
JFP 12 (4 & 5): 469–510, July & September 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796802004343 Printed in the United Kingdom

469

Parallel and Distributed Haskells

P. W. TRINDER, H.-W. LOIDLã and R. F. POINTON†
Department of Computing and Electrical Engineering, Heriot-Watt University,

Edinburgh EH14 4AS, Scotland

(e-mail: {Trinder,HWLoidl,RPointon}@cee.hw.ac.uk)

Abstract

Parallel and distributed languages specify computations on multiple processors and have a

computation language to describe the algorithm, i.e. what to compute, and a coordination

language to describe how to organise the computations across the processors. Haskell has been

used as the computation language for a wide variety of parallel and distributed languages,

and this paper is a comprehensive survey of implemented languages. We outline parallel and

distributed language concepts and classify Haskell extensions using them. Similar example

programs are used to illustrate and contrast the coordination languages, and the comparison

is facilitated by the common computation language. A lazy language is not an obvious choice

for parallel or distributed computation, and we address the question of why Haskell is a

common functional computation language.

1 Introduction

Parallel languages utilise additional processors to reduce program runtime. Dis-

tributed languages use state-transforming threads to manipulate global state, i.e. the

resources of several processors. A typical distributed application is a multiuser game

or learning environment where users on multiple machines interact with each other

in a common virtual world. The combination of hardware redundancy and stateful

computation in a distributed language facilitates the construction of reliable, i.e.

fault tolerant, systems.

The potential of functional languages for parallelism has been recognised for over

thirty years, long before Haskell existed (e.g. Wegner, 1971). Functional languages

offer good abstraction mechanisms, a sophisticated type system, high-level compu-

tation language and high-level coordination. However, the key advantage of a pure

functional paradigm is that referential transparency guarantees the implementation

considerable freedom of execution order without changing program semantics. This

is evident to the parallelism community and many parallel languages use pure com-

putation languages, some of which are subsets of impure languages (Scholz, 1996;

Michaelson et al., 2001).

In comparison, the benefits of the functional paradigm for distribution have

ã Supported by APART fellowship 624 from the Austrian Academy of Sciences.
† Supported by research grant GR/M 55633 from UK’s EPSRC.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

470 P. W. Trinder et al.

been realised only recently. Like their parallel counterparts, distributed functional

languages benefit from good abstraction mechanisms, a high-level computation lan-

guage, and sophisticated type system, but most of all because large and identifiable

parts of the program are referentially transparent. Referential transparency grants

freedom of execution order, e.g. facilitating lazy communication of data between

processors and parallel execution of parts of the program; moreover the pure

components are amenable to reasoning, e.g. optimisation or compilation by trans-

formation (Peyton Jones et al., 1993). Even with its limited referential transparency,

Erlang has been used successfully to demonstrate that a functional paradigm signifi-

cantly aids engineering large distributed systems. One such example is the 525K-line

AXD301 ATM Switching System distributed over up to 32 processors (Blau &

Rooth, 1998).

Most parallel and distributed languages have a computation language and a

coordination (sub)language. The computation language is used to specify the al-

gorithm, i.e. to define what value is to be computed, and may be a sequential

language like C, SML or Haskell98. The coordination language describes how the

computations are to be arranged on the virtual machine, including aspects such

as thread creation, placement, and synchronisation. In the parallelism literature the

term coordination language usually refers to a language distinct from the compu-

tation language, e.g. PCN coordinates Fortran or C computations (Foster et al.,

1992). In contrast, functional languages typically extend the computation language

with a few high-level coordination constructs, and it is these that are rather loosely

termed the coordination language in this paper. The constructs support some coor-

dination paradigm, and a wide range of paradigms and constructs have been used.

Examples include data-parallelism supported by Data Field Haskell (Holmerin &

Lisper, 2000), or skeleton-based parallelism supported by parallel map, fold and

other skeletons (Herrmann, 2000).

Consistent with their high-level computation language, most parallel and dis-

tributed functional languages support high-level coordination with automatic man-

agement of many coordination aspects. As with computation, the great advantage of

high-level coordination is that it frees the programmer from specifying low-level co-

ordination details. The disadvantages are that automatic coordination management

complicates the operational semantics, makes the performance of programs opaque,

is hard to implement, and is frequently less effective than hand-crafted coordination.

Explicit coordination constructs encourage programmers to construct static, simple

or regular coordination, whereas more implicit constructs encourage more dynamic

and irregular coordination.

Low-level coordination may be managed solely by the compiler as in

PMLS (Michaelson et al., 2001), solely by the runtime system as in GpH (Trinder

et al., 1996), or by both as in Eden (Breitinger et al., 1997). Whichever mechanism

is chosen, the implementation of sophisticated automatic coordination management

is arduous, and there have been many more parallel and distributed language de-

signs than well-engineered implementations. Haskell is a standard lazy functional

research language with a sophisticated type and class system (Peyton Jones et al.,

1999). It has a relatively mature development environment including compilers, in-

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 471

terpreters, libraries and profiling tools. This paper surveys all implemented parallel

and distributed languages with Haskell as computation language.

We start by addressing the question of why Haskell is a suitable computation

language, and basis for a variety of coordination languages, in section 2. We define

parallel and distributed language concepts, and classify Haskell extensions using

them in section 3. Parallel Haskells are surveyed and related to other parallel func-

tional languages in section 4, likewise distributed Haskells in section 5. The same

simple parallel or distributed program is expressed in each language to illustrate

and enable comparison of coordination constructs. Section 6 summarises the coor-

dination constructs in the languages and concludes by discussing open problems.

2 Why Haskell?

It is perhaps surprising to find a lazy language like Haskell as a popular functional

computation language, indeed Hains argues cogently that parallel functional lan-

guages should be strict (Hains, 1994). The problem has the following two aspects.

Firstly lazy evaluation is sequential and performs minimum work, with reduction

ceasing when the expression is in weak head normal form. In contrast parallel and

distributed programs arrange computations on multiple processors and hence re-

quire some eager evaluation. Secondly, while in a strict language the computational

behaviour of an expression is independent of the way the result is used, depending

only on the operand values, in a lazy language the amount and order of evaluation

is often under the control of the consumer of the result. This confers extra expres-

sive power – but makes it very hard to construct cost models, and means that the

programmer must specify the evaluation degree of an expression: namely how much

evaluation should be performed (Klusik et al., 2000a; Trinder et al., 1998).

Properties of Haskell that make it attractive as a computation language and a

basis for a coordination language are as follows. The individual properties are not

unique to Haskell: many are properties of other lazy functional languages, or pure

subsets of strict functional languages:

• Referential transparency. A key advantage of a pure computation language is

that it can be easily married to many different coordination languages because

referential transparency guarantees that execution order is immaterial. The

range of coordination languages is amply illustrated by the languages outlined

in sections 4 and 5. A pure computation language conveys a number of

immediate practical benefits. Parallel semantics are relatively easily developed,

e.g. the operational semantics for GpH and Eden (Baker-Finch et al., 2000;

Hidalgo Herrero & Ortega Mallén, 2000). The language is amenable to analy-

ses, e.g. the non-determinism analysis in Eden (Pena & Segura, 2000). Pure

languages are amenable to program derivation, compilation by transform-

ation, and transformations for optimising coordination are easily introduced:

the Eden compiler is a good example (Pareja et al., 2000).

