 1, 0) (0, 0, 1).

We have

𝑑

𝑑𝑡
|𝑡=0 exp(𝑡𝜂1) · 𝑧 = 𝑑

𝑑𝑡
|𝑡=0

(
𝑒𝑡 0
0 𝑒−𝑡

)
· 𝑧

=
𝑑

𝑑𝑡
|𝑡=0

𝑒𝑡 𝑧

𝑒−𝑡

= 2𝑧.

Similarly,

𝑑

𝑑𝑡
|𝑡=0 exp(𝑡𝜂2) · 𝑧 = −𝑧2,

𝑑

𝑑𝑡
|𝑡=0 exp(𝑡𝜂3) · 𝑧 = 1.

Hence,

𝐹 (𝜂1) = (−2, 0, 2), 𝐹 (𝜂2) = (−1, 0,−1), 𝐹 (𝜂3) = (1, 1, 1).

Since

det ���
−2 0 2
−1 0 −1
1 1 1

��� < 0,

it follows that F is orientation-reversing. Thus, by Definition 5.32, the basis {𝜂1, 𝜂2, 𝜂3} is positively
oriented. �
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Lemma 5.34. The action of PSL(2,R) on D induces an isomorphism

D : 𝔭𝔰𝔩(2,R) → ker 𝜕2

which is orientation-reversing.

Proof. Identify D with the one-point compactified upper half planeH and identify the Riemann-Hilbert
pair (C, 𝐹2) with the Riemann-Hilbert pair (𝑇H, 𝑇𝜕H). The latter identification preserves the canonical
orientation on the determinant line by Proposition 5.1. The map D is given by

D(𝐴) = (𝑧 ↦→ 𝑑

𝑑𝑡
|𝑡=0 exp(𝑡𝐴) · 𝑧).

Let 𝑒𝑣 := 𝑒𝑣𝑖 ⊕ 𝑒𝑣0, where 𝑒𝑣𝑖 and 𝑒𝑣0 are the evaluation maps at i and 0, respectively. By Lemma 5.29,
D is orientation reversing if and only if 𝑒𝑣 ◦ D is orientation reversing. Consider the points 0, 𝑖 ∈ H.
The basis

(1, 0), (𝑖, 0) (0, 1)

is positively oriented basis of 𝑇𝑖H ⊕ 𝑇0𝜕H. By the calculation of the previous lemma, we have

𝑒𝑣 ◦ D(𝜂1) = (2𝑖, 0), 𝑒𝑣 ◦ D(𝜂2) = (1, 0), 𝑒𝑣 ◦ D(𝜂3) = (1, 1).

Since

det ���
0 2 0
1 0 0
1 0 1

��� < 0,

it follows that D is orientation-reversing. �

5.5. Riemann-Hilbert pairs and holomorphic disks

Let (𝑋, 𝐽) be an n-dimensional complex manifold, and let 𝐿 ⊂ 𝑋 be a smooth totally real n-dimensional
submanifold. A holomorphic disk 𝑢 : (𝐷, 𝜕𝐷) → (𝑋, 𝐿) gives rise to a holomorphic vector bundle
𝑢∗𝑇𝑋 → 𝐷 and a smooth totally real subbundle 𝑢 |∗𝜕𝐷𝑇𝐿 ⊂ 𝑢∗𝑇𝑋 |𝜕𝐷 . Thus, we obtain a Riemann-
Hilbert pair (𝐸𝑢 , 𝐹𝑢) associated to 𝑢.

5.5.1. A useful example
Lemma 5.35. Let 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) be the holomorphic disk given by 𝑢(𝑧) = 𝑒−𝑖 𝜉𝑣 log 𝑧 · �.
Let 𝜃1, 𝜃2 ∈ 𝔰𝔲(2) be such that 𝜉𝑣 , 𝜃1, 𝜃2 form a basis of 𝔰𝔲(2). Equip 𝐿� with the orientation and spin
structure arising from the trivialization of 𝑇𝐿� given by the infinitesimal action of 𝔰𝔲(2) and the basis
𝜉𝑣 , 𝜃1, 𝜃2. Let

(𝐸, 𝐹) := (𝑢∗𝑇C𝑃3, 𝑢 |∗𝜕𝐷𝑇𝐿�).

Then, the sections

𝜉𝑣
𝑧

· 𝑢, 𝜃1 · 𝑢, 𝜃2 · 𝑢 ∈ Γ(𝐸) (5.1)

form a holomorphic frame. Moreover, there is an isomorphism of spin Riemann-Hilbert pairs

Ψ : (𝐸, 𝐹) → (C3, 𝐹2 ⊕ 𝐹0 ⊕ 𝐹0)
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given by

𝜉𝑣
𝑧

· 𝑢 ↦→ ���
1
0
0

���, 𝜃1 · 𝑢 ↦→ ���
0
1
0

���, 𝜃2 · 𝑢 ↦→ ���
0
0
1

���. (5.2)

Proof. Recalling Example 5.10, we see that the kernel of the infinitesimal action of 𝔰𝔩(2,C) at 𝑢(0) is
spanned by 𝜉𝑣 . Given this, Smith (44, Appendix A.3) shows that the sections (5.1) form a holomorphic
frame for 𝐸. We split (𝐸, 𝐹) by

𝐸 =

〈
𝜉𝑣
𝑧

· 𝑢
〉
C

⊕ 〈𝜃1 · 𝑢〉C ⊕ 〈𝜃1 · 𝑢〉C,

𝐹 = 𝑧

〈
𝜉𝑣
𝑧

· 𝑢
〉
R

⊕ 〈𝜃1 · 𝑢〉R ⊕ 〈𝜃1 · 𝑢〉R.

It follows that the formula (5.2) gives the desired isomorphismΨ.Recall the choices of the spin structures
and orientations of 𝐹2 and 𝐹0 given in Section 5.4. By Lemma 5.24, the frame

���
𝑧
0
0

���, ���
0
1
0

���, ���
0
0
1

���
of 𝐹2 ⊕𝐹0 ⊕𝐹0 is positively oriented and can be lifted to the associate double cover of the frame bundle.
Therefore, the isomorphism Ψ preserves orientation and spin structure. �

5.5.2. Orientation convention for disk moduli spaces
Let (𝑋, 𝜔) be a symplectic manifold with 𝜔-tame (integrable) complex structure 𝐽, and let 𝐿 ⊂ 𝑋
be a Lagrangian submanifold. Let M̃(𝛽) denote the space of parameterized J-holomorphic maps
𝑢 : (𝐷2, 𝜕𝐷2) → (𝑋, 𝐿) such that 𝑢∗([𝐷2, 𝜕𝐷2]) = 𝛽. Each 𝑢 ∈ M̃(𝛽) determines a Riemann-Hilbert
pair (𝐸𝑢 , 𝐹𝑢) = (𝑢∗𝑇𝑋, 𝑢∗𝑇𝐿) as explained above. For the following discussion, we assume that the
linear Cauchy-Riemann operator 𝜕(𝐸𝑢 ,𝐹𝑢) : Γ((𝐷2, 𝜕𝐷2), (𝐸𝑢 , 𝐹𝑢)) → Γ(𝐷2,Ω0,1(𝐸𝑢)) is surjective
for every u, so M̃(𝛽) is a smooth manifold and there is a canonical isomorphism

𝑇𝑢M̃(𝛽) � ker 𝜕(𝐸𝑢 ,𝐹𝑢) .

Thus, Proposition 5.1 gives a canonical orientation of M̃(𝛽).
We discuss now the relevant conventions concerning the orientations of the moduli spacesM𝑘+1,𝑙 (𝛽)

of unparameterized stable J-holomorphic maps with marked points. The following definition is Con-
vention 8.2.1 from [14].

Definition 5.36. Let G be an oriented Lie group with a smooth, proper, free right action on an oriented
manifold M. For 𝑝 ∈ 𝑀, let 𝜑𝑝 : 𝐺 → 𝑀 be given by 𝑔 ↦→ 𝑝 · 𝑔. Let 𝜋 : 𝑀 → 𝑀/𝐺 be the quotient
map. Split the short exact sequence

0 → 𝑇𝑒𝐺
𝑑𝜑𝑝→ 𝑇𝑝𝑀

𝑑𝜋→ 𝑇𝜋 (𝑝) (𝑀/𝐺) → 0

to obtain an isomorphism

𝑇𝑝𝑀 � 𝑇𝜋 (𝑝) (𝑀/𝐺) ⊕ 𝑇𝑒𝐺.

The quotient orientation on 𝑀/𝐺 is determined by the condition that the preceding isomorphism
preserves orientation for all 𝑝 ∈ 𝑀 .
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The following definition is based on [14, p. 698].

Definition 5.37. Let𝑈 ⊂ M̃(𝛽) × (𝜕𝐷2)𝑘+1 × (int 𝐷2)𝑙 denote the open subset where the marked points
are pairwise disjoint and the cyclic ordering on the boundary marked points given by the orientation on
𝜕𝐷2 induced from the complex orientation of 𝐷2 agrees with the order of the labels. Thus, points of U
are tuples (𝑢, 𝑧, 𝑤) where

𝑢 ∈ M̃(𝛽), 𝑧 = (𝑧0, . . . , 𝑧𝑘 ) ∈ 𝜕𝐷2, 𝑤 = (𝑤1, . . . , 𝑤𝑙) ∈ int 𝐷2.

An automorphism of the disk 𝜓 ∈ PSL2(R) acts on U by

𝜓 · (𝑢, 𝑧, 𝑤) = (𝑢 ◦ 𝜓, 𝜓−1(𝑧), 𝜓−1 (𝑤)).

The orientation of M𝑘+1,𝑙 (𝛽) is determined by the quotient orientation on the open subset
𝑈/𝑃𝑆𝐿2 (R) ⊂ M𝑘+1,𝑙 (𝛽).

