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Abstract. We extend a result of Vojta on height inequalities for algebraic points on curves over
function fields to include the case of positive characteristic. The main tool used is the Kodaira–
Spencer map and destabilizing flags for vector bundles on curves.
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1.

Let X be a curve defined over a number field F and let K be the canonical class
of X . Given an algebraic point

X

�
�
�
�
�

P

�

Spec(L) - Spec(F )
?

f

we define the geometric (logarithmic) discriminant of P to be

d(P ) :=
1

[L : F ]
log DL=F ;

where DL=F is the ordinary discriminant of L over F . Denote by h(P ) the (loga-
rithmic) geometric height with respect to the canonical class. Vojta has made the
following conjecture bounding the height of algebraic points on X in terms of the
discriminant:

For any � > 0, there is a constant C = C(X; �) such that for all algebraic
points P , we have

h(P ) 6 (1 + �)d(P ) + C:

We see that ifP ranges only overF -rational points, the right-hand side is bound-
ed so Faltings’ Theorem (Mordell conjecture) is implied by the above inequality.
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44 MINHYONG KIM

It is however, a much stronger statement with a remarkable set of Diophantine
consequences, as surveyed in [2]. From the point of view of giving bounds for the
height of points rational over number fields, it makes explicit the dependence of
such a bound on the field, by isolating out the purely geometric quantity C(X; �).

We are interested here in examining the geometric analogue of this inequality,
specifically, extending to positive characteristic a result of Vojta, which we go on
to describe. So let X be a smooth projective surface over the perfect field k. We
are interested in a situation whereX admits a map f :X!S to a smooth projective
curve S, also defined over k, with function field F in such a way that the fibers of
f are geometrically connected curves and the generic fiberXF is smooth, of genus
g > 2. (So our X is actually the analog of the minimal regular model, suitably
compactified at infinity via Arakelov theory, of the curve defined over the number
field discussed above, rather than the curve itself.)

Given a diagram

X

�
�
�
�
�

P

�

T - S
?

f ;

where T is a smooth projective curve mapping to S, we can view P as an algebraic
point of XF . The canonical height of P is defined by the formula

h(P ) :=
1

[T : S]
degP �!;

where ! = !X := KX 
 f�K�1
S denotes the relative dualizing sheaf for X!S.

This is a representative for the class of height functions on XF ( �F ) associated to
the canonical sheaf KXF . Define the relative discriminant of T to be

d(T ) :=
2g(T )� 2
[T : S]

;

where g(T ) is the genus of T . The goal of this paper is to extend the following
estimate for the height, which is due to Vojta, to positive characteristics:

Assume that k is of characteristic 0. Then for any � > 0 there is a constant
C = C(X; �) such that

h(P ) 6 (2 + �)d(P ) + C: (�)
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We list just a few other inequalities of this sort:

h(P ) 6 2(2g � 1)(2g + 3)(d(P ) + s); (Szpiro)

h(P ) 6 2(2g � 1)2(d(p) + s); (Esnault–Viehweg)

h(P ) 6 (2g � 1)2(d(p) + s); (Shepherd–Barron)

h(P ) 6 (2g � 1)d(p) +O(1) (g > 2); (Moriwaki)

h(P ) 6 (2g � 1)(d(p) + 3s)� !2; (Sheng-Li Tan)

where s denotes the number of singular fibers of f . Among these, the ones of Szpiro,
Moriwaki, and Shepherd–Barron work in positive characteristic. However, various
complications arise due to the existence of non-separable morphisms, which we
now describe in brief. Note that in the complex case, inequality (*) above is trivially
true in case X!S is a constant family, that is, X = C � S

p2
�! S. The relative

dualizing sheaf in this case is just p�1
C and a strong version of the inequality above,
with a 1 instead of a 2+� and constant zero follows easily from the Hurwitz formula.
But we can as easily check that constant families are exactly the troublesome ones
in positive characteristic: so let S and C be smooth projective curves over Fp.
We can construct E, a smooth projective curve equipped with non-trivial maps
f :E!S and g : E!C in a manner such that f is separable of degree d1 and g
is of degree d2. Consider the twists g � F n : E!C with powers of the Frobenius
morphism which give rise to algebraic points Pn := (g � F n) � f :E!C � S.
Then it is clearly seen that the discriminant d(Pn) remains constant and equal to
(2g(E) � 2)=d1, while h(Pn) = (d2=d1)p

n(2g(C)� 2).
However, the actual situation is even more complicated than this as can be seen

by the following construction due to Felipe Voloch:
By the Kodaira–Parshin construction gives us a diagram [4]

X
h - Y := S � S

T

f

?
- S
?

