Strongly Perforated K_{0}-Groups of Simple C^{*}-Algebras

Andrew Toms

Abstract. In the sequel we construct simple, unital, separable, stable, amenable C^{*}-algebras for which the ordered K_{0}-group is strongly perforated and group isomorphic to Z. The particular order structures to be constructed will be described in detail below, and all known results of this type will be generalised.

1 Statement of the Main Result

Theorem 1.1 Suppose that for $i \in\{1, \ldots, N\}, q_{i}$ and m_{i} are relatively prime positive integers with q_{i} prime. Let L be a positive integer coprime with each q_{i} and m_{i}. Define

$$
S \equiv \frac{1}{L}\left(\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle\right) \cap Z
$$

where $\left\langle q_{i}, m_{i}\right\rangle$ denotes the subsemigroup of the positive integers consisting of non-negative integral linear combinations of q_{i} and m_{i}.

It follows that there exists a simple, separable, amenable, unital C^{*}-algebra with ordered K_{0}-group order isomorphic to the integers with positive cone S.

It is not known whether the subsemigroups of the positive integers constructed as above exhaust all of the subsemigroups of the positive integers that generate Z, but they do include subsemigroups of the form $\langle m, l\rangle$, where m and l are any two coprime positive integers, amongst others.

2 Background and Essential Results

We begin by reviewing the definition of the generalised mapping torus. Unless otherwise noted, all results from this section can be found in [E-V]. Let C, D be C^{*} algebras and let ϕ_{0}, ϕ_{1} be $*$-homomorphisms from C to D. Then the generalised mapping torus of C and D with respect to ϕ_{0} and ϕ_{1} is

$$
\begin{equation*}
A:=\left\{(c, d) \mid d \in C([0,1] ; D), c \in C, d(0)=\phi_{0}(c), d(1)=\phi_{1}(c)\right\} \tag{1}
\end{equation*}
$$

We will denote A by $A\left(C, D, \phi_{0}, \phi_{1}\right)$ where appropriate for clarity. We now list (without proof) some theorems which will be used in the sequel.

[^0]Theorem 2.1 The index map $b_{*}: K_{*} C \rightarrow K_{1-*} S D=K_{*} D$ in the six-term periodic exact sequence for the extension

$$
0 \rightarrow S D \rightarrow A \rightarrow C \rightarrow 0
$$

is the difference

$$
K_{*} \phi_{1}-K_{*} \phi_{0}: K_{*} C \rightarrow K_{*} D
$$

Thus, the six-term exact sequence may be written as the short exact sequence

$$
0 \rightarrow \text { Coker } b_{1-*} \rightarrow K_{*} A \rightarrow \operatorname{Ker} b_{*} \rightarrow 0
$$

In particular, if b_{1-i} is surjective, then $K_{i} A$ is isomorphic to its image, Ker b_{i}, in $K_{i} C$.
Suppose that cancellation holds for D. It follows that if b_{1} is surjective, so that $K_{0} A \subseteq$ $K_{0} C$, then

$$
\left(K_{0} A\right)^{+}=\left(K_{0} C\right)^{+} \cap K_{0} A
$$

The preceding conclusion also holds if cancellation is only known to hold for each pair of projections in $D \otimes K$ obtained as the images under the maps ϕ_{0} and ϕ_{1} of a single projection in $C \otimes K$.

Theorem 2.2 Let A_{1} and A_{2} be building block algebras as described above,

$$
A_{i}=A\left(C, D, \phi_{0}^{i}, \phi_{1}^{i}\right), \quad i=1,2
$$

Let there be given four maps between the fibres,

$$
\begin{gathered}
\gamma: C_{1} \rightarrow C_{2}, \\
\delta, \delta^{\prime}: D_{1} \rightarrow D_{2}, \quad \text { and }, \\
\epsilon: C_{1} \rightarrow D_{2},
\end{gathered}
$$

such that δ, δ^{\prime} and ϵ have mutually orthogonal images, and

$$
\begin{aligned}
& \delta \phi_{0}^{1}+\delta^{\prime} \phi_{1}^{1}+\epsilon=\phi_{0}^{2} \gamma \\
& \delta \phi_{1}^{1}+\delta^{\prime} \phi_{0}^{1}+\epsilon=\phi_{1}^{2} \gamma
\end{aligned}
$$

Then there exists a unique map

$$
\theta: A_{1} \rightarrow A_{2}
$$

respecting the canonical ideals, giving rise to the map $\gamma: C_{1} \rightarrow C_{2}$ between the quotients (or fibres at infinity), and such that for any $0<s<1$, if e_{s} denotes evaluation at s, and e_{∞} the evaluation at infinity,

$$
e_{s} \theta=\delta e_{s}+\delta^{\prime} e_{1-s}+\epsilon e_{\infty}
$$

Theorem 2.3 Let A_{1} and A_{2} be building block algebras as in Theorem 2. Let $\theta: A_{1} \rightarrow$ A_{2} be a homomorphism constructed as in Theorem 2.2, from maps $\gamma: C_{1} \rightarrow C_{2}, \delta$, $\delta^{\prime}: D_{1} \rightarrow D_{2}$, and $\epsilon: C_{1} \rightarrow D_{2}$.

Let there be given a map $\beta: D_{1} \rightarrow C_{2}$ such that the composed map $\beta \phi_{1}^{1}$ is a direct summand of the map γ, and such that the composed maps $\phi_{0}^{2} \beta$ and $\phi_{1}^{2} \beta$ are direct summands of the maps δ^{\prime} and δ, respectively. Suppose that the decomposition of γ as the orthogonal sum of $\beta \phi_{1}^{1}$ and another map is such that the image of the second map is orthogonal to the image of β. (Note that this requirement is automatically satisfied if C_{1}, D_{1}, and the map $\beta \phi_{1}^{1}$ are unital.)

It follows that, for any $0<t<\frac{1}{2}$, the map $\theta: A_{1} \rightarrow A_{2}$ is homotopic to a map $\theta_{t}: A_{1} \rightarrow A_{2}$ differing from it only as follows: the map $e_{\infty} \theta_{t}$ has the direct summand βe_{t} instead of one of the direct summands $\beta \phi_{0}^{1} e_{\infty}$ and $\beta \phi_{1}^{1} e_{\infty}$ of $e_{\infty} \theta$, and for each $0<s<1$ the map $e_{s} \theta_{t}$ has either the direct summand $\phi_{0}^{2} \beta e_{t}$ instead of the direct summand $\phi_{0}^{2} \beta e_{s}$ of $e_{s} \theta$, or the direct summand $\phi_{1}^{2} \beta e_{t}$ instead of the direct summand $\phi_{1}^{2} \beta e_{s}$ of $e_{s} \theta$, or both.

Furthermore, let $\alpha: D_{1} \rightarrow C_{2}$ be any map homotopic to β within the hereditary sub-C^{*}-algebra of C_{2} generated by the image of β. Then the map θ_{t} is homotopic to a map $\theta_{t}^{\prime}: A_{1} \rightarrow A_{2}$ differing from θ_{t} only in the direct summands mentioned, and such that $e_{\infty} \theta_{t}^{\prime}$ has the direct summand αe_{t} instead of βe_{t}, and for each $0<s<1, e_{s} \theta_{t}^{\prime}$ has either $\phi_{0}^{2} \alpha e_{t}$ instead of $\phi_{0}^{2} \beta e_{t}$, or $\phi_{1}^{2} \alpha e_{t}$ instead of $\phi_{1}^{2} \beta e_{t}$.

Theorem 2.4 Let

$$
A_{1} \xrightarrow{\theta_{1}} A_{2} \xrightarrow{\theta_{2}} \cdots
$$

be a sequence of separable building block C^{*}-algebras,

$$
A_{i}=A\left(C_{i}, D_{i}, \phi_{0}^{i}, \phi_{1}^{i}\right), \quad i=1,2, \ldots
$$

with each map $\theta_{i}: A_{i} \rightarrow A_{i+1}$ obtained by the construction of Theorem 2.2 (and thus respecting the canonical ideals). For each $i=1,2, \ldots$ let $\beta_{i}: D_{i} \rightarrow C_{i+1}$ be a map verifying the hypotheses of Theorem 2.3.

Suppose that for every $i=1,2, \ldots$, the intersection of the kernels of the boundary maps ϕ_{0}^{i} and ϕ_{1}^{i} from C_{i} to D_{i} is zero.

Suppose that, for each i, the image of each of ϕ_{0}^{i+1} and ϕ_{1}^{i+1} generates D_{i+1} as a closed two-sided ideal, and that this is in fact true for the restriction of ϕ_{0}^{i+1} and ϕ_{1}^{i+1} to the smallest direct summand of C_{i+1} containing the image of β_{i}. Suppose that the closed two-sided ideal of C_{i+1} generated by the image of β_{i} is a direct summand.