5.6. Computation of 𝑂𝐺𝑊1,1

Recall from Section 4 that we denote by M𝑘+1,𝑙 (𝛽) the moduli space of holomorphic disks 𝑢 :
(𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) representing a class 𝛽 ∈ 𝐻2(C𝑃3, 𝐿�;Z) with 𝑘 + 1 boundary points and l
interior points. We denote elements in M𝑘+1,𝑙 (𝛽) by [𝑢; 𝑧0, . . . , 𝑧𝑘 , 𝑤1, . . . , 𝑤𝑙], where 𝑧𝑖 ∈ 𝜕𝐷 and
𝑤𝑖 ∈ int𝐷. Consider the moduli space M1,0 (1), and the evaluation map

𝑒𝑣𝑏0 : M1,0 (1) → 𝐿�,

𝑒𝑣𝑏0([𝑢; 𝑧]) = 𝑢(𝑧).

The following lemma is part of Proposition 4.2 from [43].

Lemma 5.38. The evaluation map 𝑒𝑣𝑏0 : M1,0 (1) → 𝐿� is a covering map of degree ±3.

Proof of Theorem 5.1. By Theorem 1.6, we have

𝑂𝐺𝑊1,1 = −
∫
M1,0 (1)

𝑒𝑣𝑏0
∗�̄�,

where PD([�̄�]) = 𝑝𝑡. Hence, 𝑂𝐺𝑊1,1 is determined by the degree of the map 𝑒𝑣𝑏0, and Lemma 5.38
gives 𝑂𝐺𝑊1,1 = ∓3, where the sign depends on whether 𝑒𝑣𝑏0 preserves or reverses orientation.

We show that 𝑒𝑣𝑏0 preserves orientation. Choose 𝜃1, 𝜃2 that together with 𝜉𝑣 form a basis of 𝔰𝔲(2).
Equip 𝐿� with the orientation and spin structure arising from the trivialization of 𝑇𝐿� given by the
infinitesimal action of 𝔰𝔲(2) and the basis 𝜉𝑣 , 𝜃1, 𝜃2. The orientation of this basis does not affect the
calculation below, in accordance with the orientation axiom Proposition 2.2 8.

Let 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) be a holomorphic disk of Maslov index 2. Let

(𝐸, 𝐹) := (𝑢∗𝑇C𝑃3, 𝑢 |∗𝜕𝐷𝑇𝐿�).

By Lemma 5.16, we can write 𝑢(𝑧) = 𝐴 · 𝑒−𝑖 𝜉𝑣 log 𝑧 · �, where 𝐴 ∈ SU(2). We may assume that A is the
identity since acting by 𝐴−1 does not change the isomorphism class of (𝐸, 𝐹).

Let 𝑧 ∈ 𝜕𝐷 and let 𝜁 ∈ 𝑇𝑧𝜕𝐷 denote the unit vector in the direction of the orientation. By Definition
5.37, the oriented tangent space of M1,0 (1) at [𝑢; 𝑧] is given by

𝑇[𝑢;𝑧 ]M1,0 (1) � (ker 𝜕(𝐸,𝐹 ) ⊕ 𝑇𝑧𝜕𝐷)/𝔭𝔰𝔩(2,R).
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By Proposition 5.1 and Lemma 5.35, we have an orientation-preserving isomorphism

ker 𝜕(𝐸,𝐹 ) ⊕ 𝑇𝑧𝜕𝐷 � ker 𝜕2 ⊕ ker 𝜕0 ⊕ ker 𝜕0 ⊕ 𝑇𝑧𝜕𝐷.

By Lemma 5.27, we have an orientation-reversing isomorphism

ker 𝜕2 ⊕ ker 𝜕0 ⊕ ker 𝜕0 ⊕ 𝑇𝑧𝜕𝐷 � ker 𝜕0 ⊕ ker 𝜕0 ⊕ 𝑇𝑧𝜕𝐷 ⊕ ker 𝜕2.

The linearization of the action of PSL2 (R) in Definition 5.37 composed with the projection on ker 𝜕2
gives the map D : 𝔭𝔰𝔩(2,R) → ker 𝜕2 of Lemma 5.34. So, by Definition 5.36 and Lemmas 5.34 and
5.27, we have an orientation-preserving isomorphism

ker 𝜕0 ⊕ ker 𝜕0 ⊕ 𝑇𝑧𝜕𝐷 � (ker 𝜕(𝐸,𝐹 ) ⊕ 𝑇𝑧𝜕𝐷)/𝔭𝔰𝔩(2,R),

given by

1 ⊕ 0 ⊕ 0 ↦→ [𝜃1 · 𝑢 ⊕ 0], 0 ⊕ 1 ⊕ 0 ↦→ [𝜃2 · 𝑢 ⊕ 0], 0 ⊕ 0 ⊕ 𝜁 ↦→ [0 ⊕ 𝜁] .

Abbreviate

𝜃𝑖 = [𝜃𝑖 · 𝑢 ⊕ 0], 𝜁 = [0 ⊕ 𝜁] .

Thus, by Lemmas 5.25 and 5.28, the orientation on 𝑇[𝑢:𝑧 ]M1,0 (1) is given by the basis 𝜃1, 𝜃2, 𝜁 . In
order to show that 𝑒𝑣𝑏0 preserves orientation, it suffices to show that

𝑑𝑒𝑣𝑏0[𝑢;𝑧 ] : 𝑇[𝑢;𝑧 ]M1,0 (1) → 𝑇𝑢 (𝑧)𝐿�

preserves orientation when 𝑧 = 1. The tangent vector 𝜁 ∈ 𝑇1𝜕𝐷 is represented by the path 𝑡 ↦→ 𝑒𝑖𝑡 . So,

𝑑𝑒𝑣𝑏0[𝑢;1] (𝜁) = 𝑑𝑢1(𝜁) = 𝑑

𝑑𝑡
𝑢(𝑒𝑖𝑡 )




𝑡=0 =

𝑑

𝑑𝑡
𝑒𝑡 𝜉𝑣




𝑡=0 = 𝜉𝑣 · 𝑢(1).

Since

𝑑𝑒𝑣𝑏0[𝑢;1] (𝜃1) = 𝜃1 · 𝑢(1), 𝑑𝑒𝑣𝑏0[𝑢;1] (𝜃2) = 𝜃2 · 𝑢(1), 𝑑𝑒𝑣𝑏0[𝑢;1] (𝜁) = 𝜉𝑣 · 𝑢(1),

it follows that 𝑒𝑣𝑏0 preserves orientation. Therefore, 𝑂𝐺𝑊1,1 = −3. �

5.7. Computation of 𝑂𝐺𝑊1,0 (Γ2)

By Theorem 1.6, we have

𝑂𝐺𝑊1,0 (Γ2) = −
∫
M0,1 (1)

𝑒𝑣𝑖∗1𝛾2,

where 𝛾2 is a a differential form representing Γ2 ∈ 𝐻4(C𝑃3, 𝐿�;R). By Poincaré-Lefschetz duality, we
have 𝐻4(C𝑃3, 𝐿�;R) � 𝐻2(C𝑃3\𝐿�;R). Hence, our strategy for computing 𝑂𝐺𝑊1,0 (Γ2) is to find a
complex curve in C𝑃3 \ 𝐿� representing the Poincaré-Lefschetz dual to Γ2, and determine how many
holomorphic disks intersect it.

Any complex subvariety Υ ⊂ C𝑃3\𝐿� of complex dimension 2 represents 𝑘PD([𝜔]) where 𝑘 ∈ Z is
the degree ofΥ (i.e., the number of intersection points with a generic line). Consider complex subvarieties
Υ1,Υ2 of degree 𝑘1, 𝑘2, respectively, in general position. Then Υ1 ∩ Υ2 represents 𝑘1𝑘2PD([𝜔2]), and
thus, PD(Γ2) = [Υ1 ∩ Υ2]/(𝑘1𝑘2).
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We consider the case where Υ1,Υ2 are small perturbations of the anticanonical divisor 𝑌�. For
𝑖 = 1, 2, let 𝑔𝑖 ∈ SU(2) be lifts of rotations by arbitrary small angles 𝜖𝑖 about different axes. Write

Υ𝑖 = {[𝑎, 𝑔𝑖 (𝑎), 𝑏] ∈ Sym3C𝑃1 | 𝑎, 𝑏 ∈ C𝑃1}.

Note that Υ𝑖 ⊂ C𝑃3 \ 𝐿� since 𝜖𝑖 are small.

Theorem 5.2. degΥ𝑖 = 4

Proof. Write 𝑎 = [𝑎0 : 𝑎1], 𝑏 = [𝑏0 : 𝑏1] ∈ C𝑃1. Identifying C𝑃3 with the projectivization of the
space of homogeneous polynomials of degree 3 in two variables, we can write

Υ𝑖 =
{[

(𝑎0𝑦 − 𝑎1𝑥)
(
((𝑔𝑖)11𝑎0 + (𝑔𝑖)12𝑎1)𝑦 − ((𝑔𝑖)21𝑎0 + (𝑔𝑖)22𝑎1)𝑥

)
(𝑏0𝑦 − 𝑏1𝑥)

]
| 𝑎, 𝑏 ∈ C𝑃1},

where (𝑔𝑖)𝑘𝑙 are the components of the matrix 𝑔𝑖 . Hence, we have an embedding

𝑓𝑖 : C𝑃1 × C𝑃1 → C𝑃3,

([𝑎0 : 𝑎1], [𝑏0 : 𝑏1]) ↦→ [ 𝑓 0
𝑖 (𝑎, 𝑏) : 𝑓 1

𝑖 (𝑎, 𝑏) : 𝑓 2
𝑖 (𝑎, 𝑏) : 𝑓 3

𝑖 (𝑎, 𝑏)],

where 𝑓
𝑗
𝑖 are homogeneous polynomials of bidegree (2, 1), such that Υ𝑖 = Im 𝑓𝑖 .

Let 𝐻1 and 𝐻2 be hyperplanes in C𝑃3 given by

𝐻1 =
{∑

ℎ 𝑗 𝑧 𝑗 = 0
}
, 𝐻2 =

{∑
𝑘 𝑗 𝑧 𝑗 = 0

}
.