• Laziness. A computation language with non-strict evaluation naturally sup-

ports highly-dynamic coordination where evaluation is performed and data is

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

472 P. W. Trinder et al.

communicated on demand. Assuming that the execution cost of the coordi-

nation is small compared with the computation, the primary cost of non-strict

coordination is additional communication. For example where an eager lan-

guage simply sends data from producer to consumer, a lazy language requires

an additional message from the consumer to request the data. The benefit

gained by the additional communication in a lazy language is a natural throt-

tling of both communication and computation. An example of communication

throttling is a remote thread consuming a small part of a large data structure,

where only that small part is communicated. Where both strict functional and

dataflow languages often suffer from the eager creation of excess parallelism,

a lazy language ameliorates these problems at the cost of specifying how much

evaluation should be performed. Finally laziness facilitates the separation of

concerns, e.g. evaluation strategies in GpH make essential use of laziness to

separate computation and coordination (Trinder et al., 1998).

• Abstraction mechanisms. High-level modular coordination facilities are pro-

duced using Haskell’s data and control abstractions including classes, modules,

higher-order functions, polymorphism and abstract data types. Since non-strict

languages separate the definition of a value from its evaluation, the program-

mer has the additional flexibility to decide where to specify the coordination.

For example it is possible to specify coordination when composing functions,

by attaching a coordination construct to the value passed between functions,

without breaking the function abstraction. In the same way that the demand

on the result controls the evaluation degree from outside a function, coordi-

nation constructs can control the parallelism from outside. More important

for large systems, this abstraction scales to expressing coordination only at

module interfaces (Loidl et al., 1999).

• Polymorphic strong typing. The benefits of typing in computation languages

are well-established, but the benefits of a typed coordination language are less

so. Strong typing ensures that coordination expressions are well-formed and

reduces runtime errors, and typed coordination constructs include process types

in Eden (Breitinger et al., 1997), and placement directives in Caliban (Taylor,

1997). Polymorphic types enable the construction of generic coordination

constructs. Examples include skeletons in Eden (Klusik et al., 2000b) and

polymorphic data fields in Data Field Haskell (Holmerin & Lisper, 2000).

Open distributed languages require dynamic typing to enforce type correct

interfaces to new programs, e.g. to a new client or applet. Unusually, some

Haskell-based languages are closed, e.g. Brisk and GdH, and hence can be

statically typed.

• Implementation benefits. Due to the coroutine-like evaluation in lazy languages,

their implementations already have many of the mechanisms required by

parallel and distributed languages. For example Haskell implementations have

mechanisms for encapsulating suspended computations for subsequent evalu-

ation, and it is convenient to transfer work from processor to processor as

a suspension. Similarly, many lazy language implementations are based on

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 473

graph reduction, and the graph is a convenient and uniform structure for

communicating both code and data.

• Pragmatic factors. There are many practical reasons for selecting Haskell as a

computation language: the language is standardised and compilers are well-

developed, with good sequential optimisation and support important practical

features like useful libraries and a foreign language interface. The implemen-

tations are both open source and modular, and hence relatively easily adapted.

Moreover there are tools like profilers available, and there is an active and

supportive community.

Properties of Haskell that make it unattractive as a computation language and a

basis for a coordination language are as follows.

• Lazy evaluation. As outlined above, lazy evaluation must frequently be over-

come to obtain sufficient parallelism or distribution. Moreover, it is much

harder to develop time and space cost models for non-strict languages (Sands,

1990; Loidl, 1998).

• Limited module and class systems. More sophisticated systems than the

Haskell98 module and class system would facilitate the encapsulation and

derivation of coordination constructs. In GpH for example, it would be ben-

eficial to be able to derive basic evaluation strategies for new abstract data

types, e.g. an rnf strategy that reduces values of the new type to root normal

form (Trinder et al., 1998).

• Cumbersome state manipulation. Distributed programs necessarily manipulate

state on multiple processors. However, describing stateful computations in

Haskell’s monadic constructs is relatively verbose and hard to reason about.

Broadly speaking, the properties that make Haskell a suitable computation lan-

guage are similar to the properties that make it a good sequential language: namely

its referential transparency, sophisticated type system and good abstraction mecha-

nisms as well as a number of pragmatic factors. These attractions are sufficient to

overcome the additional coordination required to subvert the default lazy evaluation.

3 Coordination language concepts

Computer hardware may be arranged in a large variety of ways, ranging from single

processors, shared-memory and distributed-memory multiprocessors to networks

of machines. Parallel and distributed languages reflect some of the underlying

architecture, while other languages abstract over it. In this section we define a

number of concepts to facilitate parallel and distributed language classification.

Because of the large number of concepts that distributed languages may or may

not support it is very hard to construct a simple yet accurate classification, although

a number have been given (e.g. Skillicorn & Talia, 1998). Our definitions and

classification are neither new nor unusual, but are suitable for defining and classifying

the coordination in parallel and distributed functional languages. The classification

is intended for small-scale systems composed of programs written in the same

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

474 P. W. Trinder et al.

language. In contrast, large-scale distributed systems are supported by standard

interfaces like CORBA (Siegel, 1997) or Microsoft DCOM (Merrick, 1996) and

may have components written in multiple languages, supplied by several vendors,

be executed on a heterogeneous collection of platforms, and have elaborate fault

tolerance.

• Processing Element (PE). A physical device that performs computation, typi-

cally a processor with memory and associated physical resources such as disk,

screen, etc.

• Thread. An independent sequence of executing instructions. Sometimes also

known as a lightweight process to indicate that a thread has minimal private

resources. Threads may be explicit with constructs for creation and termi-

nation; semi-explicit, being managed by directives or annotations; or entirely

implicit e.g. being managed by a data-parallel or skeleton compiler. A (semi)-

explicit approach is typically taken by distributed languages such as Facile

Antigua (Thomsen et al., 1993) and GdH (Pointon et al., 2000), whereas parallel

languages tend to favour a more implicit approach, e.g. HDC (Herrmann,

2000) and High Performance Fortran (HPF, 1993). An important distinction

is between stateless threads that only return a value, and state-transforming

threads that perform operations on external state.

• Thread interaction. The term used to describe both communication and syn-

chronisation between threads. Communication is the exchange of data and

synchronisation is the coordination of control. The two concepts are closely

related and typically intertwined together, e.g. communication requires syn-

chronisation to safely pass data to another thread, and some form of com-

munication is necessary to indicate that synchronisation has occured. In

languages with implicit interactions threads typically interact using shared

data, freeing the programmer from specifying the interactions. For example

GpH threads interact via shared variables, and Java threads interact via shared

objects using synchronised methods (Daconta et al., 1998). In languages with

explicit interactions threads in the same location typically interact using shared

location resources, e.g. a semaphore. If the threads are in different locations

then interactions occur through some global resource, e.g. they may address a

channel or the mailbox of a thread.

• Location. A named bounded space containing resources, like memory and I/O

capabilities, and usually threads. A location or ambient may reside on a PE or a

group of PEs. A location is an abstraction of the familiar process concept, but is

more general because a location’s threads may be executing different programs,

or it may contain no threads. A language is location independent if locations

are implicit, e.g. enabling a file to be accessed regardless of its location. A

language is location aware if locations are explicit, enabling the programmer

to utilise the resources of a location, e.g. forking a new thread onto a PE.

Examples of abstractions for location include Facile Antigua (Thomsen et al.,

1993) which provides nodeid to identify a particular PE and GdH (Pointon

et al., 2000) with PEId to name a location.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 475

• Open/closed systems. There is no reason why communicating threads must

belong to the same program, and often large systems consist of many co-

operating programs. In a closed system there is a static set of programs

being executed and all modes of inter-thread interaction are known. Hence

the interactions can be statically checked, e.g. for type safety, deadlock etc.

