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THE FRATTINI SUBALGEBRA OF A BERNSTEIN ALGEBRA*

by JESUS LALIENA

(Received 8th May 1990)

Let A be a finite-dimensional Bernstein algebra over a field K with characteristic not 2. Maximal subalgebras
of A are studied, and they are determined if A is a genetic algebra. It is also proved that the intersection of all
maximal subalgebras of A (the Frattini subalgebra of A) is always an ideal. Finally the structure of Bernstein
algebras with Frattini subalgebra equal to zero is described.

1980 Mathematics subject classification (1985 Revision). 17DXX.

Introduction

A finite-dimensional commutative algebra over a field K is called baric is there exists
a non trivial algebra homomorphism w: A-*K.

A baric algebra is said to be a Bernstein algebra if

x2.x2—(w(x))2.x2 = 0 for every x in A. (1)

Bernstein algebras have connections with genetics (see [2, 3, and 8]).
The homomorphism w is called the weight homomorphism of A. In [8] it is shown that

in a Bernstein algebra this homomorphism is unique.
In a Bernstein algebra A there exists a nonzero idempotent e and A has a

decomposition as a direct sum of vector subspaces (see [8]):

A = K.e®Ue®Ve,

with Ue = {x e Ker w/ex = ( 1/2)x} and Ke = {xeKerw/ex = 0}. This decomposition is
called the Peirce decomposition of A. If we express the relation "A is a vector subspace
of B" by A f£ B, the vector subspaces Ue, Ve have the following properties:

V2Ue = 0

and using (1) it is possible to prove that for all ue Ue and ve Ve

u3 = 0 u(uv) = 0
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u2(uv) = O {uv)2 = O

u V = O. (2)

In the above situation, the set of idempotents in A is {e + u + u2/ueUe}. If
e' = e + u + u2 is another idempotent in A, we have A = K.e' + Ue- + Ve. and then
Ue. = {ul + 2uul/u1eUe} and Ve. = {-2(u + u2)v1+vjv1e Ve).

A Bernstein algebra is called genetic if ICer w is nilpotent, that is, if there exists a
nonzero positive integer n such that the principal product of every set of n elements
from Ker w is zero.

Let A be an algebra and M a subalgebra of A. M is said to be a maximal subalgebra
of A if for every subalgebra B of A, such that M^B^A, we have either M = B or B = A.
The intersection of all maximal subalgebras of A is known as the Frattini subalgebra
F(A) of A (see [6]). It has the following properties:

(PI) Let C be a subalgebra of A and B an ideal of A such that B^F(C). Then
B^F(A).

(P2) (i) If B is an ideal of A we have (F(A) + B)/B ̂  F(A/B).
(ii) Let B be in ideal of A such that B^F(A). Then F(4)/B = F(A/B).

(P3) If B is an ideal of A such that B2 = 0 and Bn^(A)=0, with <f>(A) the largest
ideal of A contained in F(A), then there exists a subalgebra C of A such that ,4 = B © C.
That is, A is the direct sum of the vector subspaces B and C.

(P4) If A is a nilpotent finite-dimensional algebra, then F(A) = A2.

In the following A will always be a Bernstein algebra with 1 <dimKA < oo, over a field
K, with characteristic not 2. The weight homomorphism of A will be denoted by w. If X
is a subset of A, we denote by (X) the vector subspace of A generated by X and <X>
the subalgebra of A generated by X. Sometimes if X has only one element, a, we also
write K.a instead of (a).

1. Maximal subalgebras of a Bernstein algebra

From Theorem 1 in [1] we can deduce that every maximal subalgebra of a
n-dimensional Bernstein algebra has dimension equal to n — 1. This result will be very
important in the following discussion.

Lemma 1. Let A be a Bernstein algebra, e a nonzero idempotent in A such that
A = Ke © Ue © Ve, and M a maximal subalgebra of A. Then

(i) U2
e^

(ii) if eeM, V2
e^

Proof. We suppose that U2 is not contained in M. Thus, let xeU2 — M. Since
+ l=dimv4 we have M + K.x = A with K.x^Ve. Therefore, e = m + TX with

meM and TeK. But since A = Ke © Ue© Ve it follows that m = e — TX, and hence
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m2 = eeM. Now if ueUe, we have as before u = tri + Xx with m' = u — kxsM and
l/2ueM. That is ueM for every ueUe. But this contradicts the fact that U2 is not
contained in M.

Now we suppose that V\ is not contained in M. We consider yeV2 — M and thus
A = M@K.y with K.y^Ue. But if e e M we have M = K.e@ U'e@ V'e with l / ; ^ l / e and
V'e^Ve. Therefore Ve^M. That is, V* is contained in M, which is a contradiction.