Suppose that, for each i, the maps $\delta_{i}^{\prime}-\phi_{0}^{i} \beta_{i}$ and $\delta_{i}-\phi_{1}^{i} \beta_{i}$ from D_{i} to D_{i+1} are injective.

Suppose that, for each i, the map $\gamma_{i}-\beta_{i} \phi_{1}^{i}$ takes each non-zero direct summand of C_{i} into a subalgebra of C_{i+1} not contained in any proper closed two-sided ideal.

Suppose that, for each i, the map $\beta_{i}: D_{i} \rightarrow C_{i+1}$ can be deformed—inside the hereditary sub-C*-algebra generated by its image—to a map $\alpha_{i}: D_{i} \rightarrow C_{i+1}$ with the following property: There is a direct summand of α_{i}, say $\bar{\alpha}_{i}$, such that $\bar{\alpha}_{i}$ is non-zero on an arbitrary given element x_{i} of D_{i}, and has image a simple sub- C^{*}-algebra of C_{i+1}, the closed two-sided ideal generated by which contains the image of β_{i}.

Choose a dense sequence $\left(t_{n}\right)$ in the open interval $\left(0, \frac{1}{2}\right)$, such that $t_{2 n}=t_{2 n-1}$, $n=1,2, \ldots$

Choose a sequence of elements $x_{3} \in D_{3}, x_{5} \in D_{5}, x_{7} \in D_{7}, \ldots$ (necessarily non-zero) with the following property: For some countable basis for the topology of the spectrum of each of D_{1}, D_{2}, \ldots, and for some choice of non-zero element of the closed two-sided ideal associated to each of these (non-empty) open sets, under successive application of the maps $\delta_{i}-\phi_{1}^{i+1} \beta_{i}$ each one of these elements is taken into x_{j} for all j in some set $S \subseteq\{3,5,7, \ldots\}$ such that $\left\{t_{j}, j \in S\right\}$ is dense in $\left(0, \frac{1}{2}\right)$. Choose α_{j} as above such that $\bar{\alpha}_{j}\left(x_{j}\right) \neq 0$ for some direct summand $\bar{\alpha}_{j}$ of α_{j} for each $j \in\{3,5,7, \ldots\}$. For each $j \in\{4,6,8, \ldots\}$ choose α_{j} with respect to the non-zero element $\left(\delta_{j-1}^{\prime}-\phi_{0}^{j} \beta_{j-1}\right)\left(x_{j-1}\right)$ of D_{j}. (If $j=1$ or 2 , choose $\alpha_{j}=\beta_{j}$.)

It follows that, if θ_{i}^{\prime} denotes the deformation of θ_{i} constructed in Theorem 4, with respect to the point $t_{i} \in\left(0, \frac{1}{2}\right)$ and the maps α_{i} and β_{i} (and a fixed homotopy of β_{i} to α_{i}), then the inductive limit of the sequence

$$
A_{1} \xrightarrow{\theta_{1}^{\prime}} A_{2} \xrightarrow{\theta_{2}^{\prime}} \cdots
$$

is simple.

3 The Main Result

In this section we will apply the theorems of Section 2 to the problem of constructing simple, stable, separable, amenable C^{*}-algebras having specific ordered K_{0}-groups. The algebras to be constructed will all be stably finite, thus allowing us to refer unambiguously to the ordered (as opposed to pre-ordered) K_{0}-group [B].

Consider the subsemigroup S of the positive integers given by

$$
S=\frac{1}{L}\left(\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle\right) \cap Z
$$

where m_{i} and q_{i} are coprime positive integers for each i, q_{i} is prime, L is any positive integer coprime to each q_{i} and m_{i}, Z is the integers, $\left\langle q_{i}, m_{i}\right\rangle$ is the additive subsemigroup of the positive integers generated by q_{i} and m_{i}, and $\frac{1}{L}\left(\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle\right)$ is the set of rational numbers with denominator L and numerator an element of the set $\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle$. Examples of subsemigroups of the positive integers which can be constructed in this manner include $\langle k, l\rangle$, where k and l are any coprime positive integers.

Let us construct a sequence

$$
A_{1} \xrightarrow{\theta_{1}} A_{2} \xrightarrow{\theta_{2}} \cdots
$$

with $A_{j}=\left(C_{j}, D_{j}, \phi_{0}^{j}, \phi_{1}^{j}\right)$ as in Section 2, and with θ_{j} constructed as in Theorem 2.2 from maps

$$
\gamma_{j}: C_{i} \rightarrow C_{j+1}, \quad \delta_{j}, \delta_{j}^{\prime}: D_{j} \rightarrow D_{j+1}
$$

In order to deform the θ_{j} to obtain a simple limit, we wish to have a map

$$
\beta_{j}: D_{j} \rightarrow C_{j+1}
$$

with the properties specified in Theorem 2.4.
We begin by specifying the algebras C_{j} to be used in the construction of the building blocks. For each $i \in\{1, \ldots, N+1\}$ let $X_{i, 1}$ be a compact metrizable space, and let $X_{i, j}$ be the Cartesian product of n_{j-1} copies of $X_{i, j-1}$, with the n_{j} to be specified. For each $j \in\{1,2, \ldots\}$ let Y_{j} be the disjoint union of the $X_{i, j}, i \in\{1, \ldots, N+1\}$. For each j let

$$
C_{j}=p_{j}\left(C\left(Y_{j}\right) \otimes K\right) p_{j}
$$

where p_{j} is a projection in $C\left(Y_{j}\right) \otimes K$. In the sequel we will specify p_{1} and set $p_{j}=$ $\gamma_{j-1}\left(p_{j-1}\right)$. Let $p_{i, j}$ be the restriction of p_{j} to the component $X_{i, j}$ of Y_{j}. Setting $C_{i, j}=p_{i, j}\left(C\left(X_{i, j}\right) \otimes K\right) p_{i, j}$ we can write $C_{j}=\bigoplus_{i=1}^{N+1} C_{i, j} . K$ is the C^{*}-algebra of compact operators on an infinite-dimensional separable Hilbert space.

Let $D_{j}=\bigoplus_{i=1}^{N+1}\left(C_{i, j} \otimes M_{(N+1) k_{j} \operatorname{dim}\left(p_{i, j}\right)}\right)$, here k_{j} is a non-zero positive integer to be specified. Let $\left(\operatorname{dim}\left(p_{j}\right)\right)$ be the ordered $N+1$-tuple $\left(\operatorname{dim}\left(p_{1, j}\right), \ldots, \operatorname{dim}\left(p_{N+1, j}\right)\right)$. In the sequel we will choose p_{j} so that $\operatorname{dim}\left(p_{i, j}\right)=\operatorname{dim}\left(p_{k, j}\right), \forall i, k \in\{1, \ldots, N+1\}$, and will denote this quantity by $\operatorname{dim}\left(p_{j}\right) . \quad D_{j}$ can then be written as $C_{j} \otimes$ $M_{(N+1) k_{j} \operatorname{dim}\left(p_{j}\right)}$.

For each $i \in\{1, \ldots, N+1\}$ we will specify two maps $\phi_{j}^{0, i}$ and $\phi_{j}^{1, i}$ from C_{j} to $C_{j} \otimes M_{k_{j} \operatorname{dim}\left(p_{j}\right)}$, and set $\phi_{j}^{t}=\bigoplus_{i=1}^{N+1} \phi_{j}^{t, i}, t=0,1$.

Let $\mu_{i, j}$ and $\nu_{i, j}$ be maps from C_{j} to $C_{j} \otimes M_{\operatorname{dim}\left(p_{j}\right)}$ as follows:

$$
\mu_{i, j}(a)=p_{j} \otimes a\left(x_{i, j}\right) \cdot 1_{\operatorname{dim}\left(p_{j}\right)}
$$

(where $x_{i, j}$ is a point in $X_{i, j}$ to be specified and $1_{\operatorname{dim}\left(p_{j}\right)}$ is the unit of the $C_{j} \otimes M_{\operatorname{dim}\left(p_{j}\right)}$) and

$$
\nu_{i, j}(a)=a \otimes 1_{\operatorname{dim}\left(p_{j}\right)}
$$

Let $\phi_{j}^{t, i}$ be the direct sum of l_{j}^{t} and $k_{j}-l_{j}^{t}$ copies of $\mu_{i, j}$ and $\nu_{i, j}$, respectively, where the l_{j}^{t} are non-negative integers such that $l_{j}^{0} \neq l_{j}^{1}$. We will also require that $l_{j}^{1}-l_{j}^{0}$ be coprime with each of the q_{i}. Then $\phi_{j}^{t, i}$ is a map from C_{j} to $C_{j} \otimes M_{k_{j} \operatorname{dim}\left(p_{j}\right)}$, as desired. In this manner ϕ_{j}^{t} is specified only up to the order of its direct summands, but it is only necessary to specify ϕ_{j}^{t} up to unitary equivalence (i.e., up to composition with an inner automorphism). In the sequel we shall, in fact, modify the ϕ_{j}^{t} by inner automorphisms at each stage.

