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Abstract

We give explicit upper bounds for convergence rates when approximating both one- and
two-sided general curvilinear boundary crossing probabilities for the Wiener process by
similar probabilities for close boundaries of simpler form, for which computation of the
boundary crossing probabilities is feasible. In particular, we partially generalize and
improve results obtained by Pötzelberger and Wang in the case when the approximating
boundaries are piecewise linear. Applications to barrier option pricing are also discussed.
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1. Introduction and main results

Computing the probability P(g−, g+) for the standard Wiener process {Wt }t≥0 to stay within
a corridor between two given boundaries g−(t) < g+(t) during a specified time interval [0, T ] is
crucial in many important applications, including sequential statistical analysis and the pricing
of financial barrier options. In fact, based on the Donsker–Prokhorov invariance principle, such
a probability is often used as an approximation to a similar boundary crossing probability for
a random walk (or even a more general process). Computing the probability P(g−, g+) in
nontrivial cases is, however, a rather tedious task by itself that, in its turn, also requires the use
of some approximation methods.

One of the standard approachs to this problem is to approximate the given (general curvi-
linear) boundaries g± with some other boundaries f±, of a form enabling one to compute
the probability P(f−, f+) relatively easily. A popular choice for f± is piecewise-linear
boundaries, for which a combination of the total probability formula, the Markov property, and
explicit formulae for linear boundary crossing probabilities for the Brownian bridge process
immediately gives the desired probability P(f−, f+) as a finite-dimensional Gaussian integral
of a product-form integrand [12], [14], [20]; also see our Remark 6, below. To justify the use of
P(f−, f+) instead of P(g−, g+), one must, of course, give an upper bound for the difference
between the two values.

As a recent advance in this direction, we mention here a paper by Pötzelberger and Wang [14]
(see also further references to be found in that paper). Those authors, under the assumptions
that the boundaries g± are twice continuously differentiable, with g′′±(0) �= 0 and g′′±(t) = 0
at at most finitely many points t ∈ (0, T ], proposed a special rule for choosing a sequence of
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‘optimal partitions’ t
(n)
0 = 0 < t

(n)
1 < · · · < t

(n)
n = T of [0, T ] (depending on the boundaries,

in general) with the following property: if g
(n)
± are piecewise-linear boundaries with nodes at

(t
(n)
i , g±(t

(n)
i )), i = 0, 1, . . . , n, then for

�n := |P(g−, g+) − P(g
(n)
− , g

(n)
+ )|,

one has the asymptotic bound
lim sup
n→∞

n2�n ≤ A, (1)

where the constant A depends on both the shape of the boundaries g± and the rule used to
form the partitions {t (n)

i }0≤i≤n (through a pair of integrals that can actually be computed – at
least numerically). Unfortunately, relation (1) does not contain much information about the
approximation error size for finite values of n, although it is bounding that error for relatively
small ns (such that the computation of P(g

(n)
− , g

(n)
+ ) is still feasible) that seems to be the main

task here.
One could also observe that the above restrictions on the boundaries (in particular, on g′′±

being nonzero) appear to be irrelevant (and are just due to the method employed in [14]). In
this paper, we show that this is indeed the case, and that there is, in fact, an exact (rather than
asymptotic, as in (1)) upper bound for �n of the form Cn−2, which

(a) holds under more general assumptions on the boundaries g±; and

(b) holds for arbitrary partitions of [0, T ] of rank O(n−1).

(More generally, the upper bound has the form Cδ2 for a partition of rank δ – see Corollary 1,
below).

This finding is based on a simple, general result that admits a short, self-contained proof,
and of which a precise formulation is as follows. Let g±(t) be two functions on [0, T ], such
that g−(0) < 0 < g+(0). Denote by

P(g−, g+) := P(g−(t) < Wt < g+(t), t ∈ [0, T ])
the probability that the trajectory of the standard Wiener process {Wt }t≥0 will stay between the
boundaries g± during the whole time interval [0, T ]. If g−(t) ≥ g+(t) at some t ∈ [0, T ],
we simply get P(g−, g+) = 0. In the case of a one-sided (upper) boundary, we will use the
notation P(−∞, g+).

By LipK we will denote the class of Lipschitz functions on [0, T ] with the constant K ∈
(0, ∞). That is, g ∈ LipK if and only if

|g(t + h) − g(t)| ≤ Kh, 0 ≤ t < t + h ≤ T .

