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Abstract

A multiple fractional Brownian motion (FBM)-based traffic model is considered. Various
lower bounds for the overflow probability of the associated queueing system are obtained.
Based on a probabilistic bound for the busy period of an ATM queueing system associated
with a multiple FBM-based input traffic, a minimal dynamic buffer allocation function
(DBAF) is obtained and a DBAF-allocation algorithm is designed. The purpose is to create
an upper bound for the queueing system associated with the traffic. This upper bound,
called a DBAF, is a function of time, dynamically bouncing with the traffic. An envelope
process associated with the multiple FBM-based traffic model is introduced and used to
estimate the queue size of the queueing system associated with that traffic model.

1. Introduction

Over the last years many studies [1,3,7-9, 11, 13, 16, 17] have shown that packet/cell
traffic through telecommunication networks (like Ethernet, LAN, WAN, ISDN, ATM)
exhibits long-range dependence and self-similarity, that is, the autocorrelation function
decays asymptotically as a power function with negative exponent, and the traffic looks
the same when measured over various time scales.

These studies also show that traditional models used in traffic modelling, like Pois-
son models, cannot capture observed features of the telecommunication traffic. New
parsimonious models are proposed in [5,9, 12]. They involve the fractional Brow-
nian motion (FBM) process whose properties make it a natural choice in modelling
packet/cell traffic.

At the same time experimental and analytical studies [5, 6, 10, 12] show that the
long-range dependence property can create big packet/cell losses in queueing systems,
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and have an important impact on engineering problems like buffer allocation or admis-
sion control. Most evidence is obtained exclusively through simulation experiments
using trace data, since no queueing solution for fractional Brownian (FB) traffic mod-
els is known. However, in [5, 10, 12], approximations and bounds for the overflow
probabilities in a queueing system driven by FB traffic are presented. We will refer to
such a traffic model using the abbreviation FB traffic, as opposed to the term multiple
FBM-based traffic model which will designate a model where a standard Brownian
motion is added to a superposition of independent FBMs.

On the other hand, when strongly variable but short-range dependent traffic is
aggregated with long-range dependent traffic, the mixture could be described in FB
traffic only by reducing the available bandwidth, and the model would not be satisfac-
tory at small time scales. In order to avoid this inflexibility, a possible solution would
be to add a Brownian component to the FB traffic model [14].

For a classical FB traffic model, the following authors: Norros, Duffield, O’Connell,
Mayor and Silvester [5, 10, 12], have analysed the associated queueing system and ob-
tained results related to the estimation of the busy period and the overflow probabilities.

In what follows we extend these results to a multiple FBM-based traffic model (see
(2.2) in Section 2 for its exact definition). In Section 2, besides introducing the basic
ideas and setting up the notation, we obtain a lower bound for the overflow probability
of the associated queueing system (Subsection 2.1). Also, asymptotic lower bounds
for the same probability are obtained (Theorem 2.2). In Section 3, based on a
probabilistic upper bound for the busy period of an ATM queueing system with a
multiple FBM-based input traffic model we introduce the notion of a dynamic buffer
allocation function (DBAF) and show that a least DBAF exists (Proposition 3.2).
In Subsection 3.2 we use the least DBAF to design a dynamic buffer allocation
algorithm. The algorithm is illustrated by graphs exhibiting MATLAB-simulated traffic
(Figures 1-3). In Section 4 we introduce an envelope process associated with the
multiple FBM-based traffic model and use it to obtain an upper bound for the busy
period of an ATM queueing system. We obtain an upper bound for the queue size
using the envelope process.

2. A multiple FBM-based traffic model

It has been observed that sometimes FB traffic is not sufficient to model traffic at
small time scales when strongly variable but short-range dependent traffic is mixed
with long-range dependent traffic aggregated from a large number of sources. To
overcome this difficulty, a natural model can be given by adding to the FB traffic
model a short-range dependent component as in the following stochastic process:

A(t) = mt + JmaB" (t) + VmbW(z). 2.1

https://doi.org/10.1017/51446181100008312 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100008312

3] Queueing systems for multiple FBM-based traffic models 363

Here m, a, b are positive constants, {B"(t),r > 0} is a standard FBM with Hurst
parameter H € (1/2, 1), and { W(¢#), t > O} is a standard BM, independent of FBM
(see [14]). In this paper we will study a more general type of model with several
FBMs given by the following equality:

M
AW =met+Y_o;BY (1) + TW(r). 2.2
i=l
As above, m, 0;, and t are positive constants, {B* (¢),t > 0},j = 1,..., M are

independent standard FBMs with Hurst parameters H;, 1/2 < H; < 1, for all
j =1,..., M respectively, and {W(z), r > 0} is a standard BM independent of the
FBMs. We will refer to this traffic model as a multiple FBM-based traffic model as
opposed to the simple FBM-based traffic model (2.1). Observe that the class of the
stochastic processes of type (2.2) is closed under superposition.