The intersection 𝐻1 ∩ 𝐻2 is a generic line, so we have

degΥ𝑖 = #Υ𝑖 ∩ 𝐻1 ∩ 𝐻2.

The preimages 𝑓 −1
𝑖 (𝐻1) and 𝑓 −1

𝑖 (𝐻2) are the vanishing sets of the polynomials

𝑝ℎ𝑖 (𝑎, 𝑏) =
3∑
𝑗=0

ℎ 𝑗 𝑓
𝑗
𝑖 (𝑎, 𝑏), 𝑝𝑘𝑖 (𝑎, 𝑏) =

3∑
𝑗=0

𝑘 𝑗 𝑓
𝑗
𝑖 (𝑎, 𝑏)

of bidegree (2, 1). Denote by 𝜋1, 𝜋2 : C𝑃1 × C𝑃1 → C𝑃1 the projection maps. Let

O(𝑖, 𝑗) = 𝜋∗
1O(𝑖) ⊗ 𝜋∗

2O( 𝑗).

So,

𝑐1 (O(𝑖, 𝑗)) = (𝑖, 𝑗) ∈ 𝐻2(C𝑃1 × C𝑃1) = Z ⊕ Z.

The polynomials 𝑝ℎ𝑖 , 𝑝
𝑘
𝑖 , define sections of the line bundle O(2, 1). So,

#Υ𝑖 ∩ 𝐻1 ∩ 𝐻2 = # 𝑓 −1
𝑖 (𝐻1 ∩ 𝐻2) = # 𝑓 −1

𝑖 (𝐻1) ∩ 𝑓 −1
𝑖 (𝐻2)

=
∫
C𝑃1×C𝑃1

𝑐1 (O(2, 1)) ⌣ 𝑐1(O(2, 1)) = 4.

�
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Proof of Theorem 5.2. Let 𝛾2 be a a differential form representing Γ2 ∈ 𝐻4(C𝑃3, 𝐿�;R). We show
below that 𝑒𝑣𝑖1 is transverse to Υ1 ∩ Υ2. Thus, by Theorem 1.6 and Poincaré duality, we have

𝑂𝐺𝑊1,0(Γ2) = −
∫
M0,1 (1)

𝑒𝑣𝑖∗1𝛾2 = −
#𝑒𝑣𝑖−1

1 (Υ1 ∩ Υ2)
degΥ1 degΥ2

. (5.3)

So, we need to count Maslov 2 disks passing through Υ1 ∩ Υ2 with sign given by the orientation of the
moduli space M0,1 (1) and the complex orientation of the normal bundle to Υ1 ∩ Υ2.

We represent a point of Υ𝑖 by three dots with an arrow between two of them labeled by 𝑔𝑖 as follows.

• • •𝑔𝑖

Hence, a point of Υ1 ∩Υ2 is represented by three dots with two arrows between them labeled by 𝑔1 and
𝑔2. There are 6 types up to continuous deformations:

• • •𝑔1 𝑔2 (Θ1)

• • •𝑔1 𝑔2 (Θ2)

• • •𝑔2 𝑔1 (Θ3)

• • •𝑔1 𝑔2 (Θ4)

• • •
𝑔1

𝑔2 (Θ5)

• • •
𝑔1

𝑔2

(Θ6)

More explicitly,

Θ1 = {[𝑎, 𝑔1 (𝑎), 𝑔2𝑔1 (𝑎)] ∈ Sym3C𝑃1 | 𝑎 ∈ C𝑃1},
Θ2 = {[𝑎, 𝑔1 (𝑎), 𝑔−1

2 𝑔1(𝑎)] ∈ Sym3C𝑃1 | 𝑎 ∈ C𝑃1},
Θ3 = {[𝑎, 𝑔2 (𝑎), 𝑔1𝑔2 (𝑎)] ∈ Sym3C𝑃1 | 𝑎 ∈ C𝑃1},
Θ4 = {[𝑎, 𝑔−1

1 (𝑎), 𝑔2𝑔
−1
1 (𝑎)] ∈ Sym3C𝑃1 | 𝑎 ∈ C𝑃1},

Θ5 = {[𝑎, 𝑔1 (𝑎), 𝑐] ∈ Sym3C𝑃1 | 𝑎, 𝑐 ∈ C𝑃1, 𝑔2𝑔1 (𝑎) = 𝑎},
Θ6 = {[𝑎, 𝑔1 (𝑎), 𝑐] ∈ Sym3C𝑃1 | 𝑎, 𝑐 ∈ C𝑃1, 𝑔−1

2 𝑔1 (𝑎) = 𝑎}.

Since each of Θ1, . . . ,Θ4 is the image of a map C𝑃1 → C𝑃3 of degree 3, it follows that degΘ1 =
. . . = degΘ4 = 3. We claim that each of Θ5,Θ6 is a union of two lines. Indeed, both 𝑔2𝑔1 and
𝑔−1

2 𝑔1 have two eigenvectors, so there are two choices for 𝑎 ∈ C𝑃1. Each such choice a gives a line
{[𝑎, 𝑔1 (𝑎), 𝑐] | 𝑐 ∈ C𝑃1}. Hence, degΘ5 = degΘ6 = 2. Therefore,

∑6
𝑖=1 degΘ𝑖 = 16. By Bezout’s

theorem and Proposition 5.2, we have

degΥ1 ∩ Υ2 = degΥ1 degΥ2 = 16.

Since the degrees coincide, it follows that each Θ𝑖 occurs with multiplicity 1 in the intersection Υ1 ∩Υ2.
In particular, the intersection is generically transverse.
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Figure 4. The triangle 𝑢(𝑤).

By Lemma 5.16, all Maslov 2 disks are axial of the form 𝑢(𝑧) = 𝐴 ·𝑒−𝑖 𝜉𝑣 log 𝑧 ·�. Let 𝑝1, 𝑝2, 𝑝3 ∈ C𝑃1

such that [𝑝1, 𝑝2, 𝑝3] ∈ Sym3C𝑃1 is in the image of a Maslov index 2 disk. As in Example 5.10, there
exist 𝑖, 𝑗 ∈ {1, 2, 3} such that 𝑑 (𝑝𝑖 , 𝑝 𝑗 ) ≥ 𝑒, where e is the distance between two vertices in an equilateral
triangle on a great circle inC𝑃1. By choosing 𝜖𝑖 sufficiently small, Θ1, . . . ,Θ4 can be brought arbitrarily
close to the locus 𝑁� where all 3 points coincide. This rules out a Maslov index 2 disk passing through
them. Hence, the number of Maslov 2 disks through Υ1 ∩ Υ2 is equal to the number of Maslov 2 disks
through Θ5 and Θ6. Since a and 𝑔1(𝑎) are sufficiently close, it follows by Lemma 5.19 that one such
disk passes through each of the lines making up Θ5,Θ6, for a total of four disks.

Next, we determine the sign with which each disk passing through Θ5 and Θ6 contributes to
#𝑒𝑣𝑖−1

1 (Υ1 ∩ Υ2). The treatment of Θ5 and Θ6 is parallel, so we focus on Θ6. Let 𝑎 ∈ C𝑃1 be one
of the two solutions of 𝑔−1

2 𝑔1(𝑎) = 𝑎 as in the above formula for Θ6. Denote by Θ𝑎
6 the corresponding

component of Θ6. Let [𝑢;𝑤] ∈ M0,1 (1) with 𝑢(𝑤) ∈ Θ𝑎
6 . Let (𝜈Θ6 )𝑢 (𝑤) := 𝑇𝑢 (𝑤)C𝑃

3/𝑇𝑢 (𝑤)Θ6 be the
normal space to Θ6 at 𝑢(𝑤) equipped with the complex orientation. The differential 𝑑𝑒𝑣𝑖1 [𝑢;𝑤 ] induces
a linear map

𝑑𝑒𝑣𝑖1 [𝑢;𝑤 ] : 𝑇[𝑢;𝑤 ]M0,1 (1) → (𝜈Θ6 )𝑢 (𝑤) .

We show 𝑑𝑒𝑣𝑖1 [𝑢;𝑤 ] is an orientation-reversing isomorphism.
By Lemma 5.16, we can write 𝑢(𝑧) = 𝐴 · 𝑒−𝑖 𝜉𝑣 log 𝑧 · �. By applying an appropriate rotation to

C𝑃1 = 𝑆2, which does not affect orientations, we may assume that a and 𝑔1(𝑎) are positioned in the 𝑥𝑧
plane symmetrically about the south pole as in Figure 4. It follows from Example 5.10 that we may take
A to be the identify matrix. We begin by finding an oriented basis for 𝑇[𝑢;𝑤 ]M0,1 (1). Let

(𝐸, 𝐹) := (𝑢∗𝑇C𝑃3, 𝑢 |∗𝜕𝐷𝑇𝐿�).

We choose 𝜃1, 𝜃2 ∈ 𝔰𝔲(2) to be lifts of infinitesimal right-handed rotations around the x-axis and the y-
axis, respectively. Thus, the trivialization of 𝑇𝐿� given by the infinitesimal action of 𝔰𝔲(2) and the basis
𝜉𝑣 , 𝜃1, 𝜃2, determines the orientation and the spin structure of 𝐿� given in Section 3.2. Let 𝑤 ∈ int 𝐷.
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The tangent space of M0,1 (1) at [𝑢;𝑤] is given by

𝑇[𝑢;𝑤 ]M0,1 (1) � (ker 𝜕(𝐸,𝐹 ) ⊕ 𝑇𝑤𝐷)/𝔭𝔰𝔩(2,R).

