INVARIANT MEASURES FOR PIECEWISE LINEAR FRACTIONAL MAPS

F. SCHWEIGER

(Received 28 July 1981)

Communicated by A. J. van der Poorten

Abstract

Let $T:[0,1] \rightarrow[0,1]$ be a map which is given piecewise as a linear fractional map such that $T 0=T 1=0$ and $T^{\prime} 0<1$. Then T is ergodic and admits an invariant measure which can be calculated explicitly.

1980 Mathematics subject classification (Amer. Math. Soc.): 28 D 05, 10 K 10.

1. Introduction

Recent years have seen some interest in the study of maps $T:[0,1] \rightarrow[0,1]$ with the following property: There is a number $\alpha, 0<\alpha<1$ such that
(i) $T 0=0, T \alpha=1, T 1=0$
(ii) T is increasing on $[0, \alpha]$
(iii) T is decreasing on $[\alpha, 1]$.

In this paper we consider the case where T is given piecewise as a linear fractional map. One sees easily that in this case T is given by

$$
\begin{aligned}
& T x=T_{0} x=\frac{\alpha x}{\alpha p+(\alpha-p) x} \quad \text { for } 0 \leqslant x \leqslant \alpha, \\
& T x=T_{1} x=\frac{q(1-\alpha)-q(1-\alpha) x}{q-q \alpha-\alpha+(1-q+q \alpha) x} \quad \text { for } \alpha \leqslant x \leqslant 1
\end{aligned}
$$

where $p>0$ and $q>0$ are real numbers. If $p>1$ the point $x=0$ is an attractive fixed point. Therefore we restrict our attention to $0<p \leqslant 1$. We will show that T

[^0]is ergodic with respect to Lebesgue measure and an invariant measure is given explicitly by the following

Theorem. Let

$$
\begin{aligned}
& S_{0} x=\frac{\alpha-p+\alpha x}{\alpha p}, \\
& S_{1} x=\frac{1-q+q \alpha-q(1-\alpha) x}{q-q \alpha-\alpha+q(1-\alpha) x} .
\end{aligned}
$$

Let β, γ, δ be defined by the equations $S_{0} \delta=\delta, S_{1} \gamma=\delta, S_{0} \beta=\gamma$ then $S_{1} \beta=\gamma$ and a density of an invariant measure with respect to T is given as follows:

Case (a): If $\gamma \neq \delta$ then

$$
f(x)=\left|\frac{1}{x+1 / \gamma}-\frac{1}{x+1 / \delta}\right|
$$

Case (b): If $\beta=\gamma=\delta \neq 0$ then

$$
f(x)=\frac{1}{(x+1 / \beta)^{2}} .
$$

Case (c): If $\beta=\gamma=\delta=0$ then

$$
f(x) \equiv 1
$$

Remark. If $\delta=0$ then the formula for f reduces to

$$
f(x)=\frac{1}{x+1 / \gamma}
$$

If $\delta=\infty$ then f is given by

$$
f(x)=\left|\frac{1}{x+1 / \gamma}-\frac{1}{x}\right|
$$

In this case the measure defined by f is σ-finite.

2. Proof of the theorem

The equation $S_{0} \delta=\delta$ gives

$$
\delta=\frac{\alpha-p}{\alpha(p-1)}
$$

This shows that $\delta=0$ corresponds to $\alpha=p$, that is, T_{0} is a straight line. The special case $\delta=\infty$ corresponds to $p=1$. In this case $x=0$ is a fixed point of slope 1 for T_{0}.

Solving next $S_{1} \gamma=\delta$ we obtain

$$
\gamma=\frac{\alpha(1+p q)-q p}{p q(1-\alpha)}
$$

The solution of $S_{0} \beta=\gamma$ and $S_{1} \beta=\gamma$ gives the same value

$$
\beta=\frac{\alpha^{2}(1+q+q p)+\alpha(-2 q p-q)+p q}{q \alpha(1-\alpha)} .
$$

We assume first that $\gamma<\delta$. We denote by $V_{0}:[0,1] \rightarrow[0, \alpha], V_{1}:[0,1] \rightarrow[\alpha, 1]$ the inverse branches of T. The map $S:[\gamma, \delta] \rightarrow[\gamma, \delta]$ defined as $S x=S_{0} x$ on $[\beta, \delta]$ and $S x=S_{1} x$ on $[\gamma, \beta]$ has the inverse branches $U_{0}:[\gamma, \delta] \rightarrow[\beta, \delta], U_{1}:[\gamma, \delta] \rightarrow$ $[\gamma, \beta]$.