REMARK 1. Let A;(#),i = 1,..., N, be the i-th FBM-based input traffic process
defined as

M
A =mt+Y ;B () +TWi(), 120,
j=1

where m;, 0;, T; are positive numbers, the processes {B,-H’ (7), t > 0} are independent
standard FBMs with Hurst parameters H;, and { W;(¢), + > 0} are independent standard
BMs which are also independent of the FBMs. Then the superposition

N
A =) Al
i=1

can be written as

M
Ay =mt+ Y o; B (1) + T W(), (2.3)

j=1

where

N
m=Zm,~, Uj=

i=1
{BY(@®,t>20}, j=1,...M

are standard FBMs with parameters H;, and { W(¢), ¢ > 0} is a standard BM indepen-
dent of the FBMs.
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The proof is a simple application of basic properties of independent FBMs and
BMs, and is left to the reader. It is known that the corresponding stationary queueing
model can be described by the process {V(¢), t > 0}, where

V(t) =sup(A@®) —A@) —C(t—-35)), t=>0. 2.4)

S<t

In (2.4), C represents constant service rate and satisfies C > m, and m > 0is the mean
input rate given in (2.2). Formula (2.4) gives the workload or the virtual waiting time
in a FIFO (first in—first out) queueing system with the previously described parameters.

2.1. Lower bound for the complementary distribution function of the queue
level In what follows we determine a lower bound for the overflow probability of
the queue. The overflow probability, or the cell loss ratio, is an important Quality
of Service (QoS) parameter in telecommunications. The overflow probability, ¢, is
defined as follows: € := P(V(r) > x), t > 0. Here x denotes a given buffer size. In
what follows we will use the notation

- 1 @ )
(D(.X) = -—,2_];/- e’ /zdy,

designating the complementary cumulative distribution function of a standard normal
random variable. We use ¢ to obtain a lower estimate of the overflow probability.

THEOREM 2.1. Let {A (1), t > 0} in (2.3) be a multiple FBM-based traffic model
and {V(t), t > 0} be the stationary queucing process defined in (2.4). Then

P(V(t) > x) > d(y(u)), 120,

where

x—(m-0O)
\/Zﬁl UJZIZHJ + i

and u, is the unique real root of the following equation:

Y1) =

M M
1 1
(C—m)) :orjz(l—H,)uz”’+"§(C—m)rzu—5r2x —x ) olHuh ' =0. (2.5)

7=l j=1

PROOF. Observe that

{sup(A(t) —A(s) - C(t —5)) > x] = U{A(t) —A(s)—C@—s) > x}).

<
s<t s<t
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Using this equality we deduce that

P (sup(A ) —-A@)—-Cit—y3) > x)

s<t

>supP(A(t) — A(s) — C(t — s) > x)

s<t

=supPA(t) —A(S) - Ct—5)—-(m—-QC)t—=s5)>x—(m— O —5))

s<t

-y*/25%(s) dy

*® 1
= sup f —e
s<t Jx—(m-0)-s) V2o (s)

where

M
o(s) = \' Zaf(t — )i + 12t — 5).

J=1

By a change of variable we obtain

P(sup(A(r) —A@) - Ct—s5) > x) > sup (" —m- OG- S>>

s<t s<t o(s)
_ &D(infx —(m — C)(t—s))‘
s<t a(s)

Thus we need to find inf, ., £(s), where
x—(m—-—0)(t—ys)
\/Z,M=1 o} (t — $)M + 12(1 - s)'
If we denote u = t — s, then by straightforward calculus considerations
x—(m—Cu
\/Z;M=| ofut 4 12y

has a global minimum at some point u, € (0, 00), decreases on (0, u,) and increases
on (u;, 00). Therefore

£(s) =

S(u) =

¥ (1), if t<u,
V@), if t>u.

O<u<t

inf Y(u) = [
In conclusion,

P (sup(A H)—AG)—-Ct—5) >x

s<t

oW (), if 1> u,.

Clearly, u, is the root of {’(«) which, by a short computation, is the same as the unique
real root of (2.5).