;

where T!S is finite unramified, f is smooth and h is ramified only along the
diagonal. Now, we have the algebraic points Pn of Y constructed previously (with
C = E = S), which are now in fact rational points. Note that the image of all the
Pn; n > 0, which we denote by the same letters, are transverse to the diagonal,
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46 MINHYONG KIM

so that the inverse image in X , En = q�1(Pn) is smooth. Let g0 denote the genus
of the generic fiber of X and let d denote the degree of the map q : X!Y . Then,

hEn:!Xi =
(2g0 � 2)
(d(2g � 2))

hEn:q
�!Y i+O(hEn:!Xi

1=2)

=
(2g0 � 2)
(2g � 2)

h(Pn):!Y i+O(hEn:!Xi
1=2)

= (2g0 � 2)pn +O(hEn:!Xi
1=2) = (2g0 � 2)pn +O(pn=2):

Here, the estimate of the remainder term uses Neron’s theorem on heights with
respect to divisors algebraically equivalent to zero [5] (Thm. 2.11). On the other
hand, the geometric discriminant can be computed using the Hurwitz formula:

2g(En)� 2 = d(2g(S) � 2) + deg(Rn);

where Rn is the ramification divisor of En over Pn. But by the transversality
mentioned above, degRn is equal to d times the intersection number hPn:�i. This
is just the number of Fpn points of S, and hence, is equal to pn + O(pn=2) by
the Riemann hypothesis for S. That is, d(En) = pn+O(pn=2). When considering
algebraic points, this example shows that just having a non-trivial map to a constant
curve, that is, a non-trivial F=k-trace of the Jacobian, can cause sections of large
height to ‘lift’.

In this paper, we prove two inequalities, which illustrate in a transparent manner
the dependence of inequalities of this sort on the Kodaira–Spencer map. Recall that
the Kodaira–Spencer map is constructed on any open set U � S over which f is
smooth from the exact sequence

0! f�
1
U!
1

XU
!
1

XU=U
! 0;

by taking the coboundary map KS : f�(
1
XU=U

)!
1
U 
R1f�(OXU ).

THEOREM 1. Suppose the Kodaira–Spencer map of the f : X!S (defined on
some open subset of S) is non-zero. Then, when g > 3,

h(P ) 6 (2g � 2)d(p) +O(h(P )1=2):

For g = 2,

h(P ) 6 (2 + �)d(P ) + C(X; �):

Notice that in view of the example above, the first inequality is the best possible
one that holds in general.

THEOREM 2. Suppose the Kodaira–Spencer map of X=S is an isomorphism on
some open subset of S. Then Vojta’s inequality holds:

h(P ) 6 (2 + �)d(P ) + C(X; �):
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2.

Note that the inequalities of Theorems 1 and 2 are invariant with respect to a
change of domain P :T!T 0!X so we may as well assume that the map T!X
is generically 1-1. In fact, both the height and the discriminant depend only on the
image P (T ) inside X . That is,

h(P ) =
1

[K(P (T )) : F ]
hP (T ):!i;

where K(P (T )) is the residue field of X at P (T ), and

d(P ) =
1

[K(P (T )) : F ]
(2g(P (T )) � 2);

where the genus refers to the geometric genus.
Recall also that we can associate to any line bundleLF onXF a height function

hLF on XF ( �F ) by choosing a regular model f :X!S as above and a model L (an
extension to X) of LF and defining

h(PF ) := degP �L=[T : S];

where P :T!X denotes the obvious extension of the algebraic point PF :
Spec(F (T ))!XF .

For the convenience of the reader, we recall the proof of the well-known fact that
changing X or L changes the function hLF by a quantity bounded on XX( �F ). It
suffices to examine the intersection number betweenL and an irreducible horizontal
divisor H on X . But given models L1 and L2, we get L1(f

�(�D)) � L2 �

L1(f
�(D)) for some divisor D on S. By intersecting with H and dividing by the

degree of H over S, we get the up-to-O(1) independence of L. To examine the
dependence on X , in suffices to check what happens when we blow-up a point
r:X 0!X . Given the horizontal divisorH , we know that hr�L:r�Hi = hL:Hi. On
the other hand, the closure inside X 0 of HF , is the strict transform H 0 of H . We
have r�H = H 0+mE whereE is the exceptional divisor andm is the multiplicity
of H at the blown-up point. Thus hr�L:H 0i = hr�L:r�Hi = hL:Hi.