Also, by ‖ · ‖ we denote the uniform norm of a (bounded) function on [0, T ], i.e. ‖g‖ =
sup0≤t≤T |g(t)|.
Theorem 1. Let g± ∈ LipK and consider functions f± on [0, T ] such that ‖g± − f±‖ ≤ ε for
some ε > 0. Then

|P(−∞, g+) − P(−∞, f+)| ≤ (2.5K + 2T −1/2)ε (2)

and
|P(g−, g+) − P(f−, f+)| ≤ (5K + 4T −1/2)ε. (3)
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The same bounds also hold for the differences

|P(−∞, g+; B) − P(−∞, f+; B)| and |P(g−, g+; B) − P(f−, f+; B)|, (4)

where, for a Borel set B,

P(g−, g+; B) := P(g−(t) < Wt < g+(t), t ∈ [0, T ]; WT ∈ B).

Remark 1. This result (or a weaker form thereof) might actually be already known. It was
observed in Borovkov [4] that, with a right-hand side of the form C(K + T −1/2)ε, where
C is some absolute constant, the above inequalities can be derived from Equation (2.22)
of Nagaev [10], [11], estimates in Sahanenko [17] and the Donsker–Prokhorov invariance
principle.

Remark 2. It is clear from the proof of Theorem 1 that a somewhat more precise bound than
(3) holds in the two-sided boundary case: assuming that g± ∈ LipK± , one can replace 5K

on the right-hand side of that bound with 2.5(K− + K+). Observe also that, under additional
assumptions about the monotonicity of the boundaries g±, the values for the constants in bounds
(2) and (3) can be made somewhat smaller (see Lemma 1, below).

Remark 3. Note that bounds (2) and (3) are rather sharp. Indeed, the coefficient of ε on the
right-hand side of (2) cannot be less than 2K + (2/πT )1/2. This can easily be seen from the
explicit formula for P(−∞, g+) in the case of the straight line boundary g+(t) = ε + Kt

(cf. (14), below, and our observation immediately after that formula), when f+(t) = Kt , so
that P(−∞, f+) = 0.

Next we will formulate our improvement of (1), which is a simple consequence of Theorem 1
based on the fact that, for smooth enough functions, the rate of approximation by piecewise-
linear functions will be a quadratic function of the partition rank. More precisely, the following
result holds.

Corollary 1. Let g± be continuously differentiable on [0, T ], let K = max{‖g′−‖, ‖g′+‖}, and
let g′± be absolutely continuous, satisfying |g′′±| ≤ γ < ∞ almost everywhere. If 0 = t0 <

t1 < · · · < tn = T is a partition of [0, T ] of rank δ = max0<i≤n |ti − ti−1|, and f± are
piecewise linear with nodes at the points (ti , g±(ti)), then

|P(−∞, g+) − P(−∞, f+)| ≤ (0.313K + 0.25T −1/2)γ δ2 (5)

and
|P(g−, g+) − P(f−, f+)| ≤ (0.625K + 0.5T −1/2)γ δ2. (6)

In particular, if the partition is uniform, i.e. ti = iT /n, 0 ≤ i ≤ n, and if g
(n)
± denote the

respective piecewise-linear approximations to g±, then δ = T/n and, hence, instead of the
asymptotic bound (1), we obtain the following inequality:

�n ≤ Cn−2, C = (0.625K + 0.5T −1/2)γ T 2.

The same bounds will hold for the differences (4).

Remark 4. From the proof of the corollary, it is obvious that its assumptions can be somewhat
relaxed: we need only assume that the boundaries g± are piecewise continuously differentiable
(with the derivatives satisfying the stated conditions). The inequalities (5) and (6) remain valid
as long as all those points at which either or both of g± is differentiable belong to the partition
{ti}.
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Remark 5. If the assumption that g+, f+ ∈ LipK fails, but the functions are absolutely
continuous with square-integrable derivatives and g+(0) − f+(0) = g+(T ) − f+(T ), then
the following bound holds:

|P(−∞, g+; B) − P(−∞, f+; B)| ≤ P(WT ∈ B)

[
1

2π

∫ T

0
(g′+(s) − f ′+(s))2 ds

]1/2

.

The proof of this result, and similar bounds for the two-sided boundary crossing probabilities
in the case B = (x, ∞), were given in [12].