An open system comprises multiple executing programs interacting using a

predefined protocol, for example in a client-server model. This requires some

language support to initialise communication to connect to other programs.

Such languages support a dynamic model that is open in that it can be

extended to include new programs. However, the interactions between such a

dynamic set of programs cannot be statically checked.

• Fault tolerance. The ability of a program to detect, recover and continue after

encountering faults. Faults may either be internal to the process, e.g. divide by

zero, or external, e.g. disk failure, user interrupt.

3.1 Language classification

Languages can be classified by the coordination concepts they support as follows.

Sequential languages support a single thread and are very common, examples include

Haskell98 (Peyton Jones et al., 1999) and SML (Milner et al., 1997). Concurrent lan-

guages support explicit interactions between multiple threads, and examples include

Concurrent Haskell (Peyton Jones et al., 1996) and CML (Reppy, 1992). Parallel

languages support multiple PEs hosting multiple threads usually with implicit inter-

actions and location independence. They aim to reduce program execution time. Par-

allel extensions of Haskell include Eden (Breitinger et al., 1997), Nepal (Chakravarty

et al., 2001), and many others covered in section 4. Distributed languages support

multiple PEs hosting multiple threads with explicit interactions and location aware-

ness. Distributed languages are also more likely to support open systems and more

sophisticated fault tolerance. Distributed Haskells include Haskell with Ports (Huch

& Norbisrath, 2000), GdH (Pointon et al., 2000), and the others covered in section 5.

The remainder of the paper focusses on parallel and distributed functional lan-

guages, concurrent languages are omitted because most execute either at a single

location or on low-latency shared-memory architectures where location is relatively

unimportant. Figure 1 classifies parallel and distributed Haskells, together with a few

well-known languages, using thread interaction, location independence/awareness

and open/closed properties.

4 Parallel Haskells

The goal of parallel programming is to achieve higher performance, thereby reducing

runtime or increasing the tractable problem size. This section focuses on parallel

coordination language constructs and paradigms: it is not possible to give meaning-

ful performance comparisons of all the languages surveyed because the languages

are implemented on a wide variety of parallel architectures, and few are available

on multiple platforms. We do, however, give directly comparable measurements for

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

476 P. W. Trinder et al.

Haskell with Ports
Erlang

Explicit Interaction

Implicit Interaction

Eden
GpH

Parallel
GdH

Brisk

Distributed Haskell

Distributed

Nepal

5.2
5.3

5.3

5.3

5.1
5.3

Java

Closed System
Location Awareness Location Awareness

Open System
Location Independence

4.3
4.3

Caliban 4.4

Curry

HPF

Data Field Haskell
Data Parallel Haskell

HDC

4.2
4.2

4.1

4.2

Fig. 1. Parallel and distributed Haskell classification.

Eden and GpH in section 4.3.3. For the other languages we provide qualitative per-

formance measures and reference more detailed discussion. Substantial performance

comparisons of several programs implemented in Eden, GpH and PMLS, a strict

parallel functional language, are reported in Loidl et al. (2001a).

Adding coordination to a computation language does not change its expressive

power. Because performance is intensional, i.e. not exposed in a standard semantics

of the language, many parallel Haskells make coordination substantially implicit.

Typically parallel languages are closed, provide little or no fault tolerance, and limited

location awareness. In a parallel language location is only indirectly important

because it may enable performance improvements to the program, e.g. improved

data locality.

Parallel Haskells are illustrated and compared using the sumEuler program shown

in figure 2. The program computes the sum of a list of Euler totient values produced

by the euler function, i.e. the number of integers that are relatively prime to a given

integer. It is also an instance of a common computational structure, namely a fold-

of-map. More interestingly, sumEuler exposes several coordination issues. First, it

is inherently data parallel because of the independence of the euler computations.

Secondly, good performance can only be obtained by selecting a good thread

granularity. This is because individual calls to euler are very cheap and hence

several must be combined into a single parallel thread to offset thread management

costs. This can be achieved by the splitAtN function, shown in figure 3, that

partitions the input list into ‘chunks’. Thirdly, the sum (a fold) must be effectively

parallelised and this is done by computing the sum of the chunks of totient values,

before computing the overall sum.

The rest of this section is structured by coordination paradigm. We loosely follow

the classification given in Loogen (1999), which also contains a more detailed dis-

cussion of non-Haskell parallel functional languages. We relate the parallel Haskells

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 477

– Top level function:

sumEuler :: Int → Int

sumEuler n = sum [euler i | i ← [n,n-1..0]]

– Euler totient function:

euler :: Int → Int

euler n = length (filter (relprime n) [1..(n-1)])

– Auxiliary functions:

– Determine whether x and y are relatively prime

relprime :: Int → Int → Bool

relprime x y = hcf x y == 1

– Find the highest common factor of x and y

hcf :: Int → Int → Int

hcf x 0 = x

hcf x y = hcf y (rem x y)

Fig. 2. Sequential Haskell98 version of sumEuler.

splitAtN :: Int → [a] → [[a]]

splitAtN n [] = []

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

Fig. 3. A clustering function.

discussed in sections 4.1, 4.2, 4.3, and 4.4 with other parallel functional languages in

section 4.5, and summarise by discussing parallel language pragmatics in section 4.6.

4.1 A skeleton-based Haskell

Skeletons are a popular parallel coordination construct. Typically, a language has

a small set of predefined skeletons, where each skeleton is a higher-order function

describing a common coordination pattern with an efficient parallel implemen-

tation (Cole, 1999). Rather than managing an unstructured set of parallel threads,

the programmer need only use the higher-order functions appropriately to introduce

parallelism. Often these higher-order functions operate as collections and conse-

quently the resulting parallel code often resembles data parallel code as discussed in

section 4.2.

4.1.1 HDC

HDC (Herrmann & Lengauer, 2000) is a strictly-evaluated subset of Haskell with

skeleton-based coordination. HDC programs are compiled using a set of skeletons for

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

478 P. W. Trinder et al.

sumEuler :: Int → Int → Int

sumEuler c n = sum [(sum . seqmap euler) x | x ← splitAtN c [n,n-1..0]]

Fig. 4. HDC version of sumEuler.

common higher-order functions, like fold and map, and several forms of divide-and-

conquer. The current implementation supports two divide-and-conquer skeletons

and a parallel map, and the system relies on the use of these higher-order functions

to generate parallel code. Unlike Haskell, HDC does not implement type classes,

and has strict semantics to facilitate static thread placement. Language-level lists

are implemented as arrays internally. List comprehensions are compiled to map and

filter, where map operates in parallel over these arrays. In summary, HDC has

purely implicit threads with implicit interaction. It is location independent, since

parallelism is not explicit in the program at all.

In HDC it is possible to achieve parallel execution of the program in figure 2

without any changes. In tuning the performance of the parallel program, however,

it is often necessary to modify the code, so as to weaken data dependencies or to

increase granularity. Figure 4 shows how to increase the granularity, i.e. the com-

putation costs, of the individual threads by combining several euler computations

into a single thread and computing the sum inside each thread. The additional

argument c specifies the size of these chunks of input data, and splitAtN is used

to generate the chunks. The function seqmap produces the same result as map but

enforces sequential evaluation of the euler functions.

A particular focus of the HDC system is the time and space efficient static thread

placement. The compiler uses a library of skeletons to decompose a program into

parallel threads and place the threads on the available PEs. In contrast languages

such as GpH and Eden, use more flexible, but also more expensive, dynamic resource

management.