If /4 is a Bernstein algebra and B is a subalgebra of A such that B is not contained in
Ker w, then B has a nonzero idempotent e, because B is also a Bernstein algebra.

Proposition 2. Let A be a Bernstein algebra, and e a nonzero idempotent in A such
that A = Ke © Ue © Ve. Then a vector subspace of A, M, is a maximal subalgebra if and
only if M is one of the following subalgebras:

(i) M = Ker w,

(ii) M = K.e@Ue@V'e with V'e^Ve such that dim F e + l = d i m Ve and U2^V'e. In

this case M is an ideal.

(iii) M = K.e@U'e@Ve with U'e^Ue, dim U'e + l=dim Ue, U'eVe + Vt^U'e,

(iv) M=(e + u)G>U'e@Ve with U'e^Ue, dim U'e + l = d i m Ue, U'eVe+V2^U'e,

ueUe-U'e,

(v) M = K.eM@ Ue'M © VeM with eM = e + u + u2, u$M, Ve not contained in M and
U'eM g UtM such that dim U'eM +1 =dim Utu and U'eM VeM + V\M ^ U'eM.

Proof. We suppose M#Ker w. Thus M contains an idempotent and w|M is a
nonzero homomorphism from M onto K. Therefore M/Ker w|MsK and dim Ker w\M

= dim M — 1. Let B = Ker w n M = Ker w\M. We know that the set of idempotents in A
is {e + u + u2/ueUe}. Let e + u + u2eM with ueUe. Since Ul^M because of Proposition
1, we have e + ueM.

If Ue^M, then M = K.e@ Ue@ V'e with V'e^Ve such that dim V'e+- l=dim Fe. Then
M contains every idempotent of /4, and M is an ideal because A.M =
(K.e@Ue® Ve).(K.e@ Ve@ V'e) = K.e@ t / e© U2^M. Thus we obtain (ii).

If Ve is not contained in M but ueM, then eeM and M = K.e©B = /C.e© U'e@ V'e
with t / ' e^l / e and V'e^Ve. Since dim B+l = dim Ker w, we have M = K.e© I/; © Ve.
Also [/^Fe+ K| g l/g because Af is a subalgebra, and thus we obtain (iii).

If V2
e^M and u$M we will prove that Ke^M. We have that Ker w = B@K.u. Let

veVe. Then y = b + Au with beB and AeX. Thus (e + ti)(y-A«) = ut;-yl/2M —Aw2eB and
b2 = {v—Xu)2 = v2 + X2u2 — 2XuveB. Hence, since U\, V2^M because of Lemma 1 and
the hypothesis, it follows that XueB and therefore veM. Thus M=(e + u) © U'e © Ve

with U'e^Ue such that dim U'e+l=dim Ue, V\^U'e and 0^ueUe- U'e. Since M is a
subalgebra, it follows also that U'eVe^U'e and we have (iv).

Now we suppose u$M and Ve is not contained in M. Then if eM = e + u + u2, it
follows that M = K.eM®U'eM®V'eM with either t/;M = l/eM or V'eM = VeM. But if
l/gM = UeM we have shown that M contains every idempotent of A, that is u e M that
contradicts the hypothesis. Therefore M = K.eM® U'eM © VeM and as in (iii) it follows
that dim U'eM + 1 = d i m UeM and U'eM Veu + l)\M ^ U'eM.
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Lemma 3. Let A be a genetic Bernstein algebra. Then (Ker w)2 is contained in every
maximal subalgebra of M.

Proof. Since A is genetic, Ker w is nilpotent and thus from (P4) we have
F(Ker w)=(Ker w)2. Using that (Ker w)2 = l/2 + UeVe + V2

e we have that (Ker w)2 is an
ideal. Hence from (PI) we obtain (Ker w)2^F(A). That is, (Ker w)2^M for maximal
subalgebra M of A.

The result of Lemma 3 is not true if A is only a Bernstein algebra. For instance the
commutative algebra A = (e, u, v, z) such that ew=l/2u, uv = u, e2 — e and the other
products equals to zero is a Bernstein algebra, but the maximal subalgebra (e,v,z) does
not contain (Ker w)2 = (u,v,z)2 = (u).

However there are Bernstein algebras which are not genetic and for which (Ker w)2 ^
M, for every maximal subalgebra M of A. For example the commutative algebra
A = (e,u,v,z) with e2 = e, eu = l/2u, uv = uz = vz = u and the other products zero is a
Bernstein algebra such that (Ker w)2 = (u) is contained in every maximal subalgebra.