Note that C_{j} and D_{j} are both unital. The maps ϕ_{j}^{t} are unital since $\mu_{i, j}(1)=$ $p_{j} \otimes 1_{\operatorname{dim}\left(p_{j}\right)}$ and $\nu_{i, j}(1)=\nu_{i, j}\left(p_{j}\right)=p_{j} \otimes 1_{\operatorname{dim}\left(p_{j}\right)}$. They are also injective as $a \neq$ $b \Rightarrow \nu_{i, j}(a) \neq \nu_{i, j}(b)$.

By Theorem 2.1, for each $e \in K_{0}\left(C_{j}\right)$,

$$
\begin{aligned}
b_{0}(e) & =\left(l_{j}^{1}-l_{j}^{0}\right)\left(\sum_{i=1}^{N+1}\left(K_{0}\left(\mu_{i, j}\right)-K_{0}\left(\nu_{i, j}\right)\right)\right)(e) \\
& =\left(l_{j}^{1}-l_{j}^{0}\right)\left(\sum_{i=1}^{N+1}\left(\operatorname{dim}\left(e_{i}\right) \cdot K_{0}\left(p_{j}\right)-\operatorname{dim}\left(p_{j}\right) \cdot e\right)\right) \\
& =\left(l_{j}^{1}-l_{j}^{0}\right)\left(\left(\sum_{i=1}^{N+1} \operatorname{dim}\left(e_{i}\right)\right) \cdot K_{0}\left(p_{j}\right)-(N+1) \operatorname{dim}\left(p_{j}\right) \cdot e\right)
\end{aligned}
$$

where $\operatorname{dim}\left(e_{i}\right)$ denotes the dimension of e over $X_{i, j}$. Since $l_{j}^{1}-l_{j}^{0}$ is a non-zero quantity which can be chosen (as will be shown later) to be coprime to each q_{i}, we conclude (since the torsion coefficients of $K_{0}\left(C_{i, j}\right)$ are all $\left.q_{i}[\mathrm{R}-\mathrm{V}]\right)$ that $b_{0}(e)=0$ implies

$$
\left(\left(\sum_{i=1}^{N+1} \operatorname{dim}\left(e_{i}\right)\right) \cdot K_{0}\left(p_{j}\right)-(N+1) \operatorname{dim}\left(p_{j}\right) \cdot e\right)=0
$$

If both $N+1$ and $\operatorname{dim}\left(p_{j}\right)$ are chosen to be coprime to each q_{i} (the former by adding copies of the connected component $X_{N, j}$ to Y_{j} as necessary, and the latter as will be shown below), then e is necessarily an element of the maximal free cyclic subgroup of $K_{0}\left(C_{j}\right)$ containing $K_{0}\left(p_{j}\right)$.

Given a subsemigroup of the positive integers S, where

$$
S=\frac{1}{L}\left(\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle\right) \cap Z,
$$

choose the spaces $X_{i, 1}$ as follows: Let $X_{i, 1}$ be the Cartesian product of $\left(q_{i}-1\right) m_{i}$ copies of $D_{q_{i}}$ for $i \in\{1, \ldots, N\}$, where $D_{q_{i}}$ is the quotient of the closed unit disc in C by the equivalence relation that identifies elements of T having like q_{i}-th powers. Let $X_{N+1,1}$ be the Cartesian product of $L+1$ copies of S^{2}. Note that $K^{1}\left(X_{i, j}\right)=0 \forall i \in$ $\{1, \ldots, N+1\}, \forall j \in N$, so that $K_{1}\left(C_{j}\right)=0$. It follows that b_{1} is surjective. Applying Theorem 2.1 we see that $K_{0}\left(A_{j}\right)$ is isomorphic as a group to its image, Ker b_{0}, in $K_{0}\left(C_{j}\right)$-which is isomorphic as a group to Z.

In order for $K_{0}\left(A_{j}\right)$ to be isomorphic as an ordered group to its image in $K_{0}\left(C_{j}\right)$, with the relative order, it is sufficient (by Theorem 2.1) that for any projection q in $C_{j} \otimes K$ such that the images of q under $\phi_{j}^{0} \otimes \mathrm{id}$ and $\phi_{j}^{1} \otimes \mathrm{id}$ have the same K_{0} class, these images be in fact equivalent. For any such q, the image of $K_{0}(q)$ under $b_{0}=$ $K_{0}\left(\phi_{j}^{0}\right)-K_{0}\left(\phi_{j}^{1}\right)$ is zero-in other words, $K_{0}(q)$ belongs to Kerb_{0}. By construction, $K_{0}(q)$ belongs to the largest subgroup of $K_{0}\left(C_{j}\right)$ containing $K_{0}\left(p_{j}\right)$ and isomorphic to Z. The choice of k_{j} below will ensure that the dimension of both $\phi_{j}^{1}(q)$ and $\phi_{j}^{0}(q)$ is at least half of the largest dimension of any $X_{i, j}$ over each connected component of Y_{j}. By Theorem 8.1.5 of $[\mathrm{H}], \phi_{j}^{1}(q)$ and $\phi_{j}^{0}(q)$ are thus equivalent (as they have the same K_{0} class).

Let us now specify the projection $p_{1} \in C_{1}$. Let $\xi_{q_{i}}$ be a complex line bundle over $D_{q_{i}}$ with euler class a generator of $H^{2}\left(D_{q_{i}}\right)=Z / q_{i} Z$. Such bundles are known to exist [R-V]. Let $\omega_{q_{i}}=\xi_{q_{i}}^{\otimes\left(q_{i}-1\right)}$. Since q_{i} and m_{i} are coprime for each $i \in\{1, \ldots, N\}$, there exist integers a_{i} and b_{i} such that $a_{i} q_{i}+b_{i} m_{i}=1$. Set $g_{i, 1}=a_{i}\left[\theta_{q_{i}}\right]+b_{i}\left[\omega_{q_{i}}^{\times m_{i}}\right]$ in $K^{0}\left(D_{q_{i}}^{\times\left(q_{i}-1\right) m_{i}}\right)=K_{0}\left(C\left(D_{q_{i}}^{\times\left(q_{i}-1\right) m_{i}}\right)([\cdot]\right.$ denotes the stable isomorphism class of a vector bundle, and θ_{d} is the trivial vector bundle of fibre dimension d). Let ξ denote the Hopf line bundle over S^{2}, and put $g_{N+1,1}=\left[\xi^{\times L+1}\right]-\left[\theta_{1}\right]$. Finally, let $g_{1}=\left(\bigoplus_{i=1}^{N} L \cdot g_{i, 1}\right) \oplus g_{N+1,1}$. Let p_{1} be a projection whose K_{0} class is a multiple of g_{1}, and whose dimension is both coprime to each q_{i} and larger than half the largest dimension found amongst the $X_{i, 1}$.

It follows from [R-V] that the ordered group $\left\langle\left\langle g_{i, 1}\right\rangle,\left\langle g_{i, 1}\right\rangle \cap K_{0}^{+}\left(C\left(X_{i, 1}\right)\right)\right\rangle$ is isomorphic to $\left\langle Z,\left\langle q_{i}, m_{i}\right\rangle\right\rangle$ for each $i \in\{1, \ldots, N\}$. It is shown in [V] that $\left\langle\left\langle g_{N+1,1}\right\rangle,\left\langle g_{N+1,1}\right\rangle \cap K_{0}^{+}\left(C\left(X_{N+1,1}\right)\right)\right\rangle$ is isomorphic to $\langle Z,\{0,2,3,4, \ldots\}\rangle$. We will now compute the order structure on $\left\langle g_{1}\right\rangle$ in $K_{0}\left(C\left(Y_{1}\right)\right) \cdot K_{0}\left(C\left(Y_{1}\right)\right)$ is the direct sum of the $K_{0}\left(C\left(X_{i, 1}\right)\right)$ equipped with the direct sum order (an element x of $K_{0}\left(C\left(Y_{1}\right)\right)$ is positive if and only if the restriction of x to each of the direct summands $K_{0}\left(C\left(X_{i, 1}\right)\right)$ is positive). Thus a multiple $n \cdot g_{1}$ of g_{1} is positive if and only if $n L \cdot g_{i, 1} \in\left\langle q_{i}, m_{i}\right\rangle \cdot g_{i, 1}$ for each $i \in\{1, \ldots, N\}$ and $n>1$. Since we are only interested in perforated order structures, the element g_{1} itself will never be positive. Thus if $n \cdot g_{1}$ is to be positive, n must be at least two. This fact renders moot the requirement that n be larger than one. Returning to the conditions involving $g_{1,1}, \ldots, g_{N, 1}$, we may drop the $g_{i, 1}$'s altogether, resulting in the condition