Reflecting the fact that the HDC compiler is still a prototype, only a set of fairly

small example programs has been compiled to efficient code: a Karatsuba algorithm

for polynomial multiplication, n-queens, maximum independent sets and convex hull

computations. On a 1024-processor Transputer-based Parsytec GCel-1024 machine

scalable three-digit speedups are reported for these programs in Herrmann (2000).

4.2 Data parallel Haskells

Data parallel languages (O’Donnell, 1999) focus on the efficient implementation

of the parallel evaluation of every element in a collection. The focus on defining

parallelism over large data structures makes this approach very appealing for the

parallelisation of data-intensive applications. Haskell’s powerful constructs for col-

lections, in particular lists, provide a very useful basis for defining data-parallel

constructs. Indeed, all of the languages discussed here use some parallel extension

of list comprehensions and implicitly parallel higher-order functions such as map.

Compared to other approaches to parallelism, the data parallel approach makes it

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 479

class Pord a . . .

type (Pord a, Ix a) ⇒ Datafield a b = . . .

type (Pord a, Ix a) ⇒ Bounds a = . . .

– operations over datafields: construction and selection

datafield :: (Pord a,Ix a) ⇒ (a → b) → Bounds a → Datafield a b

(!) :: Datafield a b → a → b

– operations over bounds of a datafield

bounds :: (Pord a,Ix a) :: Datafield a b → Bounds a

(<:>) :: (Ix a, Pord a) ⇒ a → a → Bounds a

– hyperstrict evaluation

hstrictTab :: (Pord a, Ix a, Eval a) ⇒ Datafield a b → Datafield a b

– forall abstraction (language construct)

forall apat1 ... apatn → exp

Fig. 5. Basic coordination constructs in Data Field Haskell.

easier to develop good cost models, although, it is notoriously difficult to develop

cost models for languages with a non-strict semantics. Typically data parallel lan-

guages use a closed system model and implicit parallelism. Location awareness is

not required at the program level because it is implicit in the data parallel execution.

4.2.1 Data Field Haskell

Data Field Haskell (Holmerin & Lisper, 2000) extends Haskell with the new notion

of data fields: generalisations of arrays, with parallel bulk data (collection-oriented)

operations defined over them, as shown in figure 5. In general, a data field defines a

partial function from index domain to value domain. Data fields may specify various

multidimensional shapes, sparse or dense contents, and finite or infinite size. A rich

set of functions for manipulating bounds are defined, e.g. 1<:>n defines a dense index

domain of all integers between 1 and n. Computation over a datafield is defined

either as a forall-abstraction, i.e. a function applied to the index domain, or via a

set of predefined higher-order functions over datafields, e.g. a fold-like foldlDf. To

express the extent to which an expression should be evaluated Data Field Haskell

introduces functions for strict and hyperstrict evaluation of Haskell expressions,

e.g. hstrictTab. Data Field Haskell has been implemented as an extension for

Haskell 1.3 on top of the nhc13 compiler (Röjemo, 1995). However, no parallel

implementation is yet available.

The example code in figure 6 demonstrates how to implement sumEuler in

Data Field Haskell. In mkField an explicit datafield constructor is used to build

a nested datafield. The outer field ranges over the chunks that are mapped onto

processors. The inner field ranges over the values passed to the euler function on

one processor. The current sequential implementation does not distinguish between

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

480 P. W. Trinder et al.

sumEuler :: Int → Int → Int

sumEuler c n = sumDf (forall i →
sumDf (forall j → euler (xs!i)!j))

where xs = mkField c n

mkField :: Int → Int → Datafield Int (Datafield Int Int)

mkField c n = datafield (λ i →
datafield (λ j → min c*i+j n) (0<:>c-1)

(0<:>n+c-1 ‘div‘ c - 1)

sumDf :: (Pord a, Ix a, Num b) ⇒ Datafield a b → b

sumDf = foldlDf (+) 0

Fig. 6. Data Field Haskell version of sumEuler.

the two forall constructs, but in the parallel implementation it is planned to enable

parallel execution by choosing an appropriate, parallel, index domain. To avoid high

overhead when converting lists into datafields, most operations are performed on

the datafields, even if there is little parallelism in the execution of the code.

So far only a small set of sequential programs has been implemented in Data

Field Haskell. The largest applications include a particle simulation, a neural network

relaxation model, and an LU-factorisation algorithm.

4.2.2 Nepal

The extension of Haskell developed in the Nepal project (Chakravarty et al., 2001),

here called Nepal for short, adds parallel arrays to Haskell. It provides special syntax

such as array comprehensions and parallel implementations of basic functions

over these arrays. Similar in spirit to the NESL language (see section 4.5) data

parallelism can be nested, achieving a high degree of flexibility. A special flattening

transformation is used to transform nested into flat data parallelism (Chakravarty

& Keller, 2000).

Using the new language constructs for arrays the implementation of sumEuler

in Nepal is straightforward and shown in figure 7. All standard operations on lists,

such as length, filter, etc, have corresponding versions over parallel arrays. The

euler function is modified to use arrays as well, to make better use of the flattening

transformation thereby achieving a better data distribution. Array comprehensions

of the form [: . . . :] are analogous to Haskell’s list comprehensions and are trans-

lated into calls to the functions mapP and filterP, which are in turn implemented

as calls to parallel code. Nepal’s flattening transformation in combination with a

type system that distinguishes local from global values enables the compiler to auto-

matically transform from the code in figure 7 into a clustered version with better

granularity (Keller & Chakravarty, 1999). On the positive side, this approach of im-

plicit parallelism is convenient for the programmer and leads to concise programs.

However, the downside is that clustering is outside the programmer’s control, which

implies that it cannot be easily modified nor adapted dynamically.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 481

sumEuler :: Int → Int

sumEuler n = sumP [: euler i | i ← [:n, n-1 .. 0:] :]

euler :: Int → Int

euler n = lengthP (filterP (relprime n) [:1 .. n-1:])

Fig. 7. Nepal version of sumEuler.

Nepal is currently being implemented as an extension of GHC with the following

main steps. The flattening transformation maps nested array computations to flat

array computations. Then the data parallel primitives are unfolded by decomposing

them into local components, with optimisations such as array loop fusion to im-

prove granularity, and global components, introducing communication. For parallel

execution routines of a structured communication library are used to provide a high

level of portability. Performance measurements of the current sequential implemen-

tation show a high efficiency of the array code, significantly outperforming both

standard Haskell arrays and list-based implementations of test programs such as

a Barnes-Hut algorithm. Parallel performance measurements of a hand-translated

Barnes-Hut algorithm achieved promising speedups on up to 24 processors on a

Cray T3E multi-processor (Chakravarty & Keller, 2000).

4.2.3 Data Parallel Haskell

An older system that used such a data parallel approach was Data Parallel

Haskell (Hill, 1994). The central idea of Data Parallel Haskell was to replace

the single ‘aim’ of sequential computation, namely computing the result value, by

a series of aims of evaluation and to force evaluation on all of them. Parallel

performance could be improved by manipulating the aim, which becomes a central

component of Data Parallel Haskell’s operational semantics, but remains hidden

from the programmer. The goal of this design was to achieve data-parallel execution

without forcing strict evaluation and thereby sacrificing the advantages of non-strict

semantics.