) N [é(w(m 2 S w)), if 1<,
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2.2. Asymptotic lower bounds for the overflow probability
THEOREM 2.2. Let {A(2), t = 0} be the multiple FBM-based input traffic process
defined in (2.2), and {V (1), t > 0} the workload process defined in (2.4). Then
(a)

TP DY T £ 1 (C—m)*
liminf logP(V(t) > x) > T HE( = gy

X — 00 x2

(2.6)

where H = max{H;,j =1,..., M}.
(b

M
liminf 2ot + o (x+C—m)
1— 00 tz 2 ’

logP(V(t) > x) > —

PROOF. (a) It is known from [5] that
liminf h(x) ' log P(V(1) > x) > — in(f)g(u))\*(u*)
X—00 u>

if the following hypotheses are satisfied.

(i) There exist functions a, v : [0, 00) — [0, 00) that increase to infinity, such
that for each 8 € R, the cumulant generating function defined as the limit

ov()U(r)
a(r) } ]
exists in [—00, 00]. Moreover, A(8) is essentially smooth and lower semicontinuous.
Here U(s) := A(t) — A(t —s) — Cs forsome t > 0 and for 0 < 5 < t. Note that
V() can be written as V(#) = supy.,, U(s).
(ii) There exists & > O for which A(6) < O.
(iii) There exists an increasing function & : [0, 00} — [0, 0o) such that the limit

v(a™'(t/u))
h(t)

exists for each u > 0, where a™'(¢) := sup,,o{a(s) < r}. Here A" represents the
Fenchel-Legendre transform of A, that is, the function defined as

A0) = ll_Lrg v()! logE [exp [

g(u) := lim
=00

A'(x) :=sup{fx — A(6)}.
620

The three hypotheses are satisfied using the following functions:

52

a,v:[0,00) = [0,00), a(s)=s v(s)=h(s)= zjhf:l szszH, + 125
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Under these conditions the conclusion in [5] holds and
. 1 .
liminf —— logP(V(#) > x) > —inf g(u)A*(u).
x—>00 U(X) u>0

Observe that

_(x+C—m)2

A*(x) := sup{fx — A(6)) =sup{-—%92+9(x + C——m)] >
0

620 0>

Thus

: . 1. u+C-mp 1 (C—mp¥
—Inf BN (W) = =3 inf S = e

In conclusion, we have that (2.6) holds.
(b) For the second part of the theorem, let a(t), v(z), A(6) and A*(x) be as above.
Since A* is continuous, one has that

log P(U(t)/a(t) > x)
v(t)
by the Girtner-Ellis Theorem (see for example (4, Theorem 2.3.6] or {5]). Observe

that P(V(r) > x) > P(U@) > x) = P(U@t) > tx) = P(U()/t > x) forall t > 1.
Therefore

-0 = lim

logP(V(z) > x) S logP(U(t)/a(t) > x)
v(r) - u(r)

forall £ > 1. Letting t — o0 in the expression above, one gets

M 22K, 2
Y of 1

(x + C — m)?

logP(V(t) > x) > —A"(x) = — 5

liminf
1—00 t2

3. Dynamic buffer allocation

3.1. A probabilistic bound The maximum busy period of an ATM queueing
system is very important since it provides a bound for the delay of the ATM cells in
the queue [15].

If we define 3,, :=inf{r = 1: P(Q(r) > 0) < ¢} with € < 1, then the busy period
will exceed dy with probability € < 1. For more about this quantity we refer to [2]
or [10]. Here Q(z) = A(1) — Ct, {A (1), t > O} is the input traffic process (2.2) and C
the positive service rate.
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PROPOSITION 3.1. The bound JH can be calculated by the following formula:

. o-!
dy =n"" (C—(fn))’

@) = d . 3.1)

M _2.H
\/Zj:lajt I+t

where

PROOF. We have

Lo B () + TW(t _
\/Z; 1o P 4T \/Z;M=1 oj e + 12t
(C—m)t
\/ S ofet + Tk
So
dH—mf t>1:0 (€ —mt <e€
\/E;W:l o 4 12
51

=inf {zr>1 d > LA O

' M 2oy 2, C-—
\/zj=lojt b+ T2t

If we define n(¢) as in (3.1), it can be easily seen that n(z) is invertible so that we can

write
. - !

Note that since € <« 1, we can assume that € < 1/2, so that ®~!(e) > 0. This is
required since 7 : [0, 00) — [0, 00).