$$
n L \in\left\langle q_{i}, m_{i}\right\rangle, \quad i \in\{1, \ldots, N\}
$$

which is equivalent to the condition

$$
n L \in \bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle
$$

Dividing both sides of the above equation by L and intersecting the right hand side with the integers (indicating that n must be an integer) we have

$$
n \in \frac{1}{L}\left(\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle\right) \cap Z
$$

as desired.
We now wish to specify the maps $\gamma_{j}: C_{j} \rightarrow C_{j+1}$ for each $j \in N$. First we recall that for a connected, compact Hausdorff space X we have $C\left(X^{\times n}\right)=C(X)^{\otimes n}$. Consider the maps

$$
\gamma_{i, j}^{\prime}:=(\mathrm{id} \otimes 1 \otimes \cdots \otimes 1) \oplus(1 \otimes \mathrm{id} \otimes 1 \otimes \cdots \otimes 1) \oplus \cdots \oplus(1 \otimes \cdots \otimes 1 \otimes \mathrm{id})
$$

from $C\left(X_{i, j}\right)$ to $M_{n_{j}}\left(C\left(X_{i, j+1}\right)\right)=M_{n_{j}}\left(C\left(X_{i, j}\right) \otimes \cdots \otimes C\left(X_{i, j}\right)\right)$, where 1 denotes the unit of $C\left(X_{i, j}\right)$, id denotes the identity function from $C\left(X_{i, j}\right)$ to $C\left(X_{i, j}\right)$, and $i \in$ $\{1, \ldots, N+1\}$.

Consider also the maps

$$
\beta_{i, j}^{\prime}:=1 \cdot e_{x_{i, j}}
$$

from $C\left(Y_{j}\right)$ to $C\left(Y_{j+1}\right)$ where $e_{x_{i, j}}$ denotes evaluation at the point $x_{i, j} \in X_{i, j}$, and 1 denotes the unit of $C\left(Y_{j+1}\right)$. Let us specify $x_{i, j}$ as the point in $X_{i, j}$ with all co-ordinates equal to a fixed point $x_{i, 1} \in X_{i, 1}$.

Let

$$
\gamma_{j}^{\prime}=\bigoplus_{i=1}^{N+1} \gamma_{i, j}^{\prime}
$$

where the direct sum is to be understood as a direct sum over the connected components of Y_{j}, resulting in a map from $C\left(Y_{j}\right)$ to $M_{n_{j}}\left(C\left(Y_{j+1}\right)\right)$.

Let us define γ_{j} inductively to be the map from C_{j} to $C\left(Y_{j+1}\right) \otimes M_{N+2}(K)$ consisting of the direct sum of $N+2$ maps. For the first map, take the restriction to $C_{j} \subseteq C\left(Y_{j}\right) \otimes K$ of the tensor product of γ_{j}^{\prime} with the identity map from K to K. The remaining $N+1$ maps are obtained as follows: for each $i \in\{1, \ldots, N+1\}$, compose the map ϕ_{j}^{1} with the direct sum of η_{j} copies of the tensor product of $\beta_{i, j}^{\prime}$ with the identity from K to K (restricted to $D_{j} \subseteq C\left(Y_{j}\right) \otimes K$), where η_{j} is to be specified. The induction consists in first considering the case $i=1$ (as p_{1} has already been chosen)), then setting then setting $p_{2}=\gamma_{1}\left(p_{1}\right)$, so that C_{2} is specified as the cut-down of $C\left(Y_{2}\right) \otimes M_{N+2}(K)$, and continuing in this way.

With $\beta_{j}: D_{j} \rightarrow C_{j+1}$ taken to be the restriction to $D_{j} \subseteq C\left(Y_{j}\right) \otimes M_{N+1}(K)$ of $\bigoplus_{i=1}^{N+1} \beta_{i, j}^{\prime} \otimes \mathrm{id}$ we have, by construction, that $\beta_{j} \phi_{j}^{1}$ is a direct summand of γ_{j} —and, furthermore, the second direct summand and β_{j} map into orthogonal blocks (and hence orthogonal subalgebras)—as desired.

We will now need to verify that $p_{j}:=\gamma_{j-1} \cdots \gamma_{1}\left(p_{1}\right)$ has the following property: the set of all rational multiple of $K_{0}\left(p_{j}\right)$ in the ordered group $K_{0} C_{j}=K^{0} Y_{j}$ should be isomorphic as a sub ordered group to Z with positive cone

$$
\frac{1}{L}\left(\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle\right) \cap Z
$$

This property has been established in the case $j=1$. It remains to show that the map γ_{j} induces an order isomorphism from the rational multiples of $K_{0}\left(p_{j}\right)$ to the rational multiples of $K_{0}\left(p_{j+1}\right)$.

We will first show that γ_{j} gives a group isomorphism between the groups in general. To establish this fact we require that $g_{2}:=\gamma_{1}\left(g_{1}\right)$ generate a maximal free cyclic subgroup of $K_{0} C_{2}, g_{3}:=\gamma_{2}\left(g_{2}\right)$ generate a maximal free cyclic subgroup of $K_{0} C_{3}$, and so on. This amounts to showing (in the case of g_{2}) that g_{2} is not a positive integral multiple of any other element in $K_{0} C_{2}=K^{0} Y_{2}$. Since Y_{2} is a disjoint union of connected components, we may consider the restriction of $g_{i, 2}$ of g_{2} to each component $X_{i, 2}$ of Y_{2}. If g_{2} is a positive integral multiple of some other element of $K^{0} Y_{2}$, say $g_{2}=l \cdot h$, then (denoting by h_{i} the restriction of h to $X_{i, 2}$) we have that $g_{i, 2}=l \cdot h_{i}$ for each $i \in\{1, \ldots, N\}$. Thus in order to show that g_{2} is not a positive integral multiple of some $h \in K^{0} Y_{2}$, it is enough to establish this fact for one of the $g_{i, 2}$.

Let $g_{i, j+1}$ denote the restriction to $X_{i, j+1}$ of $\gamma_{j}\left(g_{j}\right)$.

Consider $g_{N+1,2}$, recalling that $X_{N+1,2}$ is a product of spheres. We reproduce here the proof found in [E-V] which establishes the desired maximality condition for $g_{N+1,2}$. Note that $g_{N+1,1}$ generates a maximal free cyclic subgroup of $K^{0}\left(X_{N+1,1}\right)$ (since $g_{N+1,1}$ is of the form $L \oplus 1 \oplus a_{3} \oplus \cdots \oplus a_{2^{L+1}} \in Z^{\left(2^{L+1}\right)}=K^{0}\left(S^{2 \times L+1}\right)$. Also note that $g_{N+1,1}$ is independent of $K_{0}\left(1_{X_{N+1,1}}\right)$ in $K^{0} X_{N+1,1}$ (i.e. the free cyclic subgroups generated by these K_{0} classes have zero intersection). Since $K^{0} X_{N+1,1}$ is torsion free and $K^{1} X_{N+1,1}=0$ we have (by the Künneth theorem) that $K^{0} X_{N+1,2}$ is isomorphic as a group to the tensor product of n_{1} copies of $K^{0} X_{N+1,1}$. Note that the map id $\otimes \operatorname{dim} \otimes \cdots \otimes \operatorname{dim}$, where id denotes the identity map on $K^{0} X_{N+1,1}$ and $\operatorname{dim}: K^{0} X_{N+1,1} \rightarrow Z$ the dimension function, takes $K^{0} X_{N+1,2}=K^{0} X_{N+1,1} \otimes \cdots \otimes$ $K^{0} X_{N+1,1}$ onto $K^{0} X_{N+1,1}$ and takes $g_{N+1,2}$ onto $g_{N+1,1}$ plus a multiple of $K_{0}\left(1_{X_{N+1,1}}\right)$. If $g_{N+1,2}$ is a multiple of some other element of $K^{0} X_{N+1,2}$, say $g_{N+1,2}=k \cdot g$, then it follows that $g_{N+1,1}$ plus a multiple of $K_{0}\left(1_{X_{N+1,1}}\right)$ is k times the image of g. Then, modulo the subgroup of $K^{0} X_{N+1,1}$ generated by $K_{0}\left(1_{X_{N+1,1}}\right), g_{N+1,1}$ is k times some element (the image of g). But the subgroup of $K^{0} X_{N+1,1}$ generated by $g_{N+1,1}$ has zero intersection with the subgroup generated by $K_{0}\left(1_{X_{N+1,1}}\right)$, and so its image modulo $K_{0}\left(1_{X_{N+1,1}}\right)$ is still isomorphic to Z, and has the image of $g_{N+1,1}$ as its generator. This shows that $k= \pm 1$, as desired.