In the sequel, we will have occasion to change the model X and several line
bundles by finite operations that do not affect the generic fiber. The preceding
argument says that this does not affect height inequalities up to a bounded quantity.

On the other hand, for the estimates in the theorems, the following lemma allows
us to worry only about those P which are separable over S:

LEMMA 1. In the diagram

X

�
�
�
�
�

P

�

T - S
?
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suppose T!X is generically unramified but T!S is inseparable. Then h(P ) 6
d(P ) + C; where the constant depends only on X .

Proof. Recall the definition of ! := KX 
 f�K�1
S . We have the exact sequence

of sheaves

0! f�
1
S!
1

X!
1
X=S! 0:

After a suitable blow-up r:X 0!X (which changes all the heights byO(1)) we can
get the quotient Q of r�
1

X by the saturation L of r�f�
1
S to be locally free [3]

(Lemma 2). Now, the fact that T is inseparable over S causes the map

L jT !
1
T

induced by r�
1
X jT ' 
1

X jT!
1
T to be zero, since L is generically the same as

f�
1
S . Hence we get a non-zero map

Q jT !
1
T :

Thus, we get c1(Q jT ) 6 2gT � 2, hence,

hKX :T i � hL:T i 6 2gT � 2:

But L � r�f�(
1
S(D)) for some divisor D on S, so that h!:T i 6 2gT � 2 +

deg (D)[T : S]: 2

3.

In this section, we repeat some of the arguments from [6] in our setting for the
convenience of the reader and to make the modifications necessary for the positive
characteristic case.

We use the convention of indicating with a subscript F an object restricted to
the generic fiber: e.g., (
1

X)F := 
1
X jXF and !F := !jXF . Then we have an

exact sequence

0!OXF ! (
1
X)F !!F ! 0;

so that deg(
1
X)F = deg !F = 2g � 2. We wish to apply the Riemann–Roch

theorem to the sheaves

En := Sym(2+�)n(
1
X)F 
 !�nF :

Here, as in the following, we assume that � is rational and that n is large enough
for all the expressions to make sense. We get

degEn = [(2 + �)n((2 + �)n+ 1)=2 � ((2 + �)n+ 1)n](2g � 2) > �n2

and rank En = (2 + �)n+ 1 so that

H0(En) > �n2 � ((2 + �)n+ 1)(g � 1):
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Thus, En has a non-zero section for large n. But this is just an injection !nF!

Sym(2+�)n(
1
X)F which thus extends to an injection

!n!Sym(2+�)n(
1
X)
 f�M;

for some invertible sheaf M on S. Now, given any algebraic point

X

�
�
�
�
�

P

�

T - S
?

f

we get a sequence of maps

P �!n!P �Sym(2+�)n(
1
X)
 P �f�M!


(2+�)n
T 
 P �f�M:

If the composed map is non-zero, we see, by taking degrees and dividing by
n[T :S], that

h(P ) 6 (2 + �)d(P ) + deg(M)=n

and the point satisfies the desired inequality.
If the composed map is zero, we say that P (T ) � X is a degenerate curve.
To analyze the degenerate curves, we use the projective bundle

P(
1
X) := ProjX

 
1M
i=0

Symi
X

!
:

Denoting by p : P(
1
X)!X the projection, recall that we have a canonical isomor-

phism

Symn
1
X ' p�O(n);

from which we get the surjection p�Symn
1
X!O(n)!0.

Now, since P : T!X is a generically 1-1 map from a smooth curve T to X ,
the surjection P �
1

X!
T to some invertible subsheaf of the sheaf of differentials
of T induces a lifting tP : T!P(
1

X) of P . This lifting is such that we get a
commutative diagram

t�Pp
�
1

X
- t�PO(1)

P �
1
X

'

?
- 
1

T

?