Consider the canonical identification C � 𝑇𝑤𝐷. We denote by 𝑥 and �̂� the vectors in 𝑇𝑤𝐷 that
correspond to 1 and i in C, respectively. Hence, the basis {𝑥, �̂�} determines the orientation on 𝑇𝑤𝐷 that
induced by its complex structure. By Proposition 5.1 and Lemmas 5.25, 5.28, 5.34 and 5.35, we have
an orientation-reversing isomorphism

ker 𝜕0 ⊕ ker 𝜕0 ⊕ 𝑇𝑤𝐷 � (ker 𝜕(𝐸,𝐹 ) ⊕ 𝑇𝑤𝐷)/𝔭𝔰𝔩(2,R),

given by

1 ⊕ 0 ⊕ 0 ↦→ [𝜃1 · 𝑢 ⊕ 0], 0 ⊕ 1 ⊕ 0 ↦→ [𝜃2 · 𝑢 ⊕ 0], 0 ⊕ 0 ⊕ 𝑥 ↦→ [0 ⊕ 𝑥], 0 ⊕ 0 ⊕ �̂� ↦→ [0 ⊕ �̂�] .

Abbreviate

𝜃𝑖 = [𝜃𝑖 · 𝑢 ⊕ 0], 𝑥 = [0 ⊕ 𝑥], �̄� = [0 ⊕ �̂�] .

Thus, {−𝜃1, 𝜃2, 𝑥, �̄�} is an oriented basis for 𝑇[𝑢;𝑤 ]M0,1 (1).
Next, we compute 𝑑𝑒𝑣𝑖1 on 𝑥, �̄�. Indeed,

𝑑𝑢𝑤 (𝑥) = 𝑑

𝑑𝑡





𝑡=0𝑒
−𝑖 𝜉𝑣 log(𝑤+𝑡) · � =

−𝑖𝜉𝑣
𝑤

· 𝑢(𝑤),

and

𝑑𝑢𝑤 ( �̂�) = 𝑑

𝑑𝑡





𝑡=0𝑒
−𝑖 𝜉𝑣 log(𝑤+𝑖𝑡) · � =

𝜉𝑣
𝑤

· 𝑢(𝑤).

It follows that

𝑑𝑒𝑣𝑖1 [𝑢;𝑤 ] (𝑥) = −𝑖𝜉𝑣
𝑤

· 𝑢(𝑤), 𝑑𝑒𝑣𝑖1 [𝑢;𝑤 ] ( �̄�) = 𝜉𝑣
𝑤

· 𝑢(𝑤). (5.4)

To determine whether 𝑑𝑒𝑣𝑖1 [𝑢;𝑤 ] preserves orientation, it is helpful to work in a holomorphic
coordinate chart on Sym3(C𝑃1). Let

𝜓 : C3 → Sym3 (C𝑃1)

be given by

𝜓(𝑧1, 𝑧2, 𝑧3) = [[1 : 𝑧1], [1 : 𝑧2], [𝑧3 : 1]] .

Recall the stereographic projection p from Example 5.10. Observe that

𝜓(𝑝(𝑎), 𝑝(𝑔1 (𝑎)), 0) = 𝑢(𝑤).

Since 𝑎 ≠ 𝑔1 (𝑎), we may choose an open 𝑈 ⊂ C3 containing (𝑝(𝑎), 𝑝(𝑔1 (𝑎)), 0) such that �̂� = 𝜓 |𝑈 is
a biholomorphism onto its image. Then

�̂�−1 (Θ𝑎
6 ) = 𝑈 ∩ ({(𝑝(𝑎), 𝑝(𝑔1 (𝑎)))} × C) =: Θ̂𝑎

6 .
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Observe that the normal bundle to Θ̂𝑎
6 is canonically identified with C2 × {0} ⊂ C3. Let 𝜋 : C3 → C2

be the projection onto the first two factors, and let

𝑒𝑣𝑖1 = 𝜋 ◦ �̂�−1 ◦ 𝑒𝑣𝑖1.

Since �̂� is biholomorphic and thus orientation preserving, it suffices to determine whether the map

𝑑𝑒𝑣𝑖1 [𝑢;𝑤 ] : 𝑇[𝑢;𝑤 ]M0,1 (1) → C2

preserves orientation.
We proceed to compute 𝑑𝑒𝑣𝑖1 on the oriented basis {−𝜃1, 𝜃2, 𝑥, �̄�} of 𝑇[𝑢;𝑤 ]M0,1 (1). By Example

5.10, we have

(𝑝(𝑎), 𝑝(𝑔1 (𝑎))) = 𝜋 ◦ �̂�−1 ◦ 𝑢(𝑤) =
(√

𝑤

3
,−
√

𝑤

3

)
. (5.5)

Since a lies in the 𝑥𝑧 plane, it follows that 𝑝(𝑎) ∈ R, and consequently, 𝑤 ∈ R>0. Recall the map 𝜑𝑡𝜉𝑣
from Example 5.10. For 𝑧 ∈ C, we have

𝜉𝑣 · 𝑧 = 𝑑

𝑑𝑡
|𝑡=0𝜑

𝑡
𝜉𝑣

(𝑧) = 𝑖

2
𝑧.

So, by equations (5.4) and (5.5), we obtain

𝑑𝑒𝑣𝑖1( �̄�) = 𝜋 ◦ 𝑑 (�̂�)−1
(
𝜉𝑣
𝑤

· 𝑢(𝑤)
)
=

1
𝑤

( 𝑖
√
𝑤

2
√

3
,− 𝑖

√
𝑤

2
√

3
),

𝑑𝑒𝑣𝑖1(𝑥) = 𝜋 ◦ 𝑑 (�̂�)−1
(
−𝑖𝜉𝑣
𝑤

· 𝑢(𝑤)
)
=

1
𝑤

(
√
𝑤

2
√

3
,−

√
𝑤

2
√

3
).

However, we can see by stereographically projecting Figure 4 or by direct calculation that

𝑑𝑒𝑣𝑖1(−𝜃1) = −(𝑖, 𝑖) + 𝑂 (𝜖1), 𝑑𝑒𝑣𝑖1(𝜃2) = −(1, 1) + 𝑂 (𝜖1).

Since

det
������

0 −1 0 −1
−1 0 −1 0

1
2
√

3𝑤
0 − 1

2
√

3𝑤
0

0 1
2
√

3𝑤
0 − 1

2
√

3𝑤

������
= − 1

3𝑤
< 0,

it follows that the basis

𝑑𝑒𝑣𝑖1({−𝜃1, 𝜃2, 𝑥, �̄�})

is not complex oriented. Thus, 𝑑𝑒𝑣𝑖1 and consequently also 𝑑𝑒𝑣𝑖1 reverse orientation.
Therefore, each of the 4 Maslov 2 disks passing through Υ1 ∩ Υ2 contributes to the signed count

#𝑒𝑣𝑖−1
1 (Υ1 ∩ Υ2) with sign −1. By Proposition 5.2 and equation (5.3), we obtain

𝑂𝐺𝑊1,0 (Γ2) = 4/16 = 1/4.

�
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5.8. Computation of 𝑂𝐺𝑊2,0 (Γ3)

Proof of Theorem 5.3. By Theorem 1.6, we have

𝑂𝐺𝑊2,0 (Γ3) = −
∫
M0,1 (2)

𝑒𝑣𝑖∗1𝛾3,

where 𝛾3 is a representative of Γ3. Since Γ3 is Poincaré dual to a point, it follows that

𝑂𝐺𝑊2,0 (Γ3) = −#𝑒𝑣𝑖−1
1 (𝑝),

where 𝑝 ∈ C𝑃3 is a regular value of 𝑒𝑣𝑖1.
Let 𝑝 ∈ 𝑁�. First, we show that p is a regular value of 𝑒𝑣𝑖1 and compute #𝑒𝑣𝑖−1

1 (𝑝) up to sign. We
claim that any Maslov 4 disk u that passes through p is an axial disk of type 𝜉 𝑓 . Indeed, by Lemma 5.4,
𝑌� is an anticanonical divisor, so by Lemma 5.5, the Maslov index of u is given by twice the algebraic
intersection number [𝑢] · [𝑌�]. Hence, [𝑢] · [𝑌�] = 2. Thus, Lemma 5.6 implies that u intersects 𝑌�
only at p. Hence, by Lemma 5.15, a pole germ of u is not of type 𝜉𝑣 . So, by Lemma 5.17, u is an axial
disk of type 𝜉 𝑓 as claimed. Thus, Lemma 5.18 guarantees that p is a regular value of 𝑒𝑣𝑖1. Since by
Lemma 5.20 there exists a unique axial disk of type 𝜉 𝑓 of Maslov index 4 that passes through 𝑝, it
follows that #𝑒𝑣𝑖−1

1 (𝑝) = ±1.
It remains to show that in fact #𝑒𝑣𝑖−1

1 (𝑝) = −1. Let 𝑟 := (0,−1, 0), and choose

𝑝 = [𝑟, 𝑟, 𝑟] ∈ 𝑁Δ ⊂ Sym3C𝑃1.

Let 𝑢 : (𝐷, 𝜕𝐷) → (C𝑃3, 𝐿�) be the J-holomorphic disk of Maslov index 4 that intersects 𝑁� at p. As
shown above, u is an axial disk of type 𝜉 𝑓 , so by Example 5.11, we have 𝑢(𝑧) = 𝑒−𝑖 𝜉 𝑓 log 𝑧 · �. Let

(𝐸, 𝐹) := (𝑢∗𝑇C𝑃3, 𝑢 |∗𝜕𝐷𝑇𝐿�).