We have now shown that $g_{N+1,2}$ has the same properties as $g_{N+1,1}$ used above (namely, that $g_{N+1,2}$ generates a maximal subgroup of rank one which has zero intersection with the subgroup generated by $\left.K_{0}\left(1_{X_{N+1,2}}\right)\right)$. We may thus deduce as above that $\gamma_{2}\left(g_{N+1,2}\right)$ generates a maximal subgroup of $K^{0} X_{N+1,3}$ of rank one, i.e., γ_{2} gives a group isomorphism between the subgroups under consideration (namely, Ker b_{0} restricted to $X_{N+1,2}$ and $X_{N+1,3}$, respectively). Clearly, we may proceed in this way to establish that γ_{j} gives a group isomorphism for every j between $\operatorname{Ker} b_{0}$ at the j-th and $(j+1)$-st stages, restricted to $X_{N+1, j}$ and $X_{N+1, j+1}$, respectively.

Let us now show that, for each j, if n_{j} is chosen sufficiently large, then γ_{j} restricted to $\operatorname{Ker} b_{0}$ is an order isomorphism between the subgroups $\operatorname{Ker} b_{0}=Z g_{j}$ and $\operatorname{Ker} b_{0}=$ $Z g_{j+1}$ of $K^{0} Y_{j}$ and $K^{0} Y_{j+1}$ with the relative order, where $g_{j}=\gamma_{j-1} \cdots \gamma_{1}\left(g_{1}\right)$. To this end it will serve us to recall the details of $[\mathrm{R}-\mathrm{V}]$ concerning the proof of the fact that $\left(Z \cdot g_{i, 1}\right)^{+}=\left\langle q_{i}, m_{i}\right\rangle$ for $i \in\{1, \ldots, N\}$.

For $i \neq N+1, g_{i, 1}=a_{i}\left[\theta_{q_{i}}\right]+b_{i}\left[\omega_{q_{i}}^{\times m_{i}}\right]$, where $\omega_{q_{i}}$ is a non-trivial line bundle with the property that $\bigoplus_{l=1}^{q_{i}} \omega_{q_{i}} \simeq \theta_{q_{i}}$. Thus

$$
\begin{aligned}
q_{i} \cdot g_{i, 1} & =a_{i} q_{i}\left[\theta_{q_{i}}\right]+b_{i} q_{i}\left[\omega_{q_{i}}^{\times m_{i}}\right] \\
& =a_{i} q_{i}\left[\theta_{q_{i}}\right]+b_{i}\left[\bigoplus_{l=1}^{q_{i}} \omega_{q_{i}}^{\times m_{i}}\right] \\
& =a_{i} q_{i}\left[\theta_{q_{i}}\right]+b_{i}\left[\theta_{q_{i} m_{i}}\right] \\
& =a_{i} q_{i}\left[\theta_{q_{i}}\right]+b_{i} m_{i}\left[\theta_{q_{i}}\right] \\
& =\left(a_{i} q_{i}+b_{i} m_{i}\right)\left[\theta_{q_{i}}\right] \\
& =\left[\theta_{q_{i}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
m_{i} \cdot g_{i, 1} & =a_{i} m_{i}\left[\theta_{q_{i}}\right]+b_{i} m_{i}\left[\omega_{q_{i}}^{\times m_{i}}\right] \\
& =a_{i}\left[\theta_{q_{i} m_{i}}\right]+b_{i} m_{i}\left[\omega_{q_{i}}^{\times m_{i}}\right] \\
& =a_{i}\left[\bigoplus_{l=1}^{q_{i}} \omega_{q_{i}}^{\times m_{i}}\right]+b_{i} m_{i}\left[\omega_{q_{i}}^{\times m_{i}}\right] \\
& =a_{i} q_{i}\left[\omega_{q_{i}}^{\times m_{i}}\right]+b_{i} m_{i}\left[\omega_{q_{i}}^{\times m_{i}}\right] \\
& =\left(a_{i} q_{i}+b_{i} m_{i}\right)\left[\omega_{q_{i}}^{\times m_{i}}\right] \\
& =\left[\omega_{q_{i}}^{\times m_{i}}\right]
\end{aligned}
$$

since a_{i} and b_{i} were chosen so that $a_{i} q_{i}+b_{i} m_{i}=1$. This shows that both $q_{i} \cdot g_{i, 1}$ and $m_{i} \cdot g_{i, 1}$ are positive element of $K^{0}\left(X_{i, 1}\right)$. The subsemigroup of the positive integers $S_{i, 1}$ with the property that $s \cdot g_{i, 1} \in K^{0}\left(X_{i, 1}\right)^{+}$if and only if $s \in S_{i, 1}$ thus contains the subsemigroup $\left\langle q_{i}, m_{i}\right\rangle$ of the positive integers.

Lemma 3.1 If S is a subsemigroup of the positive integers containing the coprime integers k and l, and if S does not contain the integer $k l-k-l$, then $S=\langle k, l\rangle$ (the subsemigroup of the positive integers generated by k and l).

The above lemma (whose proof can be found in [R-V]) has the following consequence: in order to show that $\left\langle\left\langle g_{i, 1}\right\rangle,\left\langle g_{i, 1}\right\rangle \cap K^{0}\left(X_{i, 1}\right)^{+}\right\rangle$is isomorphic as an ordered group to $\left\langle Z,\left\langle q_{i}, m_{i}\right\rangle\right\rangle$, it suffices to establish the non-positivity of $\left(\left(q_{i}-1\right) m_{i}-q_{i}\right)$. $g_{i, 1}(i \neq N+1)$. Using the expressions for $q_{i} \cdot g_{i, 1}$ and $m_{i} \cdot g_{i, 1}$ above, we have that $\left(\left(q_{i}-1\right) m_{i}-q_{i}\right) \cdot g_{i, 1}=\left(q_{i}-1\right)\left[\omega_{q_{i}}^{\times m_{i}}\right]-\left[\theta_{q_{i}}\right]$.

Consider a difference of stable isomorphism classes of vector bundles $[\xi]-\left[\theta_{l}\right]$ over a connected space $X(l \neq 0)$, and suppose that this difference is in fact equal to $[\eta]$ for some vector bundle η over X. Then, by definition, $\xi \oplus \theta_{r} \equiv \eta \oplus \theta_{r+l}$ for some natural number r. Taking the Chern class of both sides of the preceding equation yields $c(\xi)=c(\eta)$, where $c(\cdot)$ denotes the Chern class of a vector bundle. The $\operatorname{dim}(\xi)$-th Chern class, (or Euler class, if ξ is a sum of line bundles) of ξ must be zero in this case, as the n-th Chern class of any vector bundle of dimension less than n is zero $[\mathrm{H}]$. Thus choosing ξ to be a vector bundle with non-zero Euler class ensures that the difference $[\xi]-\left[\theta_{l}\right]$ with $l \neq 0$ is not positive in $K^{0}(X)$.

In $[\mathrm{R}-\mathrm{V}]$ it is shown that the Euler class of the vector bundle $\bigoplus_{l=1}^{q_{i}-1} \omega_{q_{i}}^{\times m_{i}}$ (with corresponding stable isomorphism class $\left.\left(q_{i}-1\right)\left[\omega_{q_{i}}^{\times m_{i}}\right]\right)$ is non-zero. In fact, their proof establishes that the Euler class of the vector bundle $\bigoplus_{l=1}^{q_{i}-1} \omega_{q_{i}}^{\times m_{i} n}$ over $X_{i, 1}^{\times n}$ is non-zero for any natural number n. Thus $\left(q_{i}-1\right)\left[\omega_{q_{i}}^{\times m_{i}}\right]-\left[\theta_{q_{i}}\right]$ is non-positive in $K^{0}\left(X_{i, 1}\right)$, and

$$
\left\langle\left\langle g_{i, 1}\right\rangle,\left\langle g_{i, 1}\right\rangle \cap K^{0}\left(X_{i, 1}\right)^{+}\right\rangle \equiv\left\langle Z,\left\langle q_{i}, m_{i}\right\rangle\right\rangle, \quad i \in\{1, \ldots, N\}
$$

as desired. The fact that

$$
\left\langle\left\langle g_{N+1,1}\right\rangle,\left\langle g_{N+1,1}\right\rangle \cap K^{0}\left(X_{N+1,1}\right)^{+}\right\rangle \equiv\langle Z,\{0,2,3,4, \ldots\}\rangle
$$

is established in [V].
Returning now to the matter of verifying that γ_{j} (with an appropriate choice of n_{j}) restricted to Ker b_{0} is an order isomorphism as described above, note that for a complex vector bundle π over $X_{i, 1}, i \in\{1, \ldots, N+1\}$ we have that $K_{0}\left(\gamma_{j-1} \cdots \gamma_{1}\right)([\pi])=$ $\left[\pi^{\times n_{1} \cdots n_{j-1}}\right]+\left[\theta_{l}\right]$, some $l \in N$. Since all induced maps on K_{0} are positive, we have that

$$
\left\{g_{j} N\right\}^{+} \supseteq g_{j}\left\{\frac{1}{L}\left(\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle\right) \cap Z\right\}
$$

In order to show that the right and left hand sides of the above equation are in fact equal, we need only show that for each j and each $i \in\{1, \ldots, N\}$ the group $\left\langle g_{i, j}\right\rangle$ is isomorphic as an ordered group to $\left\langle g_{i, 1}\right\rangle$ (whose order structure has already been established).