As new language constructs Data Parallel Haskell defined special arrays called

PODs (parallel data structures), represented as one-dimensional sparse and poten-

tially infinite index/value pairs. POD comprehensions were used to define data

parallelism. These comprehensions were compiled to parallel implementations of

the well-known map, fold and scan functions. The implementation used program

transformation to vectorise a functional program. Data Parallel Haskell has been

implemented as a parallel extension of Haskell 1.2 on the GHC 0.16 compiler, but

there is no current development.

4.3 Semi-explicit parallel Haskells

Semi-explicit parallel languages provide a few high-level constructs for controlling

key coordination aspects, while automatically managing most coordination aspects

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

482 P. W. Trinder et al.

par :: a → b → b – parallel composition

seq :: a → b → b – sequential composition

type Strategy a = a → () – type of evaluation strategy

using :: a → Strategy a → a – strategy application

rwhnf :: Strategy a – reduction to weak head normal form

class NFData a where – class of reducible types

rnf :: Strategy a – reduction to normal form

Fig. 8. Basic coordination constructs in GpH.

statically or dynamically. Historically annotations were commonly used for semi-

explicit coordination, but more recent languages provide compositional language

constructs. As a result, the distinction between semi-explicit coordination and coor-

dination languages is now rather blurred, but the key difference in the approach is

that semi-explicit languages aim for minimal explicit coordination.

4.3.1 GpH

GpH (Trinder et al., 1998) is a modest extension of Haskell with parallel (par)

and sequential (seq) composition as coordination primitives (see figure 8). Deno-

tationally, both constructs are projections onto the second argument. Operationally

seq causes the first argument to be evaluated before the second and par indicates

that the first argument may be executed in parallel. The latter operation is called the

‘sparking’ of parallelism and is used in different variants in many parallel languages.

The runtime-system, however, is free to ignore any available parallelism. In this

model the programmer only has to expose expressions in the program that can

usefully be evaluated in parallel. The runtime-system manages the details of the

parallel execution such as thread creation, communication etc. In summary, GpH

has a closed system model with semi-explicit parallelism and implicit communi-

cation, based on a virtual shared heap, and location independence. GpH is publicly

available from the GPH Web pages (GPH, 2001).

Experience of implementing non-trivial programs in GpH shows that the un-

structured use of par and seq operators can lead to rather obscure programs. This

problem can be overcome with evaluation strategies: lazy, polymorphic, higher-order

functions controlling the evaluation degree and the parallelism of a Haskell ex-

pression. They provide a clean separation between coordination and computation.

The driving philosophy behind evaluation strategies is that it should be possible to

understand the computation specified by a function without considering its coordi-

nation. Figure 8 shows some basic strategic operations. The using construct applies

a strategy to a Haskell expression. The basic strategy rwhnf reduces an expression to

Weak Head Normal Form (WHNF), the default in Haskell. The overloaded strategy

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 483

sumEuler :: Int → Int → Int

sumEuler c n = sum ([(sum . map euler) x | x ← splitAtN c [n,n-1..0]]

‘using‘ parList rnf)

Fig. 9. GpH version of sumEuler.

rnf reduces an expression to Normal Form (NF), and is instantiated for all major

types.

In GpH it is possible to specify block-wise evaluation over the input list with

chunk size c applying the parListChunk c rnf strategy to the list comprehension.

However, without changing the computational code it is not possible to compute

the sum of each chunk. A version that does so is given in figure 9. Again the

splitAtN function is used to split the list into chunks of size c for granularity

control. The strategy parList defines data parallelism over these segments. Each

thread generated by this strategy computes the function sum . map euler. This

clustering technique can be generalised to arbitrary data structures as discussed in

(Loidl et al. 2001b). In summary, the programmer has the choice of working purely

on strategy level, leaving the computational code of the program unchanged, or to

perform some simple transformations of the computational code to further tune

parallel performance.

GpH has been used to engineer several large programs, four of which are dis-

cussed in Loidl et al. (1999). The largest program is Lolita, a natural language

processor comprising tens of thousands of lines of code, that has been parallelised

for a shared memory machine. Naira is a parallelising compiler for a subset of

Haskell, based on the dataflow model of computation. Blackspots is a data-intensive

real-world application to find blackspots in a database of traffic accident records.

LinSolv is an exact linear system solver. Performance results for all programs on

workstation networks and a Sun SMP machine are reported in (Loidl et al. 1999),

and performance comparisons with Eden are reported in section 4.3.3.

4.3.2 Eden

Eden (Breitinger et al., 1997) coordinates parallel computations using explicit process

creation and interconnection, enabling the programmer to define arbitrary process

networks. Thread interaction can be either implicit, via shared variables and function

parameters on process creation time, or explicit via communicating parameters to

processes during process life time. The language uses a closed system model with

location independence. A prototype of the Eden system is available on request.

Figure 10 summarises the basic coordination constructs available in Eden. Process

abstractions with type Process a b define the behaviour of processes with input

of type a and output of type b analogous to functions of type a → b defined by

λ-abstractions. A process abstraction specifies the mapping of data input in1. . .inm
via inports to data output out1. . .outn via outports. Inports and outports connect

(unidirectional) communication channels to processes. Communication channels

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

484 P. W. Trinder et al.

newtype Process a b = . . .

– process abstraction

process (in1,...,inm) → (out1,...,outn) :: Process (a1,...,am) (b1,...,bn)

– process instantiation

(#) :: (Transmissible a, Transmissible b) ⇒ Process a b → a → b

– non-deterministic merge process

merge :: Process [[a]] [a]

Fig. 10. Basic coordination constructs in Eden.

sumEuler :: Int → Int → Int

sumEuler c n = sum ([(process z → (sum . map euler) z) # x

| x ← splitAtN c [n,n-1..0]]

‘using‘ seqList r0)

Fig. 11. Eden version of sumEuler.

are not autonomous objects, but tightly coupled with processes. Processes and their

interconnecting channels are created by the evaluation of process instantiations of the

form p # x which applies the process abstraction p to the expression x, representing

the input tuple. The result of a process instantiation is the tuple of output data of

the newly created process. Eden processes use independent threads to produce their

outputs. For each output a separate thread is created which evaluates the output

expression to normal form and sends the result value via the corresponding outport.

Lists are transmitted as streams, i.e. element-wise. A predefined non-deterministic

process merge is provided for many-to-one communication, which is useful for

specifying reactive systems. It takes a list of input streams and merges the values in

the order in which they arrive.

In Eden the programmer typically starts with a specific process network in mind

and models this network using explicit processes. Evaluation strategies may also be

required. This may amount to a higher effort in implementing a parallel algorithm,

compared to GpH or HDC, especially when it is not possible to use one of a set of

predefined Eden skeletons for parallel execution (Klusik et al., 2000b). However, it

offers more possibilities for tuning the parallel performance.

Figure 11 shows an Eden version of the sumEuler program. The list compre-

hension defines parallelism over the chunks of input data by applying a process

abstraction to all chunks generated by splitAtN. The body of the process abstrac-

tion specifies the sequential computation performed by each thread. The strategy

seqList r0 starts off the evaluation of the parallel threads by enforcing a spine

strict evaluation of the list.

The largest programs implemented in Eden are a ray tracer of several hundred

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 485

lines of code, a linear systems solver and a checkers program. Detailed measurements

of these programs can be found in Klusik et al. (2001).