Theorem 4. Let A be a genetic Bernstein algebra and e a nonzero idempotent in A
such that A = Ke® Ue® Ve. Then a vector subspace M of A, is a maximal subalgebra if
and only if M satisfies one of the following conditions:

(i) M = Ker w,
(ii) M = K.e ® Ue 0 V'e with V'e g Ve such that dim V'e+1 =dim Ve and I/2 ^ V'e,

(iii) M = K.e®U'e® Ve with U'e^Ue, dim U'e + l = dim Ue, UeVe + V2
e^U'e,

(iv) M = (e + u)®U'e® Ve with U'e^Ue, dim U'e+ l = dim Ue, UeVe + Vl^U'e,
ueUe-U'e.

Proof. From Lemma 3 (Ker w)2 = C/2 + UeVe + V2 is contained in every maximal
subalgebra, and from Proposition 2 and its proof we have that M is as in (i), (ii), (iii) or
(iv).

Corollary 5. If A is a genetic Bernstein algebra, then f(/4) = (Ker w)2.

2. The Frattini subalgebra

In this paragraph we study the intersection of all maximal subalgebras of a general
Bernstein algebra, that is, its Frattini subalgebra. We also describe Bernstein 'algebras
with Frattini subalgebra equal to zero, using the subalgebra spanned by the minimal
ideals of the algebra.

Theorem 6. Let A be a finite dimensional Bernstein algebra. Then F(A) is an ideal.

Proof. We suppose F(A) is not an ideal. Then there exists xeF(A) and ye A such
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that xy$F(A). That is, for some maximal subalgebra M of A, xy$M. Clearly
M 7̂  Ker w and therefore M contains a nontrivial idempotent e such that A =
Ke+Ue+Ve, and M = Ke + U'e + Ve with U'e^Ue such that dim U'e + l = dim Ue

because of Proposition 2.
In [5] it is shown that F(A)5£(Ker w)2 and then x = u1+u2 + i/ with uxeUeVe,

u2eVl, u'el/2. Since I/2 and F 2 ^ M because of Lemma 1, it follows that uu u2, v'eM.
On the other hand y = Xe + u + v with XeK, ueUe, veVe. That is, Xe and ceM.

Thus xy$M implies uv'^M. But we can prove that if t/et/2. and ueUe — M, then
uv'eM. We suppose that v' = u'u", with u', u"eUe. Since ,4 = M + Ku, then u' =
and u" = b + OJU with <5, a> e K and a, b, e [/̂ . Therefore

Mi'' = u(u'u") = u((a + 5u)(b + cou)) = u(ab) + a>u(au) + 3u(ub) + dwu*

But linearizing the first identity in (2) we have

u(ab)=-a(ub)-b(ua)eU'eU
2

eSM

u(au) =-l/2au2eU'eUl

Therefore uv'eM, which is a contradiction, and thus xysF(A) and F(A) is an ideal.

Proposition 7. Let A be a Bernstein agelbra, and e a nonzero idempotent of A such
that A = Ke+Ue+Ve. Let N=Ue + U2. Then N2^F(A)^(Ker w)2.

Proof. In [5] we proved that (Ker w)2 contains F(A).
On the other hand from [4] it is known that a Bernstein algebra B with B2 = B is

genetic. It is easy to check that B = Ke + Ue + U2. satisfies this condition. Thus B is
genetic and from Corollary 5 we have N2 = F(B). But N is an ideal of A and because of
[7] (or checking it directly) Af2 is also an ideal of A. Now we apply (PI) and we have

Remark 8. Since F(/l)g(Ker w)2^ t/e + [/2 and Ue + U2 is nilpotent, because B =
Ke + Ue + U2 is a genetic algebra, we have that F(A) is nilpotent. (The author is aware
that this result has also been obtained by A. Koulibaly and M. Ouattara).

Now we can consider the algebra A/F{A), which is also a Bernstein algebra. From
(P2) this algebra is such that F(A/F(A)) = F(A)/F(A) = 0. In the following we study
Bernstein algebras such that F(A) = 0. First we define two concepts: The zero socle of A,
denoted Zsoc (A), which is the sum of all minimal ideals with product zero and the
socle of A, denoted by Soc (A), which is the sum of all minimal ideals of A. It is clear
that Zsoc (A) ^ Soc (A). In general for an arbitrary algebra Zsoc (A) / Soc (A), but in
nontrivial Bernstein algebras Soc (A) = Zsoc (A).
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Proposition 9. Let A be a Bernstein algebra such that if e is nonzero idempotent
l / e#0. Then Zsoc (A) = Soc (A)^Ker w.