Remark 6. It appears that Wang and Pötzelberger [20] were the first to combine the total
probability formula, the Markov property of the Wiener process, and an explicit formula for
a (one-sided) linear boundary crossing probability for the Brownian bridge process to show
that the one-sided boundary crossing probability P(−∞, g(n)) for a piecewise-linear function
g(n) can be represented as an n-fold Gaussian integral. Novikov et al. [12] gave, in their
Theorem 1, a more general formula for the two-sided boundary crossing probabilities with
arbitrary (measurable) boundaries g±. It is equivalent to the following representation: for any
Borel set B,

P(g−, g+; B) = E

[
1{WT ∈B}

n−1∏
i=0

pi(g−, g+ | Wti , Wti+1)

]
, (7)

with 1A being the indicator function of the event A and

pi(g−, g+ | xi, xi+1) := P(g−(s) < Ws < g+(s), s ∈ [ti , ti+1] | Wti = xi, Wti+1 = xi+1).

(This representation also appeared in Theorem 2 of [14], with B = R.)
In the special case when g−(s) = −∞, s ∈ [ti , ti+1], and g+(s) is a linear boundary on this

interval, the last probability has the following simple form, used in [20]:

pi(−∞, g+ | xi, xi+1) = 1 − exp

{
−2(g+(ti) − xi)(g+(ti+1) − xi+1)

ti+1 − ti

}
. (8)

(This is a well-known expression for the linear boundary crossing probability for the Brownian
bridge process – see, e.g. p. 63 of [2].) In the case of two-sided linear boundaries g±, the
probability pi(g−, g+ | x, y) is given by a rapidly convergent infinite series of exponential
functions (for details and numerical examples, see, e.g. [12] or [14]). In both cases (i.e. of one-
sided and two-sided piecewise-linear boundaries), the complexity of the numerical computation
of the n-fold Gaussian integral on the right-hand side of (7) appears to be acceptable, due to
the relatively simple form of the functions pi(g−, g+ | xi, xi+1).

Di Nardo et al. [7] found another parametric family of one-sided boundaries (that we call
‘generalized Daniels’ boundaries’, cf. [5]), for which the probability pi(−∞, g+ | xi, xi+1)

also has a relatively simple form, as follows. If, for t ∈ [ti , ti+1],
y(t) := (d1 − d2)(t − ti ) + d2 < u(t) := (d∗

1 − d∗
2 )(t − ti ) + d∗

2

with d1, d2, d
∗
1 , d∗

2 ∈ R and, on that time interval,

g+(t) = xi + (t − ti )(xi+1 − xi)

ti+1 − ti
+ u(t) − (t − ti ) ln( 1

2D(t))

2(u(ti) − y(ti))
(9)
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with

D(t) = C1 +
√

C2
1 + 4C2

2 exp

{
−4

(u(t) − y(t))(u(ti) − y(ti))

t − ti

}
> 0,

where C1, C2 > 0, then

pi(−∞, g+ | xi, xi+1) = 1 − C1 exp

{
−2d∗

1 (u(ti) − y(ti))

ti+1 − ti

}

− C2 exp

{
−4(2d∗

1 − d1)(u(ti) − y(ti))

ti+1 − ti

}
. (10)

(Our notation is slightly different to that in [7].)
If C1 = 1 and C2 = 0, then the function g+(t) in (9) is linear and, by setting d∗

2 = g+(ti)−xi

and d∗
1 − d∗

2 = g+(ti+1) − xi+1, we get, from (10), the well-known result (8). Generally, the
parametric curve (9) depends on six parameters, so we can use it as a second-order spline with
the boundary conditions

g
(n)
+ (ti) = g+(ti),

d

dt
g

(n)
+ (ti) = d

dt
g+(ti), ti = iT

n
, i = 0, 1, . . . , n.

It is well known (see, e.g. Chapter 1 of [18]) that the approximation rate of four-times con-
tinuously differentiable functions g±(t) by second-order spline functions g

(n)
± (t) on uniform

partitions is

ε := ‖g± − g
(n)
± ‖ = O(n−4) as n → ∞.

Therefore, by Theorem 1 we will have, in this case,

|P(g−, g+; B) − P(g
(n)
− , g

(n)
+ ; B)| = O(n−4).

Of course, to satisfy the additional boundary conditions for such an approximation, we would
have to solve a system of nonlinear equations and, therefore, the computational complexity of
this approach could be greater than that of the piecewise-linear approximation.

In conclusion, note that, in the literature, there exist several quite different approaches to the
computation of numerical approximations to P(g−, g+) and P(−∞, g), which have different
computational complexities (see, e.g. [6], [7], [8], [9], [16], and references therein). Knowing
not only the order, but also the form of the approximation error allows one to further improve
the approximation rate by using the so-called Richardson extrapolation, which is based on the
idea of extrapolating computed results to much larger values of n (see, e.g. [1]).