We note that S is the dual algorithm to T in the sense of Schweiger [3] (see also Tanaka-Ito [6] and Nakada [2] for a similar approach to some continued fraction like algorithms). Next we define

$$
f(x)=\int_{\gamma}^{\delta} \frac{d y}{(1+x y)^{2}}
$$

The essential property of the kernel $(1+x y)^{-2}$ now is

$$
\frac{\left|V_{i}^{\prime} x\right|}{\left(1+\left(V_{i} x\right) y\right)^{2}}=\frac{\left|U_{i}^{\prime} y\right|}{\left(1+x\left(U_{i}^{\prime}(y)\right)\right)^{2}}, \quad i=0,1
$$

Therefore

$$
\begin{aligned}
f\left(V_{0} x\right)\left|V_{0}^{\prime} x\right|+f\left(V_{1} x\right)\left|V_{1}^{\prime} x\right| & =\int_{\gamma}^{\delta} \frac{\left|V_{0}^{\prime} x\right| d y}{\left(1+\left(V_{0} x\right) y\right)^{2}}+\int_{\gamma}^{\delta} \frac{\left|V_{1}^{\prime} x\right| d y}{\left(1+\left(V_{1} x\right) y\right)^{2}} \\
& =\int_{\gamma}^{\delta} \frac{\left|U_{0}^{\prime} y\right| d y}{\left(1+x\left(U_{0} y\right)\right)^{2}}+\int_{\gamma}^{\delta} \frac{\left|U_{1}^{\prime} y\right| d y}{\left(1+x\left(U_{1} y\right)\right)^{2}} \\
& =\int_{\gamma}^{\delta} \frac{d z}{(1+x z)^{2}}+\int_{\gamma}^{\beta} \frac{d z}{(1+x z)^{2}}=f(x)
\end{aligned}
$$

This shows that f is an invariant density. A similar discussion applies to $\delta<\gamma$.
Now let $\beta=\gamma=\delta$. Then one calculates that this is equivalent to

$$
\alpha^{2}\left(1+\frac{p-1}{p^{2} q}\right)-2 \alpha+1=0 \quad \text { resp. }\left(\frac{\alpha-1}{\alpha}\right)^{2}=\frac{1-p}{p^{2} q} .
$$

If $\beta \neq 0$ a heuristic argument shows that

$$
f(x)=\lim _{n \rightarrow 0} \frac{1}{n}\left(\frac{1}{x+1 / \beta+n}-\frac{1}{x+1 / \beta}\right)
$$

should give an invariant density. Now let

$$
f(x)=\frac{1}{(x+1 / \beta)^{2}}
$$

Then a calculation gives

$$
f\left(V_{0} x\right)\left|V_{0}^{\prime} x\right|+f\left(V_{1} x\right)\left|V_{1}^{\prime} x\right|=\frac{p}{(x+1 / \beta)^{2}}+\frac{1}{q(1+\beta)^{2}(x+1 / \beta)^{2}} .
$$

But the condition $p q(1+\beta)^{2}+1=q(1+\beta)^{2}$ can be seen as equivalent to the condition mentioned before if one inserts

$$
\beta=\frac{\alpha+\alpha p q-p q}{p q(1-\alpha)}
$$

If $\beta=0$ then $\alpha=p$ and $q(1-\alpha)=1$. In this case T is piecewise linear. Therefore Lebesgue measure is invariant.