We construct frames for E and F as follows. Let 𝛼 ∈ 𝔰𝔲(2) be an infinitesimal right-handed rotation
about the −𝑥 axis, and let 𝛽 ∈ 𝔰𝔲(2) be an infinitesimal right-handed rotation about the z axis. Recall that
𝜉 𝑓 is an infinitesimal right-handed rotation about the y axis, so 𝜉 𝑓 , 𝛼, 𝛽 is a basis of 𝔰𝔲(2) corresponding
to infinitesimal right-handed rotations about a right-handed set of orthogonal axes as in the definition
of the orientation 𝔬� and spin structure 𝔰� on 𝐿� given in Section 3.2. Since 𝑢(0) = 𝑝, and we have
taken the complex structure on C𝑃1 given by left-handed rotation around the outward normal by an
angle of 𝜋/2, it follows that 𝑖𝛽 · 𝑢(0) = −𝛼 · 𝑢(0). See Figure 5. Thus, the kernel of the infinitesimal
action of 𝔰𝔩(2,C) at 𝑢(0) is spanned by 𝜉 𝑓 and by 𝛼 + 𝑖𝛽. So, it follows from the argument of Smith
[44, Appendix A.3] that the following sections give a holomorphic frame of 𝐸 :

𝜉 𝑓

𝑧
· 𝑢, 𝛼 + 𝑖𝛽

𝑧
· 𝑢, (𝛼 − 𝑖𝛽) · 𝑢.

Taking C-linear combinations, we see that

𝜉 𝑓

𝑧
· 𝑢, (1 + 𝑧)𝛼 + 𝑖(1 − 𝑧)𝛽

𝑧
· 𝑢, (1 + 𝑧)𝛽 − 𝑖(1 − 𝑧)𝛼

𝑧
· 𝑢

is also a holomorphic frame of 𝐸. Since 𝜉 𝑓 , 𝛼, 𝛽 is a basis of 𝔰𝔲(2), the sections

𝜉 𝑓 · 𝑢, 𝛼 · 𝑢, 𝛽 · 𝑢

give a frame of for 𝐹. This frame is 𝔬� oriented and can be lifted to the double cover of the frame bundle
of F associated to 𝔰� because of how we have chosen 𝛼, 𝛽.
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Figure 5. The rotations 𝛼 and 𝛽 at p.

Let Ψ : 𝐸 → C3 be the isomorphism given by

𝜉 𝑓

𝑧
· 𝑢 ↦→ ���

1
0
0

���, (1 + 𝑧)𝛼 + 𝑖(1 − 𝑧)𝛽
𝑧

· 𝑢 ↦→ ���
0
1
0

���, (1 + 𝑧)𝛽 − 𝑖(1 − 𝑧)𝛼
𝑧

· 𝑢 ↦→ ���
0
0
1

���.
Since

𝜉 𝑓 · 𝑢 ↦→ ���
𝑧
0
0

���, 𝛼 · 𝑢 ↦→ ���
0
𝑧+1

4
−𝑖 (1−𝑧)

4

���, 𝛽 · 𝑢 ↦→ ���
0

𝑖 (1−𝑧)
4
𝑧+1

4

���,
we see that Ψ : (𝐸, 𝐹) → (C3, 𝐹2 ⊕ 𝐹1,1). Recall the choices of spin structures and orientations on 𝐹2

and 𝐹1,1 given in Section 5.4. By Lemma 5.24, the frame

���
𝑧
0
0

���, ���
0
𝑧+1

4
−𝑖 (1−𝑧)

4

���, ���
0

𝑖 (1−𝑧)
4
𝑧+1

4

���
of 𝐹2 ⊕ 𝐹1,1 is positively oriented and can be lifted to the spin double cover of the frame bundle.
Hence, the isomorphism Ψ preserves orientation and spin structure. Thus, by Lemma 5.25, we obtain
an orientation preserving isomorphism

𝑇[𝑢;𝑤 ]M0,1 (2) � (ker 𝜕(𝐸,𝐹 ) ⊕ 𝑇𝑤𝐷)/𝔭𝔰𝔩(2,R) � (ker 𝜕2 ⊕ ker 𝜕1,1 ⊕ 𝑇𝑤𝐷)/𝔭𝔰𝔩(2,R),

where 𝑤 ∈ int𝐷. By Lemma 5.34, this gives an orientation-reversing isomorphism

Ψ∗ : 𝑇[𝑢;𝑤 ]M0,1 (2) ∼−→ ker 𝜕1,1 ⊕ 𝑇𝑤𝐷.

It suffices to show that

𝑑𝑒𝑣𝑖1 [𝑢;𝑤 ] : 𝑇[𝑢;𝑤 ]M0,1 (2) → 𝑇𝑢 (𝑤)C𝑃
3
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reverses orientation when 𝑤 = 0. Denote by 𝑓𝐷 : 𝑇0𝐷 → C the canonical isomorphism, and recall that
𝑓1,1 : ker 𝜕1,1 → C2

0 is the evaluation map at zero. In the following commutative diagram of isomor-
phisms, the left vertical arrow reverses orientation, and the right vertical arrow preserves orientation.

𝑇[𝑢:0]M0,1 (2) 𝑇𝑢 (0)C𝑃
3

ker 𝜕1,1 ⊕ 𝑇0𝐷 C3

𝑑𝑒𝑣𝑖1 [𝑢;0]

Ψ |𝐸0Ψ∗

𝑓1,1 ⊕ 𝑓𝐷

So, it suffices to show that 𝑓1,1 ⊕ 𝑓𝐷 preserves orientation. Since 𝑓𝐷 : 𝑇0𝐷 → C preserves orientation,
and by Lemma 5.31 the map 𝑓1,1 preserves orientation, it follows that 𝑓1,1 ⊕ 𝑓𝐷 preserves orientation
as desired. �

6. Recursions

Proof of Theorem 1.1. Recall Δ 𝑖 = [𝜔𝑖] ∈ 𝐻∗(𝑋;R), for 𝑖 = 0, . . . , 3. So, by the definition of 𝑔𝑖 𝑗 given
in Section 2.6, it follows that 𝑔𝑖 𝑗 = 𝛿𝑖,3− 𝑗 . In order to derive recursion 1, let 𝐼 = { 𝑗2, . . . , 𝑗𝑙}. Apply
𝜕𝑘−1
𝑠 𝜕𝑡𝐼 = 𝜕𝑘−1

𝑠 𝜕𝑡 𝑗2 . . . 𝜕𝑡 𝑗𝑙 to equation (2.4) with 𝑣 = 𝑗1 − 1, 𝑤 = 1. We consider the coefficients of 𝑇𝛽

and evaluate at 𝑠 = 𝑡 𝑗 = 0. Using the closed zero axiom Proposition 2.16, we single out instances of
𝑂𝐺𝑊𝛽,𝑘 (Γ 𝑗1 , Γ𝐼 ) and obtain

[𝑇𝛽]
3∑
𝑖=0

(𝜕𝑘−1
𝑠 𝜕𝑡𝐼 (𝜕𝑠𝜕𝑡3−𝑖Ω · 𝜕𝑡𝑖𝜕𝑡𝑤 𝜕𝑡𝑣Φ) |𝑠=𝑡 𝑗=0) =

= 𝑂𝐺𝑊𝛽,𝑘 (Γ 𝑗1 , . . . , Γ 𝑗𝑙 ) +
∑

𝜛 (𝛽)+𝛽1=𝛽
𝐼1�𝐼2=𝐼
𝛽1≠𝛽

3∑
𝑖=0

𝐺𝑊𝛽 (Δ1,Δ 𝑗1−1,Δ 𝐼1 ,Δ 𝑖)𝑂𝐺𝑊𝛽1 ,𝑘 (Γ3−𝑖 , Γ𝐼2 ),

[𝑇𝛽] (𝜕𝑘−1
𝑠 𝜕𝑡𝐼 (𝜕2

𝑠Ω · 𝜕𝑡𝑤 𝜕𝑡𝑣Ω) |𝑠=𝑡 𝑗=0) =

=
∑

𝛽1+𝛽2=𝛽
𝑘1+𝑘2=𝑘−1
𝐼1�𝐼2=𝐼

(
𝑘 − 1
𝑘1

)
𝑂𝐺𝑊𝛽1 ,𝑘1 (Γ 𝑗1−1, Γ1, Γ𝐼1 )𝑂𝐺𝑊𝛽2 ,𝑘2+2(Γ𝐼2),

[𝑇𝛽] (𝜕𝑘−1
𝑠 𝜕𝑡𝐼 (𝜕𝑠𝜕𝑡𝑤Ω · 𝜕𝑡𝑣 𝜕𝑠Ω) |𝑠=𝑡 𝑗=0) =

=
∑

𝛽1+𝛽2=𝛽
𝑘1+𝑘2=𝑘−1
𝐼1�𝐼2=𝐼

(
𝑘 − 1
𝑘1

)
𝑂𝐺𝑊𝛽1 ,𝑘1+1(Γ 𝑗1−1, Γ𝐼1 )𝑂𝐺𝑊𝛽2 ,𝑘2+1(Γ1, Γ𝐼2).

Substituting the expressions in (2.4) gives the required recursion.
In order to derive recursion 2, let 𝐼 = { 𝑗1, . . . , 𝑗𝑙}. Apply 𝜕𝑘−2

𝑠 𝜕𝑡𝐼 = 𝜕𝑘−2
𝑠 𝜕 𝑗1 . . . 𝜕 𝑗𝑙 to equation (2.4)

with 𝑣 = 2, 𝑤 = 2. We consider the coefficients of 𝑇𝛽+2 and evaluate at 𝑠 = 𝑡 𝑗 = 0. We obtain

[𝑇𝛽+2]
3∑
𝑖=0

(𝜕𝑘−2
𝑠 𝜕𝑡𝐼 (𝜕𝑠𝜕𝑡3−𝑖Ω · 𝜕𝑡𝑖𝜕𝑡𝑤 𝜕𝑡𝑣Φ) |𝑠=𝑡 𝑗=0) =

=
∑

𝜛 (𝛽)+𝛽1=𝛽+2
𝐼1�𝐼2=𝐼

3∑
𝑖=0

𝐺𝑊𝛽 (Δ2,Δ2,Δ 𝐼1 ,Δ 𝑖)𝑂𝐺𝑊𝛽1 ,𝑘−1(Γ3−𝑖 , Γ𝐼2),
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[𝑇𝛽+2] (𝜕𝑘−2
𝑠 𝜕𝑡𝐼 (𝜕2

𝑠Ω · 𝜕𝑡𝑤 𝜕𝑡𝑣Ω) |𝑠=𝑡 𝑗=0) =

= 𝑂𝐺𝑊2,0 (Γ2, Γ2)𝑂𝐺𝑊𝛽,𝑘 (Γ 𝑗1 , . . . , Γ 𝑗𝑙 )

+
∑

𝛽1+𝛽2=𝛽+2
𝑘1+𝑘2=𝑘−2

(𝛽1 ,𝑘1)≠(2,0)
𝐼1�𝐼2=𝐼

(
𝑘 − 2
𝑘1

)
𝑂𝐺𝑊𝛽1 ,𝑘1 (Γ2, Γ2, Γ𝐼1 )𝑂𝐺𝑊𝛽2 ,𝑘2+2(Γ𝐼2 ),

[𝑇𝛽+2] (𝜕𝑘−2
𝑠 𝜕𝑡𝐼 (𝜕𝑠𝜕𝑡𝑤Ω · 𝜕𝑡𝑣 𝜕𝑠Ω) |𝑠=𝑡 𝑗=0) =

=
∑

𝛽1+𝛽2=𝛽+2
𝑘1+𝑘2=𝑘−2
𝐼1�𝐼2=𝐼

(
𝑘 − 2
𝑘1

)
𝑂𝐺𝑊𝛽1 ,𝑘1+1(Γ2, Γ𝐼1 )𝑂𝐺𝑊𝛽2 ,𝑘2+1(Γ2, Γ𝐼1).