Section 2 contains the proofs of the stated results. In Section 3, we will give the price of a
double-barrier kick-out call option as a Black–Scholes-type formula involving two probabilities
of the form P(g−, g+; (x, ∞)) and discuss an application of Theorem 1 to estimating the
accuracy of approximations for double-barrier option prices.

2. Proofs

Due to the self-similarity property of the Wiener process, we can assume, without loss
of generality, that T = 1 (the general case bounds will then follow by the standard scaling
argument).
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2.1. Proof of Theorem 1

We will begin the proof of Theorem 1 with the obvious relation

P(g− + ε, g+ − ε) ≤ P(f−, f+) ≤ P(g− − ε, g+ + ε). (11)

Note that

0 ≤ P(g− − ε, g+ + ε) − P(g−, g+)

= [P(g− − ε, g+ + ε) − P(g−, g+ + ε)] + [P(g−, g+ + ε) − P(g−, g+)],
where both terms on the right-hand side can be dealt with (with a view to establishing bounds
on them) in the same way. It then suffices to consider, say, the second one only, and for that
term we clearly have

P(g−, g+ + ε) − P(g−, g+) = P
(

0 ≤ sup
0≤t≤1

(Wt − g+(t)) < ε, inf
0≤t≤1

(Wt − g−(t)) > 0
)

≤ P
(

0 ≤ sup
0≤t≤1

(Wt − g+(t)) < ε
)

= P(−∞, g+ + ε) − P(−∞, g+) =: Dε(g+)

≤ sup
f ∈LipK

Dε(f ) =: Dε.

As the same argument also applies to the first term, we find that

0 ≤ P(g− − ε, g+ + ε) − P(g−, g+) ≤ 2Dε.

Similarly,
0 ≤ P(g−, g+) − P(g− + ε, g+ − ε) ≤ 2Dε,

and, together with (11), these inequalities imply that

|P(g−, g+) − P(f−, f+)| ≤ 2Dε.

Essentially the same argument shows that

|P(g−, g+; B) − P(f−, f+; B)| ≤ 2Dε,

as well. In the case of one-sided boundaries, an even simpler argument gives

|P(−∞, g+) − P(−∞, f+)| ≤ Dε.

The desired bounds (2) and (3) now follow from the next assertion.

Lemma 1. Let g be a function on [0, 1], with g(0) ≥ 0, such that, for some K± ∈ [0, ∞),

−K−h ≤ g(t + h) − g(t) ≤ K+h, 0 ≤ t < t + h ≤ 1. (12)

Then
Dε(g) ≤ (2K+ + 0.5K− + 2)ε, ε > 0.
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Proof. Let τ := inf{t > 0 : Wt > g(t)} and observe that

Dε(g) = P
(

0 ≤ sup
0≤t≤1

(Wt − g(t)) < ε
)

=
∫ 1

0
P(τ ∈ dt) P

(
sup

t≤s≤1
(Ws − g(s)) < ε | Wt = g(t)

)

≤
∫ 1

0
P(τ ∈ dt) P

(
sup

0≤s≤1−t

(Ws − K+s) < ε
)
. (13)

The last probability is known in explicit form (see, e.g. Equation 1.1.4 on p. 197 of [2]): denoting
by � the standard normal distribution function, we get

P
(

sup
0≤s≤1−t

(Ws − K+s) < ε
)

= �

(
K+√

1 − t + ε√
1 − t

)
− e−2K+ε�

(
K+√

1 − t − ε√
1 − t

)

≤ �

(
K+√

1 − t + ε√
1 − t

)
− �

(
K+√

1 − t − ε√
1 − t

)
+ (1 − e−2K+ε). (14)

Using the obvious inequalities �′(x) ≤ (2π)−1/2 and 1 − e−2K+ε ≤ 2K+ε, we see from this
representation that the probability on the left-hand side does not exceed (2/π(1 − t))1/2ε +
2K+ε.

We next consider P(τ ∈ dt). For any fixed t ∈ [0, 1], introduce the boundary

gt (s) := g(t) + K−(t − s), 0 ≤ s ≤ 1,

and let

τt := inf{s > 0 : Ws > gt (s)} = inf{s > 0 : Ws + K−s > g(t) + K−t}.