;
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so that in the situation above, for the subsheaf !n 
 f�M�1 of Sym(2+�)n
1
X , we

get a commutative diagram

t�Pp
�(!n 
 f�M�1) - t�Pp

� Sym(2+�)
1
X

- t�PO((2 + �)n)

P �(!n 
 f�M�1)

'

?
- P �Sym(2+�)
1

X

'

?
- 


(2+�)n
T

?

:

Denoting by s the (non-zero) section of p�(!�n 
 f�M)
O((2 + �)n) given by
the composed map

p�(!n 
 f�M�1)! p�Sym(2+�)
1
X!O((2 + �)n);

we see that P (T ) is degenerate if and only if tP (T ) � div(s).
Thus, we get the following result of Vojta: Fix a rational number � > 0. Then

there exists a constant C and a finite collection of irreducible reduced divisors Ei
in P(
1

X) such that for all algebraic points P :T!X such that tP (T ) is not in any
of the Ei’s

h(P ) 6 (2 + �)d(P ) + C:

Now, let Y 0 � P(
1
X) be one of the divisors above, g0:Y 0!X the map induced

by p: P(
1
X)!X , and suppose tP (T ) � Y 0. If Y 0 is not dominant overX , then the

P (T ) must be equal to the image curve g0(Y 0) and these form a finite set. So we
assume that g0:Y 0!X is dominant map of surfaces. Pullback induces a diagram

g0�Y 0 � g0�P(
1
X) = P(g0�
1

X)

Y 0

@
@
@
@
@R ?

except that now there is a section s:Y 0!g0�Y 0. Also, tP :T!Y 0 � P(
1
X) lifts to

h:T!g0�P(
1
X) induced by

t�P g
0�
1

X = P �
1
X!
1

T :

One checks readily that h = s � tP . On Y 0, pulling back the canonical exact
sequence on P(g0�
1

X) gives an exact sequence

0!Q! g0�
1
X! s�O(1)

in particular, a subsheaf Q � g0�
1
X such that t�PQ!t�P g

0�
1
X!
1

T , or equiva-
lently,

Q! g0�
1
X! tP �


1
T
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is the zero map. All the above data, including the degenerate curves, lift to a
desingularization of Y 0 which we denote by Y . Denote the map down to X by g.

4. Proof of theorems

For any Y
g- X as constructed above, we can use Stein factorization to obtain

a diagram

Y - X

B
?

- S
?

such that Y=B has connected fibers. Let E be the function field of B so that we
have again the natural notation YE etc. We get a map Y ! XB , and hence, a
map from Y to the regular minimal model X 0 of XB . From the argument in the
preceding section, we get the canonical exact sequence

0 ! Q! g�
1
X !M ! 0;

such that for each degenerate curve C � X which lifts to ~C � Y as described
above, we get a non-zero map M ! 
 ~C . Therefore, M: ~C 6 2g ~C � 2. Now,
suppose

deg(2 + �)ME > deg g�!E

(as Q-divisors). Then, by [6] Thm. 2.11, we get

hg�!E (
~C) 6 (2 + �)hME

( ~C) +O(h
1=2
g�!E

) 6 (2 + �)d( ~C) +O(h
1=2
g�!E

):

(Here we abuse notation a bit and denote by ~C also the point corresponding to it.)
But it is readily seen that the original height h(C) on X we are interested in is
equal to the height hg�!E ( ~C), so

h(C) 6 (2 + �)d( ~C) +O(h
1=2
g�!E

):

Since we could have argued above with 1
2� > 0 rather than � > 0, we get

therefore a constant C depending only on 1
2� (and thus, on �) and X (as we run

over all the Y ’s) such that

h(C) 6 (2 + �)d( ~C) + C:

Therefore, we may assume that deg((2 + �)ME) < deg(g�!E).
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CLAIM. Put A := QE and B := ME . If deg(2 + �)ME < deg g�!E , then the
exact sequence

0 ! A! g�
1
XE ! B ! 0

is a destabilizing flag for g�
1
XE , i.e., A�B is torsion or has positive degree.

Proof of Claim. Note that we still have a map g�!nE ! g� Sym(2+�)n(
1
X)E

which is zero when composed with the quotient map to B(2+�)n, by the degree
assumption. Therefore, by considering the filtration on g�Sym(2+�)n(
1

X)E induced
by the exact sequence, we get a non-zero map

g�!nE ! B(2+�)n�i 
Ai = B(2+�)n 
 (A
B�)i

for some positive i. By the degree assumption again,

B(2+�)n 
 !�nE ,! OYE

for some n (which we may increase by some quantity independent of all the ~C’s
again). So (A
B�)i has a section for some i, proving the claim.