3. T is ergodic

We define

$$
w\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)=\left|\left(V_{\varepsilon_{1}} \circ V_{\varepsilon_{n}} \circ \cdots \circ V_{\varepsilon_{n}}\right)^{\prime}\right|
$$

for any sequence $\varepsilon_{i}=0,1$ and $1 \leqslant i \leqslant n$. Then

$$
w\left(\varepsilon_{1}, \varepsilon_{n}, \ldots, \varepsilon_{n} ; x\right)=\frac{A_{n}}{\left(B_{n}+C_{n} x\right)^{2}} .
$$

The numbers A_{n}, B_{n}, C_{n} can be calculated by recursion relations. For our purpose it is sufficient to note that

$$
\frac{C_{n+1}}{B_{n+1}}=U_{i}\left(\frac{C_{n}}{B_{n}}\right) \quad \text { if } \varepsilon_{n+1}=i
$$

Let us consider first the case $p<1$. Then δ is an attractive fixed point for U_{0}. We note that $\delta>-1$. The function U_{1} has a fixed point $\eta>-1$. One finds

$$
\eta=\frac{-2 q+2 q \alpha+\alpha+\sqrt{\alpha^{2}+4 q(\alpha-1)^{2}}}{2 q(1-\alpha)}
$$

Therefore

$$
\left|U_{1}^{\prime}(\eta)\right|=\frac{1}{q(1+\eta)^{2}}<1
$$

Hence η is also attractive. Since the starting values for C_{1} / B_{1} are given by

$$
\begin{aligned}
& \frac{C_{1}}{B_{1}}=\frac{p-\alpha}{\alpha}>-1 \quad \text { if } \varepsilon_{1}=0 \\
& \frac{C_{1}}{B_{1}}=\frac{1-q+q \alpha}{q(1-\alpha)}>-1 \quad \text { if } \varepsilon_{1}=1
\end{aligned}
$$

the sequence C_{n} / B_{n} is bounded by a constant M, say. Therefore

$$
\frac{w\left(\varepsilon_{1}, \ldots, \varepsilon_{n} ; x\right)}{w\left(\varepsilon_{1}, \ldots, \varepsilon_{n} ; y\right)} \leqslant\left(1+\frac{C_{n}}{B_{n}}\right)^{2} \leqslant(1+M)^{2} .
$$

Hence Rényi's condition (C) applies (see Schweiger [4], Fischer [1]) and T is ergodic. Actually, T is an exact endomorphism. If $p=1$ then $\delta=\infty$ also is attractive. But since

$$
\lim _{x \rightarrow \infty} U_{1}(x)=\frac{-q+q \alpha+\alpha}{q(1-\alpha)}>-1
$$

one sees again that the sequence C_{n} / B_{n} is bounded if the last digit satisfies $\varepsilon_{n}=1$. Since $\lim _{n \rightarrow \infty} V_{0}^{n} x=0$ the jump transformation can be applied (see Schweiger [5]). Therefore T is ergodic. It should be pointed out that we only have used $\left|T^{\prime} 0\right| \geqslant 1$ but $\left|T^{\prime} x\right|<1$ may occur for some $x>0$.

References

[1] R. Fischer, 'Ergodische Theorie von Zifferentwicklungen in Wahrscheinlichkeitsräumen.' Math. Z. 128 (1972), 217-230.
[2] H. Nakada, 'On the invariant measures and the entropies for continued fraction transformations,' Keio Math. Sem. Rep. 5 (1980), 37-44.
[3] F. Schweiger, 'Dual algorithms and invariant measures,' Preprint, Salzburg 1980.
[4] F. Schweiger, 'Metrische Theorie einer Klasse zahlentheoretischer Transformationen,' Acta Arith. 15 (1968), 1-18. Corrigendum ibid. 16 (1969), 217-219.
[5] F. Schweiger, 'Some remarks on ergodicity and invariant measures,' Michigan Math. J. 22 (1975), 181-187.
[6] S. Tanaka and Sh . Ito, ' On a family of continued fraction expansions and their ergodic properties,' Preprint.

Department of Mathematics
Institut für Mathematik
Monash University Universität Salzburg

Salzburg
Australia
Oesterreich

[^0]: © Copyright Australian Mathematical Society 1983