4.3.3 Eden/GpH Performance comparisons

Eden and GpH are available on the same platform and hence we are able to

summarise the following direct performance comparisons. The measurements have

been performed on a 32-node Beowulf cluster (Ridge et al., 1997) consisting of Linux

RedHat 6.2 workstations with a 533MHz Celeron processor, 128kB cache, 128MB

of DRAM, 5.7GB of IDE disk, connected through a 100Mb/s fast Ethernet switch

with a latency of 142µs, measured under PVM 3.4.2. For the sumEuler program

with a list length of 8000 and a cluster size of 100, the relative speedups on 16

processors are 13.1 for GpH and 12.4 for Eden.

Other programs that have been compared include a raytracer based on an Id

program in the Impala benchmark suite (Impala, 2001). For this simple data parallel

program a static mapping of threads to processors proves to be most efficient, with

GpH’s dynamic resource management generating additional overhead. Overall, for

an input of 640 spheres and a 350×350 grid, and using clusters of 10 lines, Eden

achieves a relative speedup of 13.3 on 16 processors, compared to 5.2 for GpH.

An exact linear system solver, originally developed in GpH and ported to Eden,

achieved relative speedups of 6.9 (GpH) and 13.2 (Eden) for a sparse 14×14 matrix

with arbitrary precision integers as input. A detailed discussion of these results is

presented in Loidl et al. (2001a) and the program sources are available online.

4.4 Haskell with a coordination language

Parallel coordination languages (Kelly & Taylor, 1999) are separate from the com-

putation language and thereby provide a clean distinction between coordination

and computation. Historically, Linda (Carriero & Gelernter, 1989) and PCN (Foster

et al., 1992) have been the most influential coordination languages, and often a co-

ordination language can be combined with many different computation languages,

typically Fortran or C. Other systems such as SCL (Darlington et al., 1996) and

P3L (Bacci et al., 1995) focus on a skeleton approach for introducing parallelism and

employ sophisticated compilation technology to achieve good resource management.

4.4.1 Caliban

The latest implementation of the Caliban coordination language uses Haskell− as

computation language (Kelly, 1989; Taylor, 1997). Haskell− is a subset of Haskell,

mainly omitting modules and type classes. Caliban has constructs for explicit par-

titioning of the computation into threads, and for assigning threads to (abstract)

processors in a static process network. Communication between processors works

on streams, i.e. eagerly evaluated lists, similar to Eden. In summary, Caliban uses

a closed system model with coordination via semi-explicit threads, communication

via implicitly defined data dependencies, and location independence.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

486 P. W. Trinder et al.

NoPlace – null assertion

Bundle [x, y] – place x and y on the same processor

Annot x – extract location of x

Arc a b – document a data dependency between a and b

a And b – execute subnets a and b on different processors

a With b – execute subnets a with b on the same group of processors

Fig. 12. Basic coordination constructs in Caliban.

sumEuler :: Int → Int → Int

sumEuler c n = res moreover fan res ress

where res = sum ress

ress = map (sum . map euler) chunks

chunks = splitAtN c [n,n-1..0]

fan :: Stream → [Stream] → Placement

fan s [] = NoPlace

fan s (x:xs) = (Bundle [x]) And (Arc x s) And (fan s xs)

Fig. 13. Caliban version of sumEuler.

Figure 12 summarises the basic coordination constructs in Caliban. Each entry

represents a component in the data structure Placement controlling the evaluation of

a Haskell− expression. Since Caliban’s coordination constructs are integrated into the

host language, functions producing placement structures, so called network forming

operators (NFOs), can be defined exploiting the full power of the host language.

These NFOs are evaluated at compile-time using partial evaluation techniques. The

variables x and y are Haskell− variables of type Stream representing computations,

whereas a and b represent process networks of type Placement. The Bundle assertion

produces a process network of co-located computations with threads being generated

for each argument. The Annot directive extracts placement information from a

computation. Arc is an assertion of a data dependency between two process networks,

which is checked by the compiler. Two composition directives for process networks

are available. The And directive indicates that the networks execute in parallel,

whereas the With directive indicates that two networks should be executed on the

same group of processors.

Figure 13 shows the implementation of sumEuler in Caliban. In the body of

sumEuler the coordination expression fan res ress is applied to res by using

the moreover clause, similar to GpH’s using. The definition of fan itself specifies

the parallel execution of every list element in its second argument by using And for

composition. It corresponds to GpH’s parList. Overall, this code is similar to the

code used in semi-explicit languages such as GpH. However, since Caliban describes

static process networks it may employ more efficient, though less flexible, resource

management.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 487

A prototype implementation of Caliban with Haskell− as host language is avail-

able (Taylor, 1997). The largest applications implemented in Caliban are a Jacobi

relaxation algorithm and a ray tracer, introduced in Kelly (1989). Although the

overall structure of this ray tracer is similar to the one used in the comparison

of GpH with Eden, it should be noted that they are based on different sequential

versions and that the input size as well as parallel architecture differ. For an input

modelling a scene with 20 cubes and a grid size of 100×100 rays, and using blocks

of 40 rays for granularity control in a task farm architecture, relative speedups of

up to 24 were achieved on 35 processors of a 128 processor Fujitsu AP1000 based

on 25MHz Sparc processors (Taylor, 1997).

4.5 Other parallel functional languages

4.5.1 Other parallel Haskells

Para-functional programming (Hudak, 1986) is the general approach of adding

control directives to a functional program to specify parallel execution. These control

directives allow the programmer to describe detailed execution schedules as well as

the mapping of threads to processors. A Haskell-based implementation of para-

functional programming on an SGI Challenge shared-memory machine is described

in (Mirani & Hudak, 1995). This implementation fully integrates the directives into

Haskell by defining first-class schedules with a monadic type. These schedules are

used in a similar way to evaluation strategies in GpH and moreover clauses in

Caliban.

Haskell-Linda (Peterson et al., 2000) is an extension of Haskell providing a binding

to basic operations defined in the Linda model (Carriero & Gelernter, 1989) for

describing parallel execution. It is an open system model with explicit parallelism

and implicit synchronisation. In the Linda model communication between parallel

threads is based on operations on a shared tuple space. The basic operations on

this tuple space, which is split into several regions, are read, write, and in (for

read and remove). Parallel threads, represented as process tuples in the tuple space,

communicate by reading and writing tuples in the tuple space. In reading from

the tuple space a pattern can be specified. If several tuples match the pattern

the result is non-deterministic. Haskell-Linda is currently used to specify parallel

functional reactive programs (Parallel-FRP) such as a web-based online auctioning

system.

Finally, several bindings of explicit message passing libraries, such as PVM (PVM,

1993) and MPI (MPI, 1997), for Haskell have been developed (Breitinger et al., 1998;

Weber, 2000; Winstanley & O’Donnell, 1997). These languages use an open system

model of explicit parallelism with explicit thread interaction. Since the coordination

language is basically a stateful (imperative) language, monadic code is used on the

coordination level. Although the high availability and portability of these systems

are appealing, the language models suffer from the rigid separation between the

stateful and purely functional levels.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

488 P. W. Trinder et al.

4.5.2 Other non-strict languages

The late 1980s saw an increasing interest in the parallel implementation of non-

strict functional languages, which is reflected in the implementation of several such

systems. The <ν,G>-machine (Augustsson & Johnsson, 1989) used LML with anno-

tations for sparking and was implemented on a Sequent Symmetry. The extension of

Haskell with sparking annotations used on the parallel GRIP machine (Peyton Jones

et al., 1987) was a direct precursor of the GpH language covered in section 4.3.1. The

LML-like, lazy, implicitly-parallel functional language ALFL has been implemented

on a distributed-memory Intel Hypercube as well as on a shared-memory Encore

machine (Goldberg, 1988), with near-linear speedups for small programs such as

nqueens on the latter architecture.