Substituting the expressions in (2.4) gives the required recursion.
Recursion 3 is derived in the same way as recursion (a) in Theorem 10 from [48]. �

Lemma 6.1. 𝑂𝐺𝑊2,0 (Γ2, Γ2) = 35
64 .

Proof. In Theorems 5.1–5.3, we computed

𝑂𝐺𝑊1,1 = −3, 𝑂𝐺𝑊1,0 (Γ2) = 1
4
, 𝑂𝐺𝑊2,0 (Γ3) = 1.

By recursion 3 of Theorem 1.1, we get

𝑂𝐺𝑊2,0(Γ2, Γ2) = 𝑂𝐺𝑊2,0 (Γ1, Γ3) − 𝑂𝐺𝑊1,1 (Γ1) · 𝑂𝐺𝑊1,0 (Γ1, Γ2).

By the open divisor axiom Proposition 2.26, we get

𝑂𝐺𝑊2,0 (Γ2, Γ2) = 1
2

+ 3
4

· 1
16

=
35
64

.

�

Proof of Theorem 1.2. This follows from Theorems 5.1–5.3 and Lemma 6.1. �

In order to prove Corollary 1.3 we will need the following lemma.

Lemma 6.2. Assume |Γ𝑖 𝑗 | ≥ 4. If 𝑂𝐺𝑊1,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) ≠ 0. Then (𝑘, 𝑙) = (1, 0) or (𝑘, 𝑙) = (0, 1) and
|Γ𝑖1 | = 4.

Proof. By the open degree axiom Proposition 2.23 and Lemma 3.3,

𝛽 = 1 =⇒ 2 + 2𝑙 = 2𝑘 +
𝑙∑
𝑗=1

|Γ𝑖 𝑗 |

=⇒ 2(𝑘 − 1) +
𝑙∑
𝑗=1

(|Γ𝑖 𝑗 | − 2) = 0.

Both summands are positive when 𝑘 > 1. Hence, equality can hold only if (𝑘, 𝑙) = (1, 0), or (𝑘, 𝑙) =
(0, 1) and |Γ𝑖1 | = 4. �

Proof of Corollary 1.3. By Theorem 2.3, invariants with interior constraints in Γ� are computable in
terms of invariants with interior constraints of the form Γ 𝑗 = [𝜔 𝑗 ]. Furthermore, by the open unit
and divisor axioms Proposition 2.24,6, we may assume that |Γ 𝑗 | � 4. Finally, assume for convenience
that interior constraints are written in ascending degree order. It follows from the open degree axiom
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Proposition 2.23 that for any 𝛽, there are only finitely many values of 𝑘, 𝑙, for which there may
be nonzero invariants with constraints of the above type. Hence, we give a process for computing
𝑂𝐺𝑊𝛽,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) which is inductive on (𝛽, 𝑘, 𝑙, 𝑖1) with respect to the lexicographical order on
Z⊕4
�0 .

Consider a triple (𝛽, 𝑘, 𝑙) with 𝑘 + 𝑙 < 2. If 𝛽 = 0, by the open zero axiom Proposition 2.25, all
invariants vanish. For 𝛽 = 1, 2 all possible values have been computed explicitly in Theorem 1.2. Indeed,
if 𝛽 = 1, this follows from Lemma 6.2. If 𝛽 = 2, we have

𝛽 = 2 =⇒ 4 + 2𝑙 = 2𝑘 +
𝑙∑
𝑗=1

|Γ𝑖 𝑗 |

=⇒ 2(𝑘 − 2) +
𝑙∑
𝑗=1

(|Γ𝑖 𝑗 | − 2) = 0.

Equality can only hold if 𝑘 = 0, 𝑙 = 1 and |Γ𝑖1 | = 6. Similarly, the open degree axiom implies that for
𝛽 � 3, the only invariants that do not vanish have 𝑘 + 𝑙 � 2.

Consider a triple (𝛽, 𝑘, 𝑙) with 𝑘 + 𝑙 � 2. If 𝑙 � 2, by Theorem 1.1 3 and the open divisor
and zero axiom, we can express the invariant 𝑂𝐺𝑊𝛽,𝑘 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) as a combination of invariants
𝑂𝐺𝑊𝛽′,𝑘′ (Γ 𝑗1 , . . . , Γ 𝑗𝑙′ ) that either have 𝛽′ < 𝛽, or 𝛽′ = 𝛽, 𝑘 ′ = 𝑘 and 𝑙 ′ < 𝑙, or 𝛽′ = 𝛽, 𝑘 ′ = 𝑘, 𝑙 ′ = 𝑙
and 𝑗1 < 𝑖1. Thus, the invariant is reduced to invariants with data of smaller lexicographical order,
known by induction.

Note that by Lemma 6.1, we have 𝑂𝐺𝑊2,0 (Γ2, Γ2) ≠ 0. So, if 𝑘 � 2, by Theorem 1.1 2, we can
express the required invariant in terms of invariants that are either of smaller degree or have equal
degree and fewer boundary marked points. Indeed, in formula 2, the closed zero axiom Proposition 2.13
and the open zero axiom imply that all the products involving invariants with degree 𝛽 + 2 vanish.
By Lemma 3.4, the map 𝜛 is given by multiplication by 4. This and Lemma 6.2 imply that products
involving invariants with degree 𝛽 + 1 do not occur.

If 𝑘 � 1 and 𝑙 � 1, by Theorem 1.1 1, the open zero axiom and the closed zero axiom, we can express
the required invariant in terms of invariants that are of smaller degree. �

7. Small relative quantum cohomology

In this section, we compute the small relative quantum cohomology of (C𝑃3, 𝐿�).

Lemma 7.1. 𝑂𝐺𝑊2,2 = − 5
4 .

Proof. By recursion 1 of Theorem 1.1, we get

𝑂𝐺𝑊2,1 (Γ2) = −(𝑂𝐺𝑊1,1 (Γ1))2.

In Theorem 5.1, we computed 𝑂𝐺𝑊1,1 = −3. Thus, by the open divisor axiom Proposition 2.26, we get
𝑂𝐺𝑊2,1(Γ2) = − 9

16 . By recursion 2 of Theorem 1.1, we get

𝑂𝐺𝑊2,2 · 𝑂𝐺𝑊2,0 (Γ2, Γ2) = 𝐺𝑊1(Δ2,Δ2,Δ3) · 𝑂𝐺𝑊0,1 (Γ0) + 𝑂𝐺𝑊2,1((Γ2))2.

Lemma 6.1 gives 𝑂𝐺𝑊2,0 (Γ2, Γ2) = 35
64 , and the number of lines through a point and two lines is

𝐺𝑊1 (Δ2,Δ2,Δ3) = 1. So, by the open unit axiom Proposition 2.24, we get

𝑂𝐺𝑊2,2 =
−1 + 81

256
35
64

= −5
4
.

�
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Recall the definition of Γ� from Section 2.7. By Lemma 3.4, we have 𝐻2 (C𝑃3, 𝐿�;Z) = Z, and the
map

𝜛 : 𝐻2(C𝑃3;Z) −→ 𝐻2(C𝑃3, 𝐿�;Z)

is given by 𝑚 ↦→ 4𝑚. Hence, since 𝑔𝑖 𝑗 = 𝛿𝑖,3− 𝑗 , it follows that the relative small quantum product (2.6)
for (𝑋, 𝐿) = (C𝑃3, 𝐿�) is given by

Γ𝑢)מ , Γ𝑣 ) =
∑

0≤𝑙≤3
𝛽∈𝐻2 (C𝑃3;Z)

𝑇𝜛 (𝛽) · 𝐺𝑊𝛽 (Δ𝑢 ,Δ 𝑣 ,Δ 𝑙) · Γ3−𝑙 +
∑

𝛽∈𝐻2 (C𝑃3 ,𝐿�;Z)
𝑇𝛽 · 𝑂𝐺𝑊𝛽,0(Γ𝑢 , Γ𝑣 ) · Γ�.

Proof of Theorem 1.5. We claim that 𝑄𝐻∗(C𝑃3, 𝐿�) is generated as a ring by 1, 𝑇, Γ1, Γ�. Indeed, by
the open degree axiom Proposition 2.2 3 and the closed degree axiom Proposition 2.13, we obtain

,Γ1)מ Γ1) = 𝐺𝑊0(Δ1,Δ1,Δ1) · Γ2.

,Γ1)מ Γ2) = 𝐺𝑊0 (Δ1,Δ2,Δ0) · Γ3 + 𝑇 · 𝑂𝐺𝑊1,0 (Γ1, Γ2) · Γ�.