Since the map $\gamma_{j-1} \cdots \gamma_{1}$ is positive, we have that for any positive multiple $l g_{1}$ of g_{1} (necessarily a positive multiple of $g_{i, 1}$ for each i), the restriction of $l g_{j}$ to $X_{i, j}$ (i.e., $\left.l g_{i, j}\right)$ is also positive. Thus the positive multiples of $g_{i, j}$ considered as a subset of the integers contain the positive multiples of $g_{i, 1}$. Now consider $\left(\left(q_{i}-1\right) m_{i}-q_{i}\right) g_{i, j}=$ $\left(q_{i}-1\right)\left[\omega_{q_{i}}^{\times m_{i} n_{1} \cdots n_{j-1}}\right]-\left[\theta_{l_{i, j}}\right]$. If $l_{i, j}$, through judicious choice of the n_{j}, can be made positive, then the multiple of $g_{i, j}$ in question will be non-positive. This will establish the desired order isomorphism.

In order to prove the positivity of $l_{i, j}$ we will proceed by induction. Assume that $l_{i, k}$ is positive for all $k<j$ and all i. Now

$$
\begin{aligned}
\left(\left(q_{i}-1\right)-m_{i}\right) g_{i, j} & =\left.\left(\left(q_{i}-1\right)-m_{i}\right) \gamma_{j-1}\left(g_{j-1}\right)\right|_{X_{i, j}} \\
& =\left[\omega_{q_{i}}^{\times m_{i} n_{1} \cdots n_{j-1}}\right]-\left[\theta_{l_{i, j}}\right]
\end{aligned}
$$

where

$$
l_{i, j}=l_{i, j-1} n_{j-1}-(N+1) \eta_{j-1} k_{j-1} \operatorname{dim}\left(p_{j-1}\right) \operatorname{dim}\left(\left(\left(q_{i}-1\right)-m_{i}\right) g_{i, j-1}\right)
$$

Recall that k_{j-1} and p_{j-1} have already been chosen; we may also suppose that η_{j-1} has already been chosen in the manner to be specified below, which does not depend on the choice of n_{j-1}. Thus $l_{i, j}$ is easily seen to be positive for n_{j-1} sufficiently large. Choose n_{j-1} to be large enough that $l_{i, j}$ is positive for each i, and such that it is coprime to each $q_{i}, i \in\{1, \ldots, N\}$. This choice establishes the desired order isomorphism between $\operatorname{Ker} b_{0}$ at the $(j-1)$-st and j-th stages with the relative order.

Note that $\gamma_{j}-\beta_{j} \phi_{j}^{1}$ takes a full element of C_{j} into a full element of C_{j+1} and so takes C_{j} into a subalgebra of C_{j+1} not contained in any proper closed two-sided ideal (as required in the hypotheses of Theorem 2.4). (C_{j} is unital, and any non-zero projection of C_{j+1} generates it as a closed two sided ideal.)

Let us now construct maps δ_{j} and δ_{j}^{\prime} from D_{j} to D_{j+1} with orthogonal images such that

$$
\begin{aligned}
\delta_{j} \phi_{j}^{0}+\delta_{j}^{\prime} \phi_{j}^{1} & =\phi_{j+1}^{0} \gamma_{j}, \\
\delta_{j}^{\prime} \phi_{j}^{0}+\delta_{j} \phi_{j}^{1} & =\phi_{j+1}^{1} \gamma_{j},
\end{aligned}
$$

and $\phi_{j+1}^{0} \beta_{j}$ and $\phi_{j+1}^{1} \beta_{j}$ are direct summands of δ_{j}^{\prime} and δ_{j}, respectively. To achieve this end we will modify ϕ_{j+1}^{0} and ϕ_{j+1}^{1} by inner automorphisms. As stated above, these modifications will not affect K_{0}.

Now notice that (up to the order of direct summands, with μ_{j} denoting the direct sum over i of the $\mu_{i, j}$) we have the following string of equalities:

$$
\begin{aligned}
\mu_{j+1} \gamma_{j} & =\bigoplus_{i=1}^{N+1} \mu_{i, j+1} \gamma_{j} \\
& =\bigoplus_{i=1}^{N+1} p_{j+1} \otimes e_{x_{i, j+1}} \gamma_{j} \\
& =\bigoplus_{i=1}^{N+1} \gamma_{j}\left(p_{j}\right) \otimes e_{x_{i, j+1}} \gamma_{j} \\
& =\bigoplus_{i=1}^{N+1} \gamma_{j}\left(p_{j}\right) \otimes\left(n_{j} e_{x_{i, j}} \oplus\left(\bigoplus_{l=1}^{N+1} \eta_{j} k_{j} \operatorname{dim}\left(p_{j}\right) e_{x_{l, j}}\right)\right) \\
& =\bigoplus_{i=1}^{N+1} \gamma_{j}\left(p_{j}\right) \otimes\left(n_{j}+(N+1) \eta_{j} k_{j} \operatorname{dim}\left(p_{j}\right)\right) e_{x_{i, j}} \\
& =\bigoplus_{i=1}^{N+1} \operatorname{mult}\left(\gamma_{j}\right) \gamma_{j}\left(p_{j} \otimes e_{x_{i, j}}\right) \\
& =\operatorname{mult}\left(\gamma_{j}\right) \gamma_{j} \mu_{j}
\end{aligned}
$$

Similarly (with ν_{j} being the direct sum over i of the $\nu_{i, j}$),

$$
\begin{aligned}
\nu_{j+1} \gamma_{j} & =\bigoplus_{i=1}^{N+1} \gamma_{j} \otimes 1_{\operatorname{dim}\left(p_{j+1}\right)} \\
& =\bigoplus_{i=1}^{N+1} \operatorname{mult}\left(\gamma_{j}\right) \gamma_{j} \otimes 1_{\operatorname{dim}\left(p_{j}\right)} \\
& =\bigoplus_{i=1}^{N+1} \operatorname{mult}\left(\gamma_{j}\right) \gamma_{j} \nu_{i, j} \\
& =\operatorname{mult}\left(\gamma_{j}\right) \gamma_{j} \nu_{j}
\end{aligned}
$$

Note that mult $\left(\gamma_{j}\right)$ is well defined, as the dimension of $p_{i, j}$ is independent of i.
Let us take δ_{j} and δ_{j}^{\prime} to be the direct sum of r_{j} and s_{j} copies of γ_{j}, respectively, where r_{j} and s_{j} are to be specified. The condition, for $t=0,1$,

$$
\delta_{j} \phi_{j}^{t}+\delta_{j}^{\prime} \phi_{j}^{1-t}=\phi_{j+1}^{t} \gamma_{j}
$$

understood up to unitary equivalence (in particular, up to the order of direct summands) then becomes the condition

$$
\begin{aligned}
r_{j} \gamma_{j}\left(l_{j}^{t} \mu_{j}+\left(k_{j}-l_{j}^{t}\right) \nu_{j}\right)+s_{j} \gamma_{j} & \left(l_{j}^{t-1} \mu j+\left(k_{j}-l_{j}^{t-1}\right) \nu_{j}\right) \\
& =\left(l_{j+1}^{t} \mu_{j+1}+\left(k_{j+1}-l_{j+1}^{t}\right) \nu_{j+1}\right) \gamma_{j}
\end{aligned}
$$

also up to unitary equivalence. Since $K_{0}\left(\nu_{j}\right)$ is injective, it is independent of $K_{0}\left(\mu_{j}\right)$. The above equation is thus equivalent to the two equations

$$
\begin{gathered}
r_{j} l_{j}^{t}+s_{j} l_{j}^{1-t}=\operatorname{mult}\left(\gamma_{j}\right) l_{j+1}^{t} \\
\left(r_{j}+s_{j}\right) k_{j}=\operatorname{mult}\left(\gamma_{j}\right) k_{j+1}
\end{gathered}
$$

Let us choose $r_{j}=\left(p-\left\lfloor\frac{p}{2}\right\rfloor\right) \operatorname{mult}\left(\gamma_{j}\right)$ and $s_{j}=\left\lfloor\frac{p}{2}\right\rfloor \operatorname{mult}\left(\gamma_{j}\right)$, so that

$$
k_{j+1}=p k_{j}
$$

and

$$
l_{j+1}^{t}=\left(p-\left\lfloor\frac{p}{2}\right\rfloor\right) l_{j}^{t}+\left\lfloor\frac{p}{2}\right\rfloor l_{j}^{1-t}
$$

The integer p should be a prime number coprime to each q_{i} having further the property that it is greater than the largest positive integer not contained in the subsemigroup of the positive integers given by

$$
\left(\bigcap_{i=1}^{N}\left\langle q_{i}, m_{i}\right\rangle\right) \cap Z .
$$

Take $k_{1}=p, l_{1}^{1}=\left(p-\left\lfloor\frac{p}{2}\right\rfloor\right)$, and $l_{1}^{0}=\left\lfloor\frac{p}{2}\right\rfloor$. These choices yield $k_{j}=p^{j}$ and $l_{j}^{1}-l_{j}^{0}=1$ for all j. Note that $l_{j}^{1}-l_{j}^{0}$ is both non-zero and coprime to each q_{i}, as required above. In addition, k_{j} thus chosen is large enough to ensure that $K_{0} A_{j}$ is isomorphic as an ordered group to its image in $K_{0} C_{j}$, with the relative order, also required above.