For fixed § > 0, we want to determine a positive function M (¢), which will be
called a DBAF, such that P(Q(t) > M (t)) < 8. Of course, we are interested in§ < 1,
which means that there is a very small overflow probability. On the other hand, this
analysis is significant for a time interval where the queueing process { V(r), ¢ > 0} can
be approximated by the related process { @(z), ¢t > 0}. By our introductory comments
in this subsection, this time interval is given by dy.
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PROPOSITION 3.2. There is a least DBAF and it is given by

M
£(1) = @7'() | ) ot 412t — (C—m)t. (3.2)

j=1
PROOF. Observe that

M) + (C — m)t
\/Z;":l o2 4 T2

P(Q(t) > M(1)) =P(A(t) > M) + Ct) = @

so P(Q(t) > M(t)) <4 is equivalent to

& M)+ (C—m)t

<5’
M 2.0y 2
[§J=lajt T+ T

which is equivalent to

M
M) = ®7'@) | Y ofrh + 12t — (C— m).

j=1
Then if we define £(¢) as in (3.2), this function is the least DBAF, since M (¢) > £(¢).

Elementary calculus considerations can be used to see that £(z) has a unique
positive root f. We would like to have dy < % in order to maintain a nonnegative
buffer allocation function.

REMARK 2. The inequality dAH < holds if and only if § < e.

PROOF. The inequality dy < tois equivalent to

é"(e))
—1 <
i (522) <

where n(#) is given in (3.1). Since

M
2 2H, _(C—m)y
Zaj L+ Ty = __&)“‘(8) ,

J=1

we obtain ®~!(e) < ®~!(8) and therefore § < e.
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6 x 104 DBAF alg(mthm with muluple FBM-based model
' — Queue, Hy = 0.7, H, = 038
— DBAF

m=700,a=10,b=30,c=20,C=760 ]
€ =0.001,5 = 0001
Max buffer = 100, 000

Q(r) and £(1)

000 02 04 06 08 10 12 14 16 xlo®
t (time)

FIGURE 1. Single DBAF

In Figure 1 a multiple FBM-based traffic queue is simulated using MATLAB. The
corresponding DBAF is graphed to illustrate how it bounds the queue from above.
The traffic utilised was of the form

A(t) =mt + 0B (1) + 0, B (1) + T W(2).

The parameters a, b and ¢ which are specified in the figure have the following
significance:

o =+ma, 0,=+mc, T=+mb.

The probabilistic precisions € and & are specified as well. Overflows like the one
in Figure 1 are rather hard to obtain even when coarser precisions like the one we
utilised there are used. In most cases the queue is much smaller than the DBAF and
it took hours of simulations to produce graphs where overflows occur (which would
be natural, given the probabilistic methods used). In Figure 1 the DBAF is graphed
over the time interval between its two roots. We wish to make the observation that
changing parameters results in dramatic changes in the DBAF. For instance increasing
the probabilistic degree of precision € and 8 results in very large DBAFs with large
values of dy, the comment being that in practice the size of the buffer one can use
is limited, so one might want to trade between quality of service and sparing buffer
space. We use this function to create an upper bound that is a function of time, larger
than the queue associated with the traffic, usable for the whole duration of the process,
and dynamically bouncing with the traffic so that buffer space could be spared and,
say, allotted to a different queue. We do this in the next subsection, and illustrate our
construction in Figures 2 and 3.
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DBAF algorithm with multiple FBM-based model

X0 S5 e T 10,630, c= 20 " BAF
C = 760, ¢ = 0.00001, § = 0.00001 — Quee,

1.0+

08¢

0.6

() and £(1)

04

02}

0.
8.0 0.1 0.2 0.3 04 x10*
1 (time)

FIGURE 2. Concatenated DBAFs

3.2. The DBAF algorithm Given that the DBAF is a curve which can be used
as an upper bound for the queue on a limited time interval we propose the following
algorithm where we partition the time-interval and concatenate copies of the DBAF
shifted by the size of the queue. Here is the description in detail of our algorithm.

o Establish the time interval over which the queue is observed. Say this interval
is [0, T].

e Choose e and dsuchthat) <8 <e < 1.

e Compute dy = n~1(®~'(€)/(C — m)), where n(¢) is given by (3.1).

e Partition the time interval [0, T] in adjacent intervals of standard length dy,
namely [ndy, (n + 1)dy) forn = 0,1,..., N — 1, where N = [T/d}]), that is, the
integer part of T/c?,,.

o Define the DBAF as follows:

M(t) := Q(ndy) + £(t — ndy), t€[ndy,(n+1)dy), n=0,1,...,N —1,

where £(¢) is given by (3.2).