So, by the closed zero axiom Proposition 2.1 6, the open divisor axiom Proposition 2.2 6 and Theorem 5.2,
we get

,Γ1)מ Γ1) = Γ2,

and

,Γ1)מ Γ2) = Γ3 + 𝑇

16
· Γ�.

Consider the ring R[𝑥, 𝑦] [[𝑞1/4]]/𝐼 with

𝐼 =

(
𝑥4 − 𝑞 − 1

2
𝑞1/2𝑦 − 3

64
𝑞1/4𝑦, 𝑦2 + 5

4
𝑞1/2𝑦, 𝑥𝑦 − 3

4
𝑞1/4𝑦

)
.

Let

𝜙 : R[𝑥, 𝑦] [[𝑞1/4]]/𝐼 → 𝑄𝐻∗(C𝑃3, 𝐿�)

be the ring homomorphism defined by

1 ↦→ 1, 𝑞1/4 ↦→ 𝑇, 𝑥 ↦→ Γ1, 𝑦 ↦→ Γ�.

Hence,

𝜙(𝑥)2 = Γ2, 𝜙(𝑥)3 − 𝜙(𝑞 1
4 )

16
𝜙(𝑦) = Γ3. (7.1)

In order to show the map 𝜙 is well defined, it suffices to show that the generators of the ideal I are sent to
0. Using the closed degree axiom, the wall crossing formula Theorem 2.3 and the open degree axiom,
we obtain

,Γ1)מ ,Γ1)מ Γ2)) = ,Γ1)מ Γ3) + ,Γ1)מ
𝑇

16
Γ�)

= 𝑇4 · 𝐺𝑊1 (Δ1,Δ3,Δ3) · Γ0 + 𝑇2 · 𝑂𝐺𝑊2,0 (Γ1, Γ3) · Γ� − 𝑇

16
𝑂𝐺𝑊1,1(Γ1) · Γ�.
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The number of lines through two points and a plane is 𝐺𝑊1(Δ1,Δ3,Δ3) = 1. Hence, by Theorem 5.3,
Theorem 5.1 and the open divisor axiom, we get

𝜙(𝑥)4 = 𝜙(𝑞1/4)4 + 1
2
𝜙(𝑞1/4)2𝜙(𝑦) + 3

64
𝜙(𝑞1/4)𝜙(𝑦).

So,

𝜙(𝑥4 − 𝑞 − 1
2
𝑞1/2𝑦 − 3

64
𝑞1/4𝑦) = 0.

By the wall crossing formula Theorem 2.3 and the open degree axiom, we get

,�Γ)מ Γ�) =
∑

𝛽∈𝐻2 (C𝑃3 ,𝐿�;Z)
𝑇𝛽 · 𝑂𝐺𝑊𝛽,0 (Γ�, Γ�) · Γ�

=
∑

𝛽∈𝐻2 (C𝑃3 ,𝐿�;Z)
𝑇𝛽 · 𝑂𝐺𝑊𝛽,2 · Γ�

= 𝑇2 · 𝑂𝐺𝑊2,2 · Γ�.

Hence, by Lemma 7.1, we get 𝜙(𝑦2 + 5
4𝑞

1/2𝑦) = 0. Using the wall crossing formula Theorem 2.3, the
open degree and divisor axioms, and Theorem 5.1, we get

,Γ1)מ Γ�) =
∑

𝛽∈𝐻2 (C𝑃3 ,𝐿�;Z)
𝑇𝛽 · 𝑂𝐺𝑊𝛽,0 (Γ1, Γ�) · Γ�

= −
∑

𝛽∈𝐻2 (C𝑃3 ,𝐿�;Z)
𝑇𝛽 · 𝑂𝐺𝑊𝛽,1(Γ1) · Γ�

= −𝑇 · 𝑂𝐺𝑊1,1 (Γ1) · Γ�

=
3
4
𝑇 · Γ�.

So, 𝜙(𝑥𝑦 − 3
4𝑞

1/4𝑦) = 0. Thus, the map 𝜙 is well defined. It is surjective because its image generates
𝑄𝐻∗(C𝑃3, 𝐿�) by equation (7.1).

Abbreviate

𝑁 := 𝑄𝐻∗(𝑋, 𝐿) 𝑀 := R[𝑥, 𝑦] [[𝑞1/4]]/𝐼, 𝑚 := (𝑞1/4) ⊳ R[[𝑞1/4]] .

We think of M and N as modules over the local ring R[[𝑞1/4]] . Consider the induced map

𝜙 : 𝑀/𝑚𝑀 → 𝑁/𝑚𝑁.

It follows from the definition of the ideal I that 𝑀/𝑚𝑀 is a real vector space with basis 1, 𝑦, 𝑥, 𝑥2, 𝑥3.
Since 𝜙 is surjective and

dim 𝑀/𝑚𝑀 = dim 𝑁/𝑚𝑁 = dim 𝐻∗(C𝑃3, 𝐿�;R),

it follows that 𝜙 is injective. Since ker 𝜙/𝑚 ker 𝜙 ⊂ ker 𝜙 = 0, it follows that 𝑚 ker 𝜙 = ker 𝜙. Since
R[[𝑞1/4]] is a local ring with maximal ideal m, Nakayama’s lemma gives ker 𝜙 = 0. Therefore, 𝜙 is an
isomorphism. �
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8. Dependence of invariants on left inverse

In this section, we review in greater detail the dependence of the invariants 𝑂𝐺𝑊𝛽,𝑘 on the map 𝑃R. We
quantify this dependence in Proposition 8.1, from which we obtain Proposition 1.1 as a special case.
Finally, we prove Corollary 1.4.

In the present section, we continue in the setting of Section 2.1. In particular, 𝐿 ⊂ 𝑋 is a connected
spin Lagrangian submanifold with𝐻∗ (𝐿;R) � 𝐻∗(𝑆𝑛;R) and [𝐿] = 0 ∈ 𝐻𝑛 (𝑋;R).Recall the definition
of the map 𝑃R : 𝐻𝑛+1(𝑋, 𝐿;R) → 𝐻𝑛 (𝐿;R) from Section 2.1. In this section, we extend 𝑃R to a map
𝑃R : 𝐻∗(𝑋, 𝐿;R) → 𝐻𝑛 (𝐿;R) by setting it to zero outside 𝐻𝑛+1 (𝑋, 𝐿;R). We use Poincaré duality
to identify 𝐻𝑛 (𝐿;R) � R. Let 𝜌 : 𝐻∗(𝑋, 𝐿;R) → 𝐻∗(𝑋;R) denote the natural map. Consider 𝑃R, 𝑃′

R

with associated invariants 𝑂𝐺𝑊𝛽,𝑘 and 𝑂𝐺𝑊 ′
𝛽,𝑘 , respectively. The long exact sequence of the pair

(𝑋, 𝐿) implies there exists a unique map

𝔭R : 𝐻∗(𝑋;R) → R

such that 𝔭R ◦ 𝜌 = 𝑃R − 𝑃′
R
. Let Δ0, . . . ,Δ𝑁 ∈ 𝐻∗(𝑋;R) be a basis. Recall that

𝑔𝑖 𝑗 =
∫
𝑋
Δ 𝑖 ⌣ Δ 𝑗 , 𝑖, 𝑗 = 0, . . . , 𝑁,

and 𝑔𝑖 𝑗 denotes the inverse matrix.

Theorem 8.1. Let 𝐴1, .., 𝐴𝑙 ∈ 𝐻∗(𝑋, 𝐿;R).

𝑂𝐺𝑊𝛽,0(𝐴1, . . . , 𝐴𝑙) − 𝑂𝐺𝑊 ′
𝛽,0(𝐴1, . . . , 𝐴𝑙) =

∑
𝛽∈𝐻2 (𝑋 ;Z)
𝜛 (𝛽)=𝛽

𝑔𝑖 𝑗𝐺𝑊𝛽 (Δ 𝑖 , 𝜌(𝐴1), . . . , 𝜌(𝐴𝑙))𝔭R(Δ 𝑗 ).

Remark 8.1. Proposition 8.1 continues to hold in the more general setting of [48] without change. We
have formulated it only for the case of L spin and 𝐻∗(𝐿;R) � 𝐻∗(𝑆𝑛;R) to streamline the exposition
since the Chiang Lagrangian satisfies these assumptions.

In order to prove Proposition 8.1, we will need a number of results from [48], which we now
summarize. The proof appears toward the end of this section. Recall the definition of the rings 𝑄𝑊 and
𝑅𝑊 from Section 2.4. Define

𝔦 : 𝐴∗(𝑋;𝑄𝑊 ) → 𝑅𝑊 [−𝑛]

by

𝜂 ↦→ (−1)𝑛+|𝜂 |
∫
𝐿
𝑖∗𝜂.

This is a map of complexes when 𝑅𝑊 is equipped with the trivial differential. The cone 𝐶 (𝔦) is the
complex with underlying graded 𝑄𝑊 module 𝐴∗(𝑋;𝑄𝑊 ) ⊕ 𝑅𝑊 [−𝑛 − 1] and differential

𝑑𝐶 (𝜂, 𝜉) := (𝑑𝜂, 𝔦(𝜂) − 𝑑𝜉) = (𝑑𝜂, 𝔦(𝜂)).

Note that if [𝐿] = 0 ∈ 𝐻𝑛 (𝑋;R), then Coker 𝔦 � 𝑅𝑊 [−𝑛 − 1]. Thus, we consider the following
commutative diagram with exact rows and columns, which is taken from Section 4.4 in [48] except that
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Coker 𝔦 is replaced with 𝑅𝑊 [−𝑛 − 1] .