Next let us show that, up to unitary equivalence preserving the equations $\delta_{j} \phi_{j}^{t}+$ $\delta_{j}^{\prime} \phi_{j}^{1-t}=\phi_{j+1}^{t} \gamma_{j}, \phi_{j+1}^{0} \beta_{j}$ is a direct summand of $\delta_{j}^{\prime}=\left\lfloor\frac{p}{2}\right\rfloor \operatorname{mult}\left(\gamma_{j}\right)$, and $\phi_{j+1}^{1} \beta_{j}$ is a direct summand of $\delta_{j}=\left(p-\left\lfloor\frac{p}{2}\right\rfloor\right)$ mult $\left(\gamma_{j}\right) \gamma_{j}$.

Note that $\phi_{j+1}^{t} \beta_{j}$ is the direct sum of l_{j+1}^{t} copies of $p_{j+1} \otimes \beta_{j}$ and $\left(k_{j+1}-l_{j+1}^{t}\right)$. $\operatorname{dim}\left(p_{j+1}\right)$ copies of β_{j}, whereas δ_{j}^{\prime} and δ_{j} contain, respectively, $\eta_{j}\left\lfloor\frac{p}{2}\right\rfloor$ mult γ_{j} and $\eta_{j}\left(p-\left\lfloor\frac{p}{2}\right\rfloor\right)$ mult γ_{j} copies of β_{j}. By Theorem 8.1.2 of $[\mathrm{H}]$, a trivial projection of dimension at least $\operatorname{dim}\left(p_{j+1}\right)+\operatorname{maxdim}\left(Y_{j+1}\right)$ (where maxdim $\left(Y_{j+1}\right)=$ $\left.\max _{i=1}^{N+1} / \operatorname{dim}\left(X_{i, j+1}\right)\right)$ over each component of Y_{j+1} contains a copy of p_{j+1}. Therefore $\operatorname{dim}\left(p_{j+1}\right)+\operatorname{maxdim}\left(Y_{j+1}\right)$ copies of β_{j} contain a copy of $p_{j+1} \otimes \beta_{j}$. It follows that $k_{j+1}\left(2 \operatorname{dim}\left(p_{j+1}\right)+\operatorname{dim}\left(X_{j+1}\right)\right)$ copies of β_{j} contain a copy of $\phi_{j+1}^{t} \beta_{j}$ for $t=0,1$. Here a copy of a given map from D_{j} to D_{j+1} is taken to be a map obtained from the original by way of a partial isometry in D_{j+1} with initial projection the image of the unit.

Note that

$$
\begin{aligned}
k_{j+1}\left(2 \operatorname{dim}\left(p_{j+1}\right)+\operatorname{maxdim}\left(Y_{j+1}\right)\right) & =p k_{j}\left(2 \operatorname{mult}\left(\gamma_{j}\right)\right) \operatorname{dim}\left(p_{j}\right)+n_{j} \operatorname{maxdim}\left(Y_{j}\right) \\
& \leq p k_{j}\left(2 \operatorname{dim}\left(p_{j}\right)+\operatorname{maxdim}\left(Y_{j}\right)\right) \operatorname{mult}\left(\gamma_{j}\right)
\end{aligned}
$$

Since $k_{j}, \operatorname{dim}\left(p_{j}\right)$, and maxdim $\left(Y_{j}\right)$ have already been specified and are independent of n_{j} put

$$
\eta_{j}=p k_{j}\left(2 \operatorname{dim}\left(p_{j}\right)+\operatorname{maxdim}\left(Y_{j}\right)\right)
$$

With this η_{j}, η_{j} mult $\left(\gamma_{j}\right)$ copies of β_{j} contain a copy of $\phi_{j+1}^{t} \beta_{j}$ for $t=0,1$. Thus δ_{j}^{\prime} and δ_{j} contain copies of $\phi_{j+1}^{0} \beta_{j}$ and $\phi_{j+1}^{1} \beta_{j}$, respectively.

With this choice of η_{j}, let us show that for each $t=0,1$ there exists a unitary $u_{t} \in D_{j+1}$ commuting with the image of ϕ_{j+1}^{t}, i.e., with

$$
\left(\operatorname{Ad} u_{t}\right) \phi_{j+1}^{t} \gamma_{j}=\phi_{j+1}^{t} \gamma_{j}
$$

such that $\left(\operatorname{Ad} u_{0}\right) \phi_{j+1}^{0} \beta_{j}$ is a direct summand of δ_{j}^{\prime} and $\left(\operatorname{Ad} u_{1}\right) \phi_{j+1}^{1} \beta_{j}$ is a direct summand of δ_{j}. In other words, for each $t=0,1$, we must show that the partial isometry constructed in the preceding paragraph, producing a copy of $\phi_{j+1}^{t} \beta_{j}$ inside δ_{j}^{\prime} or δ_{j} may be chosen in such a way that it extends to a unitary element of D_{j+1}-which in addition commutes with the image of $\phi_{j+1}^{t} \gamma_{j}$.

Consider the case $t=0$. The case $t=1$ is, for all intents and purposes, the same. First we will show that the partial isometry in D_{j+1} transforming $\phi_{j+1}^{0} \beta_{j}$ into a direct summand of δ_{j}^{\prime} may be chosen to lie in the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$. Note that the unit of the image of $\phi_{j+1}^{0} \beta_{j}$-the initial projection of the partial isometrylies in the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$. Indeed, this projection is the image by $\phi_{j+1}^{0} \beta_{j}$ of the unit of D_{j}, which, by construction, is the image by ϕ_{j}^{1} of the unit of C_{j}. The property that $\beta_{j} \phi_{j}^{1}$ is a direct summand of γ_{j} implies in particular that the image by $\beta_{j} \phi_{j}^{1}$ of the unit of C_{j} commutes with the image of γ_{j}. The image by $\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$ of the unit of C_{j} (i.e., the unit of the image of $\phi_{j+1}^{0} \beta_{j}$) therefore commutes with the image of $\phi_{j+1}^{0} \gamma_{j}$, as claimed.

The final projection of the partial isometry also commutes with the image of $\phi_{j+1}^{0} \gamma_{j}$. Indeed, it is the unit of the image of a direct summand of δ_{j}^{\prime}, and since D_{j} is unital it is the image of the unit of D_{j} by this direct summand. Since C_{j} and ϕ_{j}^{0} are unital, the projection in question is the image of the unit of C_{j} by a direct summand of $\delta_{j}^{\prime} \phi_{j}^{1}$, which is in turn a direct summand of $\phi_{j+1}^{0} \gamma_{j}$. Thus the projection in question is the image of the unit of C_{j} by a direct summand of $\phi_{j+1}^{0} \gamma_{j}$, and commutes with the image of $\phi_{j+1}^{0} \gamma_{j}$.

Note that both direct summands of $\phi_{j+1}^{0} \gamma_{j}$ (namely $\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$ and a copy of it) are direct sums of $N+1$ maps, each of which factors through the evaluation of C_{j} at $x_{i, j}$ for some i, and are thus contained in the largest such direct summand of $\phi_{j+1}^{0} \gamma_{j}$, say π_{j}. This largest direct summand is seen to exist by inspection of the construction of $\phi_{j+1}^{0} \gamma_{j}$. Write $\pi_{j}=\bigoplus_{i=1}^{N+1} \pi_{i, j}$, where $\pi_{i, j}$ denotes the direct summand of π_{j} that
factors through the evaluation of C_{j} at $x_{i, j}$. Since both of the projections under consideration (the images of the unit of C_{j} by two different copies of $\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$) are less than $\pi_{j}(1)$, to show that they are unitarily equivalent in the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$ it is sufficient to show that they are unitarily equivalent in the commutant of the image of π_{j} in $\pi_{j}(1) D_{j+1} \pi_{j}(1)$. In fact, since any partial unitary defined only on the cut-down of D_{j+1} by $\pi_{i, j}(1)$ for some $i \in\{1, \ldots, N+1\}$ can be extended to a unitary on D_{j+1} equal to one inside the complement of $\pi_{i, j}(1)$, the problem of proving the unitary equivalence of the two projections in question is reduced to the problem of proving their unitary equivalence in the commutant of the image of $\pi_{i, j}$ in $\pi_{i, j}(1) D_{j+1} \pi_{i, j}(1)$. This image is isomorphic to $M_{\operatorname{dim}\left(p_{j}\right)}(C)$.