Obviously, due to our assumption (12),

P(τ ∈ (t, t + h)) ≤ P(τt ∈ (t, t + h)), 0 ≤ t < t + h ≤ 1, (15)

and, hence, it only remains to bound the right-hand side of this inequality.
Since {Ws + K−s}s≥0 is a continuous processes with stationary, independent increments,

the distribution of τt can be readily found from Kendall’s formula (see, e.g. Theorem 1 on p. 66
of [3]; see also Equation 2.0.2 on p. 223 of [2] for our special case): it will have the density

vt (s) := P(τt ∈ ds)

ds
= g(t) + K−t√

2πs3
exp

{−(g(t) + K−(t − s))2

2s

}
, s > 0.

From (15), it follows that τ will have a density p(t) such that

p(t) ≤ vt (t), 0 < t < 1.
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Returning to (13) and our bound for the integrand contained in its last line, we have

Dε(g) ≤ ε

√
2

π

∫ 1

0

p(t) dt√
1 − t

+ 2K+ε

∫ 1

0
p(t) dt

≤ ε

√
2

π

(∫ 1/2

0
+

∫ 1

1/2

)
p(t) dt√

1 − t
+ 2K+ε

≤
[

2√
π

∫ 1/2

0
p(t) dt +

√
2

π

∫ 1

1/2

vt (t) dt√
1 − t

+ 2K+
]
ε.

The assertion of the lemma (and, hence, that of Theorem 1) is now immediate from the obvious
inequalities

∫ 1/2
0 p(t) dt < 1 and 2π−1/2 + 2−1/2 < 2, and the following bound.

Lemma 2. Under the assumptions of Lemma 1,√
2

π

∫ 1

1/2

vt (t) dt√
1 − t

≤ K−

2
+ 1√

2
.

Proof. First we will find the maximum possible value of vt (t) over all admissible values
g(t) ≥ g(0) − K−t ≥ −K−t (as g(0) ≥ 0 and (12) holds). To this end, we compute

sup{m(y) := (y + K−t)e−y2/2t : y ≥ g(0) − K−t}
by taking the derivative of the function m(y) with respect to y and equating it to zero, which
yields

0 = 1 − (y + K−t)y/t.

Solving this for y, we get

y± = − 1
2K−t ±

√
t + 1

2K−t .

Now, noting that the root y− is inadmissible and that m′′(y+) < 0, we see that m(y+) is indeed
a maximum, so that

vt (t) ≤ y+ + K−t√
2πt3

= 1√
2π

(
K−

2
√

t
+

√
1

t2 + (K−)2

4t

)
≤ 1√

2π

(
K−
√

t
+ 1

t

)
,

using (a2 + b2)1/2 ≤ a + b for a, b ≥ 0. Therefore, with r = 1
2 ,√

2

π

∫ 1

r

vt (t) dt√
1 − t

≤ 1

π

[∫ 1

r

K− dt√
t (1 − t)

+
∫ 1

r

dt

t
√

1 − t

]

= 1

π

[
K−(π − 2 arcsin

√
r) + 2

∫ π/2

arcsin
√

r

du

sin u

]

≤ K−

π
(π − 2 arcsin

√
r) + 2( 1

2π − arcsin
√

r)

π
√

r

= K−

2
+ 1√

2
.

This completes the proofs of Lemmas 1 and 2 and, therefore, that of Theorem 1.
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2.2. Proof of Corollary 1

To prove Corollary 1, it suffices to show that, for the maximum deviation of the piecewise-
linear approximant f from the original boundary function g with the assumed properties, we
obtain

‖f − g‖ ≤ 1
8γ δ2, (16)

as the desired result will then immediately follow from Theorem 1. The proof of bound (16) is
elementary and is included only for the sake of completeness.

Clearly,
‖f − g‖ = max

0<i≤n
max

t∈[ti−1,ti ]
|f (t) − g(t)|,

so we have to show that the bound holds for the maximum deviation on each of the subintervals
[ti−1, ti], i = 1, . . . , n. Consider the first of these – the same argument will clearly work for
all the others. Let

ξ = arg max
t∈[t0,t1]

|f (t) − g(t)|
and observe that g′(ξ) = f ′(ξ). By setting

h(t) = g(ξ) + g′(ξ)(t − ξ), t ∈ [t0, t1],
we see from this observation that the plots of the functions f and h, which are linear (at least
on the subinterval [t0, t1]), are parallel to one another, i.e. f (t) − h(t) = const, t ∈ [t0, t1].