0 0

0 �� 𝑅𝑊 /𝑄𝑊

��

∼ �� 𝑅𝑊 /𝑄𝑊

��

�� 0

0 �� 𝑅𝑊

�̄�

��

�̄� �� 𝐻∗(𝐶 (𝔦))

𝑃

��

𝜋 �� 𝐻∗(𝑋;𝑄𝑊 )

��

�� 0

0 �� 𝑄𝑊

�̄�𝑄 ��

�̄�

��

𝐻∗(𝑋, 𝐿;𝑄𝑊 )
𝜌𝑄 ��

𝑎

��

𝐻∗(𝑋;𝑄𝑊 )

 

��

�� 0

0

��

0

��

0

��

(8.1)

Here, �̄� : 𝑄𝑊 → 𝑅𝑊 is the inclusion and 𝑞 : 𝑅𝑊 → 𝑅𝑊 /𝑄𝑊 is the quotient map. Let

𝑃 : 𝐻∗(𝐶 (𝔦)) → 𝑅𝑊

be a left inverse to the map 𝑥 from the diagram (8.1) satisfying the following two conditions. The first
condition is that

𝑞 ◦ 𝑃 = 𝑃. (8.2)

This condition and the exactness of the diagram (8.1) imply that there exists a unique 𝑃𝑄 :
𝐻∗(𝑋, 𝐿;𝑄𝑊 ) → 𝑄𝑊 such that the following diagram commutes:

𝑅𝑊 𝐻∗(𝐶 (𝔦))𝑃��

𝑄𝑊

�̄�

��

𝐻∗(𝑋, 𝐿;𝑄𝑊 ).

𝑎

��

𝑃𝑄��

(8.3)

The second condition is that there exists 𝑃R : 𝐻∗(𝑋, 𝐿;R) → R, such that

𝑃𝑄 = 𝑃R ⊗ Id𝑄 . (8.4)

The following is Lemma 4.10 from [48].

Lemma 8.2. 𝑃𝑄 ◦ �̄�𝑄 = Id.

The following is Lemma 4.11 from [48].

Lemma 8.3. Let 𝑙 : 𝐻∗(𝑋, 𝐿;R) → R satisfy 𝑙◦𝑦 = Id . There exists a unique choice of 𝑃 : 𝐻∗(𝐶 (𝔦)) →
𝑅𝑊 satisfying conditions (8.2) and (8.4) such that 𝑙 = 𝑃R. Moreover, ker 𝑃 = 𝑎(ker 𝑃𝑄).

Let Ψ ∈ 𝐶 (𝔦) be the relative potential defined in Section 1.3.1 in [48]. The definition of Ω given in
Section 1.3.3 in [48] is

Ω = 𝑃Ψ. (8.5)

This together with (2.2) and Lemma 8.3 makes precise the dependence of the invariants 𝑂𝐺𝑊𝛽,𝑘 on
𝑃R. To quantify this dependence, we recall another lemma.
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Denote by 𝜌∗ : 𝑄𝑈 → 𝑄𝑊 the inclusion map. Recall the map 𝜋 from diagram (8.1). The following
is Lemma 5.9 from [48]

Lemma 8.4. 𝜋(Ψ) = 𝜌∗(∇Φ).

Proof of Proposition 8.1. Apply Lemma 8.3 to obtain maps 𝑃, 𝑃,′ corresponding to 𝑃R, 𝑃
′
R
, that are

left inverses to 𝑥 and satisfy conditions (8.2) and (8.4). Denote by 𝑃𝑄, 𝑃
′
𝑄 the corresponding maps from

diagram (8.3). Since

(𝑃 − 𝑃′) ◦ 𝑥 = 0, (𝑃𝑄 − 𝑃′
𝑄) ◦ �̄�𝑄 = 0,

the maps 𝑃 − 𝑃′, 𝑃𝑄 − 𝑃′
𝑄, factor through 𝐻∗(𝑋;𝑄𝑊 ). Consequently, there exist unique maps 𝔭,𝔭𝑄,

such that the following diagram commutes.

𝑅𝑊 𝐻∗(𝐶 (𝔦)) 𝐻∗(𝑋;𝑄𝑊 )

𝑄𝑊 𝐻∗(𝑋, 𝐿;𝑄𝑊 ) 𝐻∗(𝑋;𝑄𝑊 )
𝑃𝑄−𝑃′

𝑄 𝜌𝑄

𝔭𝑄

𝑎�̄�  

𝑃−𝑃′

𝔭

𝜋

(8.6)

Indeed, since

(𝑃𝑄 − 𝑃′
𝑄) ◦ �̄�𝑄 = 0, 𝜌𝑄 ◦ �̄�𝑄 = 0,

then (𝑃𝑄 − 𝑃′
𝑄) (ker 𝜌𝑄) = 0. By diagram (8.1), 𝜌𝑄 is surjective. Thus, for every 𝜂 ∈ 𝜌−1

𝑄 (𝜂), we define
𝔭𝑄 (𝜂) = (𝑃𝑄−𝑃′

𝑄) (𝜂). Hence,𝔭𝑄 is determined by 𝑃𝑄 and 𝑃′
𝑄 . A similar argument applies for𝔭. Since

(𝔭R ⊗ Id𝑄) ◦ 𝜌𝑄 = (𝔭R ⊗ Id𝑄) ◦ (𝜌 ⊗ Id𝑄)
= (𝔭R ◦ 𝜌) ⊗ Id𝑄
= (𝑃R − 𝑃′

R) ⊗ Id𝑄
= 𝑃𝑄 − 𝑃′

𝑄,

it follows by the uniqueness of 𝔭𝑄 that

𝔭𝑄 = 𝔭R ⊗ Id𝑄 .

Let 𝑂𝐺𝑊, 𝑂𝐺𝑊′ be the Gromov-Witten invariants correspond to P and 𝑃′, respectively, and let Ω, Ω
′

be the corresponding superpotentials.
From multilinearity of 𝑂𝐺𝑊𝛽,𝑘 , it suffices to prove this proposition for 𝐴𝑖 = Γ𝑖 . By (8.5), diagram

(8.6), and Lemma 8.4, we get

Ω − Ω
′
= (𝑃 − 𝑃′)Ψ
= (𝔭 ◦ 𝜋)Ψ
= 𝔭(𝜌∗(∇Φ))
= �̄� ◦ 𝔭𝑄 (𝜌∗(∇Φ)).
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Recall that [𝑇𝛽] denotes the coefficient of 𝑇𝛽 . So,

[𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 (Ω − Ω
′) |𝑠=𝑡𝑖=0 = [𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 (�̄� ◦ 𝔭𝑄 (𝜌∗(∇Φ))) |𝑠=𝑡𝑖=0.

By (2.2), we have

[𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 (Ω − Ω
′) |𝑠=𝑡𝑖=0 = 𝑂𝐺𝑊𝛽,0(Γ𝑡𝑖1 , . . . , Γ𝑡𝑖𝑙 ) − 𝑂𝐺𝑊 ′

𝛽,0 (Γ𝑖1 , . . . , Γ𝑖𝑙 ).

Since 𝔭𝑄 = 𝔭R ⊗ Id𝑄 and ∇Φ = 𝑔𝑖 𝑗Δ 𝑗𝜕𝑖Φ, it follows that

[𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 (�̄� ◦ 𝔭𝑄 (𝜌∗(∇Φ))) |𝑠=𝑡𝑖=0 = [𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 (�̄� ◦ 𝔭𝑄 (𝜌∗(𝑔𝑖 𝑗Δ 𝑗𝜕𝑖Φ))) |𝑠=𝑡𝑖=0

= [𝑇𝛽]𝜕𝑡𝑖1 · · · 𝜕𝑡𝑖𝑙 (𝔭R(Δ 𝑗 )𝑔𝑖 𝑗𝜕𝑖Φ) |𝑠=𝑡𝑖=0

=
∑

𝛽∈𝐻2 (𝑋 ;Z)
𝜛 (𝛽)=𝛽

𝑔𝑖 𝑗𝐺𝑊𝛽 (Δ 𝑖 ,Δ 𝑖1 , . . . ,Δ 𝑖𝑙 )𝔭R(Δ 𝑗 ),

which completes the proof. �

Proof of Proposition 1.1. Lemma 3.4 asserts that 𝜛 is given by multiplication by 4. Recall the choice
of the basis Γ𝑖 ∈ 𝐻∗(C𝑃3, 𝐿�;R) from Section 1. Since 𝑃R (Γ𝑖) ≠ 0 only if 𝑖 = 2, it follows that
𝔭R (Δ 𝑖) ≠ 0 only if 𝑖 = 2. Hence, since 𝑔𝑖 𝑗 = 𝛿𝑖,3− 𝑗 , it follows by Proposition 8.1, Lemma 3.5 and the
closed divisor axiom Proposition 2.15 that

𝑂𝐺𝑊𝛽,0(Γ𝑖1 , . . . , Γ𝑖𝑙 ) − 𝑂𝐺𝑊 ′
𝛽,0 (Γ𝑖1 , . . . , Γ𝑖𝑙 ) =

𝛽

4
𝐺𝑊 𝛽

4
(Δ 𝑖1 , . . . ,Δ 𝑖𝑙 )𝔭R(Δ2).

�

Proof of Corollary 1.4. Assume there exists a map 𝑃′
R

such that 𝑂𝐺𝑊′
𝛽,𝑘 vanishes where 𝑘 = 0 and

𝛽 ∈ Im𝜛. Hence, by Proposition 1.1, we get

𝑂𝐺𝑊𝛽,0(Γ𝑖1 , . . . , Γ𝑖𝑙 ) =
𝛽

4
𝐺𝑊 𝛽

4
(Δ 𝑖1 , . . . ,Δ 𝑖𝑙 )𝔭R(Δ2)

where 𝛽 ∈ Im𝜛. By Table 2, we have

𝑂𝐺𝑊4,0 (Γ3, Γ3) = 1
4
, 𝑂𝐺𝑊4,0 (Γ2, Γ2, Γ3) = 11

32
.

Since the number of lines through two points is 𝐺𝑊1(Δ3,Δ3) = 1, we get

𝔭R (Δ2) = 1
4
.

However, the number of lines through a point and two lines is 𝐺𝑊1(Δ2,Δ2,Δ3) = 1, so

𝔭R (Δ2) = 11
32

,

which is a contradiction. �
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