The HDG machine (Kingdon et al., 1991) implemented a Miranda-like, implicitly-

parallel, lazy language on a Transputer network, by using the evaluation transformer

model (Burn, 1991) to extract parallelism. The PAM machine (Loogen et al., 1989)

implemented a simple non-strict, higher-order language with an explicit parallel let

construct, in addition to the evaluation transformer model, on a Transputer network.

Concurrent Clean (Plasmeijr et al., 1999; Nöcker et al., 1991) is a language with

close similarity to Haskell, in particular due to its non-strict semantics. Coordi-

nation is specified using annotations, i.e. compiler directives in comments, similar

to, but more sophisticated than the directives in GpH. Concurrent Clean has been

implemented on the Transputer-based ZAPP machine (Goldsmith et al., 1993),

which focusses on divide-and-conquer parallelism. Another implementation of Con-

current Clean on a Transputer network achieved good absolute performance re-

sults (Kesseler, 1996).

The Dutch Parallel Reduction machine project (Barendregt et al., 1987; Hartel

et al., 1995) used a Miranda-like, lazy language with a special ‘sandwich’ annotation

for describing fork-and-join parallelism. Although this annotation favours divide-

and-conquer parallelism, other paradigms such as data parallelism can be expressed

by using program transformations. The largest application is a tidal prediction

program on a small distributed-memory machine.

4.5.3 Other strict languages

Parallel extensions to Lisp have a long history: QLisp (Goldman et al., 1989), Par-

alation Lisp (Di Napoli et al., 1996), based on the general Paralation model (Sabot,

1988), EuLisp (Padget et al., 1993), ∗Lisp (Thinking Machine Corporation, 1990),

FX (Gifford et al., 1992), PaiLisp (Kawamoto, 1999), BaLinda Lisp (Feng et al.,

1995), TS/Scheme (Jagannathan, 1993). Some of the most prominent and most in-

fluential systems are Multilisp (Halstead, 1985) and its successor MulT (Kranz et al.,

1989). The thread creation construct in these two languages is a future, which hides

the synchronisation between parallel threads behind ordinary access to variables in

a shared address space. In essence, it acts like a par operator in GpH. To reduce

the overhead imposed by a huge number of parallel threads, lazy task creation was

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 489

invented by Mohr et al. (1991). This technique allows the computation of a potential

child thread to be subsumed by the parent thread.

SAC (Single Assignment C) (Scholz, 1996) is a strict, first-order functional lan-

guage with implicit parallelism and implicit thread interaction, optimised for array

processing. Its main application area is scientific computing with its focus on ar-

ray structures, which can be abstracted over shape and dimensionality, and rather

regular parallelism. Good performance results for a Jacobi relaxation algorithm are

reported on a shared-memory Sun Enterprise (Grelck, 1998).

The UFO-Lite language (Sargeant, 1993) represents a first-order, hybrid functional

object-oriented language with implicit parallelism and implicit thread interaction.

Its prototype implementation on an SGI Origin focusses on the efficient handling

of fine grained parallelism.

4.5.4 Skeleton-based languages

A well-engineered skeleton-based language is the implicitly-parallel, strict functional

language PMLS (Michaelson et al., 2001). It is an automatically parallelising com-

piler for a pure subset of SML. The execution costs of functions are profiled by

executing a structural operational semantics. Based on this information a cost model

for the available skeletons, possibly nested, is used to select a decomposition and

mapping of parallel threads. Measurements on a range of parallel machines includ-

ing a Beowulf cluster, a Fujitsu AP3000, an IBM SP/2, and a Sun Enterprise SMP

exhibit good speedups for programs such as matrix multiplication, a ray tracer and

a linear system solver (Scaife et al., 2001).

Other well-developed systems using a skeleton-based approach for parallelism are

SCL (Darlington et al., 1996) and P3L (Bacci et al., 1995). Both systems define a

coordination language that can be freely combined with an arbitrary computation

language. In practice these systems often use C or Fortran as computation languages.

As a crucial technique for the development of larger applications these languages

allow the specification of data re-distribution to compose skeletons with conflicting

data distributions.

4.5.5 Data parallel languages

One of the most successful parallel functional languages is NESL (Blelloch, 1996).

NESL is a strict, strongly-typed, data-parallel language with implicit parallelism and

implicit thread interaction. It has been implemented on a range of parallel archi-

tectures, including several vector computers. A wide range of algorithms have been

parallelised in NESL, including a Delaunay algorithm for triangularisation (Blelloch

& Narlikar, 1997), several algorithms for the n-body problem (Blelloch et al., 1996),

and several graph algorithms.

Fish (Jay & Steckler, 1998) is a higher-order polymorphic language with strict

semantics. Its main innovation is the introduction of shapely types that encode

information about the bounds of array-like objects in the type system of the

language. This extended type system enables shape analysis and provides additional

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

490 P. W. Trinder et al.

information to the compiler, which generates very efficient sequential code. The

data-parallel variant of this language, GoldFish, is still under development.

4.5.6 Dataflow languages

SISAL (Cann, 1992) is a first-order, strict functional language with implicit paral-

lelism and implicit thread interaction. Its implementation is based on a dataflow

model and it has been ported to a range of parallel architectures. Comparisons of

SISAL code with parallel Fortran code show that its performance is competitive with

Fortran, without adding the additional complexity of explicit coordination (LANL,

2001).

The pHLuid system (Flanagan & Nikhil, 1996) is a parallel implementation

of Id on networks of workstations. It uses a dataflow model of computation to

achieve implicit parallelism. The Id language is, despite many syntactic differences,

closely related to Haskell. In Hammes et al. (1995), a good language and perform-

ance comparison of Id with Haskell on a realistic benchmark program is given.

Id is polymorphic, higher-order and has a non-strict semantics, implemented via

lenient or parallel eager evaluation. Indeed, a fusion of Id and Haskell has been

proposed (Nikhil et al., 1995).

4.5.7 Derivational approaches

The referentially transparent semantics of Haskell makes it an attractive language

for deriving parallel programs. In such an approach Haskell, or often BMF no-

tation, is used as specification language, and the program is transformed, usually by

hand, into a parallel program. The target language is often C with MPI or PVM,

but in some cases intermediate points of the transformation are already executable,

e.g. as Haskell+MPI programs. The most prominent of these approaches are ab-

stract parallel machines (O’Donnell & Rünger, 2000), the TwoL system (Rauber &

Rünger, 1996), systems using BSP (Valiant, 1990) as parallel programming model

(e.g. Loulergue, 2000), and several systems for deriving skeleton-based parallel code

out of Haskell or BMF specifications (Pepper, 1993; Bacci et al., 1999).

4.6 Parallel Haskell pragmatics

4.6.1 Tools and environment

A common feature of the languages discussed in this section is their high-level

and often dynamic coordination. Sometimes the programmer only has to identify

expressions suitable for parallel execution (GpH) in other cases it suffices to give a

high-level description of a process network (Eden, Caliban). In contrast to detailed

static coordination, the parallel behaviour induced in a program by high-level,

dynamic coordination is far from obvious. This opacity is unfortunate because

the programmer must have a clear understanding of parallel behaviour to tune

performance. Therefore a set of dynamic profiling and visualisation tools is very

important for many parallel functional languages.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 491

sumEulerS_mp 5 5000 100 +RTS -qP -qPg -qg1 -qh0 -sstderr

running runnable fetching blocked
0 500 1.0 k 1.5 k 2.0 k 2.5 k 3.0 k 3.5 k 4.0 k 4.5 k 5.0 k 5.5 k

ta
sk

s

0

2

4

6

8

10

12

14

16

18

20

 ms5777Runtime =

Average Parallelism = 10.8GUM

Fig. 14. A GpH activity profile.