Next, for j = 0, 1, we have

max
t∈[t0,t1]

|f (t) − g(t)| = |f (ξ) − g(ξ)| = |f (ξ) − h(ξ)| = |f (tj ) − h(tj )|
= |g(tj ) − h(tj )| = |g(tj ) − g(ξ) − g′(ξ)(tj − ξ)|
=

∣∣∣∣
∫ tj

ξ

[∫ u

ξ

g′′(v) dv

]
du

∣∣∣∣
≤ 1

2γ (tj − ξ)2.

Now, since minj=0,1{(tj −ξ)2} ≤ ( 1
2 (t1−t0))

2 ≤ 1
4δ2, our bound (16) and, hence, the statement

of Corollary 1 are proved.

3. Approximations for time-dependent barrier options prices

In this section, we will discuss how the above results can be applied to barrier options pricing.
It is well known that, under the no-arbitrage assumption, the fair price of a (replicable) option

(on an underlying asset with a price process {St }t≥0) with maturity T and payoff XT is given by
E(XT /BT ), where E denotes the operation of taking expectation with respect to a risk-neutral
measure P and {Bt }t≥0 is the bank account process (for details, see, e.g. [19]). Consider a
kick-out barrier call option with strike KT and time-dependent lower and upper barriers G±(t)

such that G−(t) < G+(t), t ≤ T . In this case, the payoff function is given by

XT = (ST − KT ) 1{ST >KT ; G−(t)<St<G+(t), t∈[0,T ]} .

Assume that the bank account process is nonrandom and has the form

Bt = exp

{∫ t

0
rs ds

}
,
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where rt is a positive function of time (the spot interest rate). Under the assumptions of a
Black–Scholes-type diffusion model with a term structure assuming a variable deterministic
volatility σt > 0 with σ 2 := ∫ T

0 σ 2
t dt < ∞, the price of the underlying asset St has, under the

risk-neutral measure, the following representation:

St = S0 exp

{∫ t

0
[rs − 1

2σ 2
s ] ds +

∫ t

0
σs dWs

}
.

It is quite obvious that, by using the ‘natural time change’ (with the new ‘time’ being t ′ :=
σ−2

∫ t

0 σ 2
s ds), we can make the volatility constant over the time interval [0, T ]. For simplicity’s

sake, let us just assume that we have already done so, thus yielding, in the natural time scale,
the representation

St = S0 exp

{∫ t

0
[rs − 1

2σ 2] ds + σWt

}
. (17)

(We retain the same notation for the time variable t and also for the respectively transformed
interest rate rt , barrier functions G±(t), and the Wiener process Wt ; the interested reader could
easily do all the calculations by himself.)

The following statement gives a representation of the option price in terms of the boundary
crossing probabilities. Observe that – for a clear reason – the pricing formula has the same
structure as the Black–Scholes formula for the European call and, hence, could be considered
to be a natural generalization of the latter. Thus, whereas to price a European call it suffices
to find the values of two normal probabilities, to price a barrier call one simply has to find the
values of two probabilities of the form P(g−, g+, (x, ∞)).

Proposition 1. The fair price of the above double-barrier call option under model (17) is given
by

S0p1 − KT exp

{
−

∫ T

0
rs ds

}
p0,

where

p1 = P(f−(t) < σWt + σ 2t < f+(t), t ∈ [0, T ]; σWT + σ 2T > F),

p0 = P(f−(t) < σWt < f+(t), t ∈ [0, T ]; σWT > F),

F = ln(KT /S0) + 1
2σ 2T −

∫ T

0
rs ds,

and

f±(t) = ln(G±(t)/S0) + 1
2σ 2t −

∫ t

0
rs ds, t ∈ [0, T ].

One can easily prove this statement using Girsanov’s transformation (for details in the case
of a one-sided barrier, see, e.g. [13]).

To calculate the probabilities p0 and p1, one could use several different techniques: a PDE
approach [21], integral equations for the case of one-sided barriers [7], [16], or Monte Carlo
simulation [15]. As both probabilities p0 and p1 are of the form P(g−, g+; (x, ∞)), one could
also use a numerical approximation based on the integral representation (7), with properly
chosen spline approximations and respective probabilities pi(g−, g+ | xi, xi+1). In particular,
using boundary approximations that are piecewise linear (on uniform partitions) will yield, by
Corollary 1, an approximation rate of the order O(n−2). Using generalized Daniels’boundaries
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(see Remark 6, above), the rate of convergence could potentially be improved to O(n−4) (or to
an even higher order). However, a discussion of the computational aspects and efficiencies of
different numerical techniques is beyond the scope of the present paper.
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