By construction, the two projections in question are Murray-von Neumann equivalent in D_{j+1}, and thus have the same class in $K^{0}\left(Y_{j+1}\right)$. Note that the dimension of these projections is $(N+1)^{2}\left(\operatorname{dim}\left(p_{j}\right)\right)^{2} \operatorname{dim}\left(p_{j+1}\right) k_{j} k_{j+1}$, and the dimension of $\pi_{i, j}(1)$ is $l_{j+1}^{0} k_{j+1} \operatorname{dim}\left(p_{j+1}\right) \operatorname{dim}\left(p_{j}\right)\left(n_{j}+\eta_{j} k_{j} \operatorname{dim}\left(p_{j}\right)\right)$. Since the two projections in question commute with $\pi_{i, j}\left(C_{j}\right)$, to prove unitary equivalence in the commutant of $\pi_{i, j}\left(C_{j}\right)$ in $\pi_{i, j}(1) D_{j+1} \pi_{i, j}(1)$, it is sufficient to prove unitary equivalence of the product of these projections with a fixed minimal projection of $\pi_{i, j}\left(C_{j}\right)$, say e. Since $\operatorname{dim}\left(p_{j}\right)$ is coprime to q_{i} for each i, the products of the two projections with e will have the same class in $K^{0}\left(Y_{j+1}\right)$.

To prove that these projections are unitarily equivalent inside $e D_{j+1} e$, it is sufficient to establish that both they and their complements (inside e) are Murray-von Neumann equivalent. Since the two projections and their complements have the same class in $K^{0}\left(Y_{j+1}\right)$, we need only show that all four projections have dimension greater than $\frac{1}{2} \operatorname{maxdim}\left(Y_{j+1}\right)$. Then by Theorem 8.1.5 of [H], the two pairs of projections will be Murray-von Neumann equivalent, as desired.

Dividing the dimensions of the two projections (images of the unit of C_{j}) and $\pi_{j}(1)$ by the order of the matrix algebra $\left(\operatorname{dim}\left(p_{j}\right)\right)$, we find that the dimension of the first two projections is $\left((N+1) \operatorname{dim}\left(p_{j}\right)\right)^{2} k_{j} k_{j+1} \operatorname{mult}\left(\gamma_{j}\right)$ and the dimension of e is $l_{j+1}^{0} k_{j+1} \operatorname{mult}\left(\gamma_{j}\right) \operatorname{dim}\left(p_{j}\right)\left(n_{j}+\eta_{j} k_{j} \operatorname{dim}\left(p_{j}\right)\right)$. The dimension of the second pair of projections is thus mult $\left(\gamma_{j}\right) l_{j+1}^{0} k_{j+1} \operatorname{dim}\left(p_{j}\right)\left(n_{j}+\eta_{j} k_{j} \operatorname{dim}\left(p_{j}\right)-\right.$ $\left.k_{j} k_{j+1}\left((N+1) \operatorname{dim}\left(p_{j}\right)\right)^{2}\right)$. Recall that $\operatorname{dim}\left(p_{1}\right)>\operatorname{maxdim}\left(Y_{1}\right), \operatorname{dim}\left(p_{j+1}\right)=$ $\operatorname{mult}\left(\gamma_{j}\right) \operatorname{dim}\left(p_{j}\right), \operatorname{maxdim}\left(Y_{j+1}\right)=n_{j} \operatorname{maxdim}\left(Y_{j}\right)$, and that $\operatorname{mult}\left(\gamma_{j}\right) \geq n_{j}$ (for all j). These facts imply that $\operatorname{dim}\left(p_{j+1}\right) \geq \frac{1}{2} \operatorname{maxdim}\left(Y_{j+1}\right)$ (for all j). The fact that $k_{j+1} k_{j}$ is non-zero then implies the first inequality. The second inequality holds if

$$
\begin{aligned}
& l_{j+1}^{0} k_{j+1} \operatorname{dim}\left(p_{j}\right)\left(n_{j}+\eta_{j} k_{j} \operatorname{dim}\left(p_{j}\right)\right)-\left((N+1) \operatorname{dim}\left(p_{j}\right)\right)^{2} k_{j} k_{j+1} \\
& =\left(l_{j+1}^{0} \eta_{j}-(N+1)^{2}\right) k_{j} k_{j+1} \operatorname{dim}\left(p_{j}\right)^{2}+n_{j} l_{j+1}^{0} k_{j+1} \operatorname{dim}\left(p_{j}\right)
\end{aligned}
$$

is strictly bigger than $\operatorname{dim}\left(p_{j}\right)$. We may assume that p, and hence l_{j+1}^{0} have been chosen large enough to ensure the aforementioned inequality holds.

Thus the two projections in D_{j+1} under consideration are unitarily equivalent by a unitary in the commutant of the image of $\phi_{j+1}^{0} \gamma_{j}$. Replacing $\phi_{j+1}^{0} \gamma_{j}$ by its composition with the corresponding inner automorphism, we may assume that the two
projections in question are in fact equal. In other words, $\phi_{j+1}^{0} \beta_{j}$ is unitarily equivalent to the cut-down of δ_{j}^{\prime} by the projection $\phi_{j+1}^{0} \beta_{j}(1)$.

Consider the composition of the two maps above with $\phi_{j}^{1}\left(\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}\right.$ and the cutdown of $\delta_{j}^{\prime} \phi_{j}^{1}$ by the projection $\left.\phi_{j+1}^{0} \beta_{j}(1)\right)$. Both of these maps can be viewed as the cut-down of $\phi_{j+1}^{0} \gamma_{j}$ by the same projection ($\beta_{j} \phi_{j}^{1}$ is the cut-down of γ_{j} by $\beta_{j} \phi_{j}^{1}(1)$, and $\left.\phi_{j+1}^{0} \beta_{j}(1)=\phi_{j+1}^{0}\left(\beta_{j} \phi_{j}^{1}(1)\right)\right)$, so they are in fact the same map.

Now any unitary inside the cut-down of D_{j+1} by $\phi_{j+1}^{0} \beta_{j}(1)$ taking $\phi_{j+1} \beta_{j}$ into the cut-down of δ_{j}^{\prime} by this projection (such a unitary is known to exist) must commute with the image of $\phi_{j+1}^{0} \beta_{j} \phi_{j}^{1}$, and hence with the image of $\phi_{j+1}^{0} \gamma_{j}$. If we extend such a partial unitary to a unitary u_{j+1} in D_{j+1} equal to one inside the complement of $\phi_{j+1}^{0} \beta_{j}(1)$, then u_{j+1} will commute with the image of $\phi_{j+1}^{0} \gamma_{j}$ and transform $\phi_{j+1} \beta_{j}$ into the cut-down of δ_{j}^{\prime} by this projection, as desired.

Inspection will show that $\delta_{j}^{\prime}-\phi_{j}^{0} \beta_{j}$ and $\delta_{j}-\phi_{j}^{1} \beta_{j}$ are injective maps, as required.
Replacing ϕ_{j+1}^{t} with $\left(\operatorname{Ad} u_{j+1}\right) \phi_{j+1}^{t}$ completes the inductive construction of the desired sequence

$$
A_{1} \xrightarrow{\theta_{1}} A_{2} \xrightarrow{\theta_{2}} \cdots,
$$

satisfying the hypotheses of Theorems 2, 3, and 5. The existence of α_{j} homotopic to β_{j}, non-zero on a specified element of D_{j}, defined by another direct sum of point evaluations (thus satisfying the requirements of Theorem 2.4 with $\bar{\alpha}_{j}=\alpha_{j}$) is clear.

By Theorem 2.4 there exists a sequence

$$
A_{1} \xrightarrow{\theta_{1}^{\prime}} A_{2} \xrightarrow{\theta_{2}^{\prime}} \cdots
$$

such that θ_{j}^{\prime} agrees with θ_{j} on K_{0} (by virtue of its being homotopic to θ_{j}). The limit of this sequence is simple, and has the desired order structure on K_{0}.

References

$[\mathrm{B}]$	Bruce Blackadar, K-theory for C^{*}-algebras. Springer-Verlag, New York, 1986.
$[\mathrm{E}-\mathrm{V}]$	George A. Elliott and Jesper Villadsen, Perforated ordered K_{0}-groups. Canad. J. Math. (6)
$[\mathrm{52}(2000), 1164-1191$.	

Toftegaards Alle 26

$4 t v$
Valby, Denmark
DK-2500

[^0]: Received by the editors November 1, 2001.
 AMS subject classification: 46, 19.
 (C)Canadian Mathematical Society 2003.