Recall the fact that the destabilizing flag is unique unless g�
1
XE = A � B

where A�B is torsion: Suppose

0 ! A0 ! g�
1
XE ! B0 ! 0

is a different one. Then

A0 ,! B

and

A ,! B0;

so B = A0(D) and B0 = A(D) for some effective D. Then we get

A�B = B0 �A0 � 2D = �(A0 �B0)� 2D:

For both A� B and A0 � B0 to be positive or torsion, we need D = 0 and hence
B0 = A;B = A0.

But if (g�
1
X)E = A�B where A�B is torsion, then

degB = 1
2 deg(g�
1

X)E = deg(g�!)E;

contradicting the italicized assumption above. Thus we may assume that the desta-
bilizing flag is unique. Since the degree assumption continues to hold after base
change to any another curve mapping to YE , the destabilizing flag will be unique
after any such base-change. So we can use flat descent to conclude that the desta-
bilizing flag is defined over XE . That is, if denote by h the map from the minimal
regular model X 0 of XE to X , we get a saturated subsheaf L ,! h�
1

X ! 
1
X0
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which generically base changes toA. Then one checks immediately that any degen-
erate curveC � X whose tangent map factors through Y 0 lifts to a solution for the
Pfaffian equation L ,! 
1

X0 in the sense of [1], [2], that is, the composed map

L ,! 
1
X0 ! 
C

is zero.
As mentioned previously, since the inequalities to be proved as well as the

hypotheses of the theorems are invariant under base-change and choice of models,
we can argue directly with X 0 rather than X , and thus reduce to the following
situation:

There exists a finite set of Pfaffian equationsL � 
1
X such that each degenerate

curve is a solution for one of these equations.
Proof of Theorem 1. Fix such an L. There exists a blow-up r:X 0 ! X such that

the quotient of r�
X by the saturation of r�L is locally free. Call that quotient G
for P :T ! X degenerate, we see thatP �G � 
1

T . Denoting by hG the height with
respect toG, (restricted to the generic fiber) this implies thathG(P ) 6 d(P )+O(1).

We now study the degree of GF . Clearly, degGF = deg(
1
X)F � degLF =

2g�2�degLF . But degLF < 2g�2. For otherwise, that is, if degLF > 2g�2 > 0
then LF would not be contained in f�
1

F (which is trivial), whence LF � (
1
X)F

would map isomorphically to 
XF =F , being a non-zero map of a line bundle on
curve to another line bundle of not greater degree. That is, after adjusting by a
constant if necessary, we would have a splitting of

0 ! f�
1
F ! (
1

X)F ! 
XF =F ! 0;

whence the Kodaira–Spencer map would be zero. So degGF > 0 and G�(2g�2)
F 


K
degGF
X is of degree 0. Thus, by Neron’s theorem [6] (Thm 2.11), we get

deg(GF )hK(P ) 6 (2g � 2)hG(P ) +O(h
1=2
K (p))

6 (2g � 2)d(P ) +O(h
1=2
K (p))

and the theorem follows. Note that 2g � 2 > 2 + � for small � > 0 iff g > 2,
whence we have the division into the two cases in the statement of the theorem. 2

Proof of Theorem 2. As in the preceding proof, consider the degree of GF .
If degLF 6 g � 1 then degGF > g � 1 so that hK 6 2hG + O(h

1=2
K ) 6

2d(P ) + O(h
1=2
K ) and we are done. Otherwise, degLF > g so that LF has a

section. Now consider the inclusion f�LF � f�(

1
X)F and the exact sequence

0 ! 
1
F ! f�(


1
X)F ! f�


1
XF =F

! 
1
F 
R1f�OXF
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where the last arrow is the Kodaira–Spencer map. By Lemma 1 we may assume that
LF \f

�
F = 0 (since otherwise, all degenerateT for suchLwould be inseparable
over S) so that f�LF \
F = 0. The preceding remarks imply that f�LF is of rank
at least one and gives rise to an element of f�(
1

X)F not contained in 
F . Thus,
we get a non-zero element contained in the kernel of the Kodaira–Spencer map. 2
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