Thus at the beginning of each time interval we reset the clock to 0 and we shift
the initial DBAF upwards by the size of the queue at the left end-point of each time
subinterval. On each of these subintervals we have P(Q(¢) > M (1)) <é.

We illustrate the algorithm in Figures 2 and 3. In Figure 2 we produce a sample
path of traffic generated with the parameters a, b, ¢, C, m, H, and H, specified. The
value of dy is about 1000 time-units. We apply the algorithm to a trace of about
4000 time-units. Observe that the peak of the DBAF is about 9000. We also provide
simulation of more intense traffic in Figure 3 where the mean input rate m is 740
(in Figure 2 it was 700). The resulting DBAF has a peak of about 30, 000. Had we
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DBAF algorithm with multiple FBM-based model

=740,a=10b=30,c= — DBAF
m=740,a=10,6=30,c=20 = Queve, H, = 0.7,
| €=760,¢=0.01,5 =0.001 Hy = 0.6 |

x10*

Q(r) and £(1)

1 2 3 x10*
t (time)

FIGURE 3. Concatenated DBAFs

maintained the high precision in probability as in Figure 2 (where ¢ = § = 0.00001),
this would have made the DBAF much larger. In Figure 3 we chose to relax the
precision by taking § = 0.001 and € = 0.01. This generates a lower DBAF and some
cell loss as can be seen. We wish to note that the graphs in this paper are but a few of
many similar ones obtained by the authors for various parameter combinations.

4. An upper bound for the busy period using an envelope process

4.1. The envelope process In [10], the authors introduce a traffic model based on
an FBM probabilistic envelope process

/i(t) = mt + k/mat”

and use this process to determine approximations for the overflow probabilities of
an ATM queueing system. The input traffic in their case is FB traffic. It is stated
that the same framework can be applied to other arrival processes, as long as a
“suitable envelope process” {A (t),t = 0} can be defined. “Suitable” means that
P(A(r) > A(1)) = ®(k) must hold.

In what follows we solve the problem suggested by the authors of [10]. To this
aim we introduce the envelope process associated with a multiple FBM-based traffic
as follows:

M
AWy =mt+k D ot + 12t 4.1
j=1
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x10° FBM-Based Traffic (H = 0.8) vs. Envelope

-]

— FBM-based traffic, A (1) ;
- Envelope, A(#) L7
7t L
A() =mt + JmaB¥ (1) + JmbW() .
ST A(t) = mt + kv/mar™ +mbi 7
st P(A(1) > A(1)) = 0.0001 2
<4 )y ]
> )/ Zoom In
< . 5 x 104
3t . E
y 4
2t . 3
y 2
1t , 1
7 20 30 40 S0
0 . . . A ;
0 200 400 600 800 1000 1200
1 (ime)

FIGURE 4. Traffic versus envelope process

The parameter k determines the probability that A(z) be larger than A(f) at time 1.
More precisely,

Ym0 BR (1) + T W(t)

PA() > A(t)) =P
\/Z,M=1 o2eH 4 12t

> k| = ®w%).

Thus, if we require that P(A(¢) > A (1)) < ¢, for some € > 0, meaning that we are
looking for a big probability that the envelope be an upper bound for the input process,
then we get k > &' (e).

In Figure 4 a simple FBM-based traffic-model A(z) of type (2.1) is considered.
The Hurst parameter is H = 0.8. For € = 0.0001 the envelope process is seen to
be an upper bound for the traffic. It is observed that if one relaxes the precision in
probability the traffic doesn’t stay below the envelope at all times.

It is important to have an increasing subadditive envelope process A (1) in order to
use the following well-known property of such functions:

AW AW

inf — = lim —=

=1 t t—o00
(see [2]). Therefore we wish to prove that the envelope we introduced has these
properties.

PROPOSITION 4.1. The envelope function A (¢) is increasing and subadditive.
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PROOF. Monotonicity is obvious. To show that A (t+s) < A )+ A (s), we need
to show that

M M M
E :ajz(t + S)ZH, < Zajztzﬁ, + ZU,'ZSZH’
j=1

j=1 j=1

M M
+ ZJ (Z o*ftz”/ + ‘tzt) (Z afsz”f + rzs). 4.2)
j=1 j=1

We will show that actually the following inequality holds:

M M M
J D ok + )M < J Y ot + J Y opsth. (4.3)
j=1 j=1 =1

Obviously, (4.3) implies (4.2). Consider the space X = {1, 2, ..., M}, the o-algebra
of all parts on the space X, and the weighted counting measure determined by
uljh = ajz,j =1,....,M. Setf e L*(X), f() =+t forj =1,2,..., M,
and similarly set g € L*(X), g(j) := s*, forj = 1,2,..., M. The Minkowski
inequality ||f + gll2 < IIf Il + llgll2 produces (4.3).