Proof. We are going to prove that if / is a minimal ideal of A then / has product
zero and thus Zsoc (A) = Soc (-4). Let / be a minimal ideal of A. If / is not contained in
Ker w, then there exists a nonzero idempotent, e, in / such that A = Ke + Ue+Ve and
I = Ke+U'e + V'e with U'e^Ue and V'e^Ve. But U'e+V'e is an ideal of A and U'e + V'e is
contained in / and is different from /. Therefore /^Ker w for every minimal ideal / of
A. From [7] we know that the product of ideals of A contained in Ker w is also an
ideal of A. Thus I2 = I or / 2 =0 . If / 2 = /, then Ke + I = C is a Bernstein algebra such
that C2 = C. That is, from [4], C is a genetic algebra and therefore / is nilpotent, which
is a contradiction.

Theorem 10. Let A be a Bernstein algebra such that F(A) — 0. Then if e is a nonzero
idempotent of A such that A = Ke + Ue + Ve we have:

0) U2
e=0,

(ii) Zsoc (A) = U'e + V'e with V'e^ Ve and U'e^Ue such that V'eVe = V'eU'e = 0,
(iii) ,4= Zsoc (A) + C with C a subalgebra of A, C = (e + u)+W with W^{ — 2uv +

v/ve Ve} such that W2 = 0 and ueUe.

Moreover if A is a Bernstein algebra verifying (i), (ii) and (iii) we have that F(A) = 0.

Proof. Because of Proposition 7 we have (i).
For the proof of (ii), we consider a minimal ideal / c Zsoc (A). Let e be a nonzero

idempotent in A. Since el^I, we have that I = Ue+Ve with Ue<^Ue and Ve^Ve. But
from (i) Ue.Ue = 0 and since / is an ideal, Ue. Ve^Uen I = Ue. Thus Ue is an ideal of A
and it is contained in the minimal ideal / of A. Therefore we have I = Ue or (7e = 0. If
C?e = 0, then / = Ve. However Ve.Ve and Ve.Ue are contained in Ue and thus Ve.A = 0. So
Zsoc (A) = U'e + V'e with (U'e)

2 = 0=V'eUe = Ve.V'e. We remark that these conclusions
follow for every nonzero idempotent using only the hypothesis t / 2=0. Now from (P3)
we have A = Zsoc (A) @ C with C a subalgebra of A. So C contains a nonzero
idempotent e, = e + w with ueUe and C = Ket © Uei © W such that Uet^Uet and
W^Vei. We know that t/ei = {u1 + 2wM1/u1el/e} and Vet = {-2{u + u2)v1 + vi/v1 e Ve}.
Therefore Uei = Ue and Vei = {-2uvl+v1/v1eVe}. Since CnZsoc (A) = 0, we have that
C contains no minimal ideals of A. But 0et is an ideal because Uei = Ue, U2=0, C is a
subalgebra and V'e.Ue = 0. Therefore Ue=0. Moreover if C is a subalgebra, W2^
[ / , n C = 0.

Conversely let /I be a Bernstein algebra satisfying (i), (ii) and (iii). We know that
F(A)g,(Ker w)2 = U2 + V2 + UeVe. Thus F(A)^Ue W because of (i), (ii) and (iii). To
prove (ii), note that we have shown using only (i), that Zsoc {A) = U'e + V'e with
U'e — Y^ujh and F'e = ̂ fceB Jb where /,-, Jb are the minimal ideals of A satisfying It^Ue,
and 7? = 0 for all ieJ, and Jb^Ve,Jl=0 for all beB. That is, the sums £,«,.,/,• and
Z*eW* are direct sums of algebras. Now we consider
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I Is+V'e)@C and Db = (u'.+ £ Jb)@C.
seJs*i / \ sefls/6

At is ideal and A/A^Ii is a nilpotent algebra. Moreover Db is also an ideal and
A/Db^Jb is a nilpotent algebra. From (P4) we have F(A/Ai)=(A/Ai)

2^lf =0 and
F(yl/D(,) = (/l/D(,)

2^J^=0. From (P2) we know that (F(A) + Ai)/Ai^F(A/Ai) = 0 for all
ieJ and (F(/l) + Db)/Db^F(A/Db) = 0 for all b in J. So F ( / l ) ^ ( fV , )n (n0 i , ) ^C . But
we also have F(A)^Ue.W^Ue. Therefore F(A) = 0.

Corollary 11. Let A be a Bernstein algebra such that F(A) = 0. Then there exists a
nonzero idempotent e such that A = Zsoc A © C with Zsoc A = U'e+V'e, C = Ke+Ve and
V'e, Ve^Ve verifying V'e.Ve = 0.

Proof. From Theorem 10 and its proof we know that A = Zsoc A® C, where C
contains a nonzero idempotent e, C = Ke+Ve with Ve ̂  Ve and Zsoc A = Ue + V'e with
U'e^Ue and V'e^Ve such that V'eVe = 0. Therefore U'e = Ue and we have the corollary.
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