Asin [2), wesetd :=inf{r > 1: A@) - Ct < 0}. The following proposition
exhibits the relation between d and the least dynamic buffer allocation function & (¢).

PROPOSITION 4.2. If A(1) < C thend = 1. Otherwise, d is the unique positive
rroot of & (t) = 0, where

M
gty =k | Y ottt + 12 — (C—m)t. 4.4)
j=1

For k = ®~'(¢), thatis, § = & the minimal DBAF, and if m + k./3 "It 0 + 1% > C,

we have thatd = dAH.

PROOF. Clearly, {r > 1: A(t) — Ct <0} # @ since lim,_ o (A(?)/1) =m < C.

FA(HD-C<0&m+ k‘/z;":, aj2 + 12 < C, it follows that d = 1. Otherwise
d> 1.

Obviously, A(d) — Cd < 0. If we assume that A(d) — Cd < 0, by the continuity of
A(t) thereisad’ € (1, d) such that A (d") — Cd’ < 0, which contradicts the definition
of d. Thus A (d) = Cd, which means that

M
k Zajzdzﬁ, + 12d — (C — m)d = 0. 4.5)

Jj=1
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If we set £ (1) as in (4.4), then by the considerations about the function £(¢) defined in
Section 3, it follows that there is a unique d > 0 satisfying (4.5). Observe also that we

are in the case where m + k,/ Z}':I aj2 + 12 > C, which implies d > 1. According
to [2], under these conditions, any busy period is bounded above by d.

Now, recall that
5 D1 (e)
dy =n~! s
H=T0 ( C—m )

where n(#) is given by (3.1). Then

d-!(e) dy G)
T C-m’

n(dy) = = : -
com \/Z}ILI o2dy” + tdy

which means that ﬁy is a root of

M
@“(e)\‘ Zajztz”i + 12— (C—m)t=0.

j=1

If k = ®~1(¢), by the first part of the proof, this root is exactly d. Sod = dy, since
the root is unique.

4.2, An upper bound for the queue size using the envelope process We have
seen that the stationary queueing process { V(z), t = 0} can be approximated by the
easier to handle process { Q(z), r = 0} during the busy period of an ATM queueing
system. Recall that

V(1) =sup(A(t) — A(s) — C(t — 5))
s<t
and Q(#) = A(¢) — Ct. Atthe same time, if we consider the envelope process defined
in the previous subsection by (4.1), we could require that P(A(z) > A(t)) = €, where
€ = ¢(k). But

P(A() > A(1)) =P(A() — Ct > A(1) — C1) = P(Q(1) > Q1))

where Q(f) := A(¢) — Ct. Thus P(Q(#) > O(r)) = € and with probability 1 — € the
maximum value of Q(¢) is bounded by the maximum value of Q(r). We want to find
the maximum of

j=1

M
0(r) = (m - C)r + kJ > o 4 i,
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FIGURE 5. Geometric solution of (4.6)~(4.7).

This function has a global maximum at , > 0, so that Qmax = Q(to) and with
probability 1 — e this is an upper bound for the queue size Q(z).

Now we would like to determine the service rate C > O that yields Qmax = x,
where x is a given buffer size. In this case, the buffer will overflow with probability €.
This is obtained from

M
Omx=x <<= (m—Cp+k Zajztow’+r2t0=x,

i=1

and 1 is the solution of (¥(r) = 0, that is, the solution of the following equation:

M M
1
(m—C) § ol 4 T+ Ek (2 § :orsz, kL r2> =0. (4.6)
=1

s=1

Thus #, and C will satisfy the system formed by the equations (4.6) and (4.7):

M
m—On+k | ofg” + 12 =x. 4.7)

)=

For a traffic model with parameters identical to those in Figure 1 we solve the
system (4.6)—(4.7) geometrically first (Figure S). The buffer size chosen for this
example is 15000. Using a numerical solver one gets the solution 7, = 406.21654274
and C = 828.73281605. We used MAPLE to solve the problem geometrically as
shown in Figure 5 and MATLAB to solve it numerically. The results obtained are
consistent. The traffic simulations and in general all figures except Figure 5 were
produced using MATLAB.
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