The best developed set of parallel profiling and visualisation tools exists for GpH.

It consists of a highly-tunable simulator for parallel execution (GranSim) and several

parallel profilers including GranCC and GranSP. The latter are post-mortem tools

operating on a log file, and visualising multiple aspects of parallel execution, e.g.

overall activity of the machine, per-processor activity or per-thread activity. For

example, figure 14 shows an overall activity profile of the sumEuler program from

section 4.3.1 executing on a 20 processor Beowulf, with execution time on the x-axis

and the number of tasks on the y-axis. The tasks are separated into four classes,

depending on their state: running if they are executing; runnable if they could be

executed if a processor were available; blocked if they await data under evaluation;

and fetching if they are retrieving data from another processor. These tools have

been crucial in the parallelisation of a set of large GpH programs (Loidl et al.,

1999). The Eden system supports Paradise, a GranSim-like simulator (Hernandez

et al., 1999), and Caliban provides similar but less sophisticated visualisation tools

for analysing parallel performance (Taylor, 1997).

4.6.2 Programming methodology

Implicit parallelism, often promised in the context of functional languages, offers

the enticing vision of parallel execution without changes to the program. In reality,

however, the program must be designed with parallelism in mind to avoid unnec-

essary sequentialisation. In theory, program analyses such as granularity, sharing,

and usage analysis can be used to automatically generate parallelism. In practice,

however, almost all current systems rely on some level of programmer control. The

path from powerful and useful analyses, over the automatic extraction of the right

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

492 P. W. Trinder et al.

amount of usable parallelism, to the dynamic resource management required for

these systems is a long one, and poses many research problems, especially in the

middle stage.

Current development methodologies have several interesting features. The com-

bination of languages with minimal explicit coordination and good profiling tools

facilitates the prototyping of alternative parallelisations. Obtaining good coordi-

nation at an early stage of parallel software development avoids expensive re-

designs. In later development stages, detailed control over small but crucial parts of

the program may be required, and profiling tools can help locate expensive parallel

computations. During performance tuning the high level of abstraction may become

a burden, hiding low level features that could be usefully controlled by the program-

mer. Specific coordination aspects, such as evaluation degree and data placement,

often have to be carefully specified in some parts of a program, but they can only

be indirectly controlled in languages like HDC, GpH and Eden.

4.6.3 Implementation issues

Coordination constructs can be added to an existing computation language such

as Haskell in two ways: they may be built-in to the language, as in GpH and

Eden, or built-on the language as a library, as in Haskell+MPI. The main advan-

tage of integrating parallelism into the language is that it facilitates analysis and

transformations of the program. Moreover, a tight coupling of parallelism with the

runtime-system facilitates dynamic resource management.

On the other hand, providing a separate library for parallelism is in general easier

to implement, and achieves a more modular design. It is no coincidence that there

are several systems extending Haskell with some form of standard communication

library. However, the main problem of this approach is the mismatch between

the declarative computation language and a library of imperative coordination

constructs. In practice this means that monadic, and therefore serialised, code must

be used extensively, which both hampers the design of parallel algorithms and

eliminates many of the benefits of a purely functional computation language.

5 Distributed Haskells

Many programs are naturally distributed in nature, that is they comprise multiple

threads interacting explicitly on multiple PEs. Examples include CASE tools, multi-

user simulations, multi-user distance learning environments. The following sections

describe the two recent distributed Haskell implementations, and their relationship

to other distributed functional languages.

5.1 Haskell with Ports

Haskell with Ports (Huch & Norbisrath, 2000) is a library for Concurrent Haskell

that takes an imperative approach to distribution: adding additional monadic com-

mands for communication between PEs. The design of the library is influenced by

the Erlang language which provides communication via message passing with a

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 493

newPort :: IO (Port a)

writePort :: Port a → a → IO ()

readPort :: Port a → IO a

mergePort :: Port a → Port b → IO (Port (Either a b))

registerPort :: Port a → PortName → IO ()

unregisterPort :: Port a → IO ()

lookupPort :: PortHost → PortName → IO (Port a)

link :: Port a → IO () → IO Link

unlink :: Link → IO ()

Fig. 15. Haskell with Ports constructs.

mailbox for every process (Armstrong et al., 1996), and by concurrent constraint

programming which introduces the notion of a port with a single reader (Janson

et al., 1993).

Haskell with Ports has an open system model and ports allow explicit and

dynamically-typed communication of first order values including ports. Within a

location communication is lazy, but between locations communication is strict, i.e.

messages sent to local threads are not strictly evaluated, but any message to a

remote thread is strict because it is converted to text using show. A port may have

multiple writers but only one reader, and figure 15 lists the distribution constructs.

A port is created by newPort, and the reader must be the port’s creator and thus

both port and reading thread reside on the same PE. Data is requested from the

port by a blocking readPort operation. The mergePort operation enables reading

from multiple ports. Values are written to a port with a non-blocking writePort,

and hence ports are essentially FIFO queues.

A port is registered to make it visible to other PEs, using registerPort and

unregisterPort. Once a port is registered it can be retrieved using the PE and port

names via the lookupPort operation. A separate process, the postoffice, executes

on each PE and stores information about registered ports as well as performing

inter-PE communication. Linking is the eager detection of errors in a port, i.e.

actively watching for errors, rather than handling them. By using link and unlink

an operation can be associated with port failure, e.g. a cleanup routine can be

specified when a port disconnects. Linking together with exception handling on the

read and write operations provide a sound basis for fault tolerant programming.

Ping is an example program that performs a lookup on an environment variable

on a remote PE and then returns the resulting value to the original PE. The goal

is to determine the overall time for the round trip where communication is the

dominating cost. For comparison, in our network the UNIX ping utility returns a

time of the order of 0.5ms. Figure 16 shows a pair of Haskell with Ports programs

that implement ping, together with their output. The server program creates and

registers a port PingServer, before looping waiting for messages and responding

to them. The client program performs a lookup on the specified server for the port

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

494 P. W. Trinder et al.

– Interface –

data ServerMsg = Ping (Port ClientMsg)

data ClientMsg = Pong String

– Server –

main = do

serverPort ← newPort

registerPort serverPort "PingServer"

let pingServer = do

(Ping clientPort) ← readPort serverPort

name ← getEnv "HOST"

writePort clientPort (Pong name)

pingServer

pingServer

– Client –

main = do

putStr "Host of ping server? "

host ← getLine

serverPort ← lookupPort host "PingServer"

clientPort ← newPort

let

timePing p = do

putStr ("Pinging "++show p++" ... ")

(name,ms) ← timeit (pingPong p)

putStrLn ("at "++name++" time="++show ms++"ms")

pingPong p = do

writePort p (Ping clientPort)

(Pong name) ← readPort clientPort

return name

mapM timePing (replicate 4 serverPort)

return ()

Host of ping server? ushas

Pinging (pHost="137.195.52.186") ... at ushas time=60ms

Pinging (pHost="137.195.52.186") ... at ushas time=79ms

Pinging (pHost="137.195.52.186") ... at ushas time=40ms

Pinging (pHost="137.195.52.186") ... at ushas time=68ms

Fig. 16. Haskell with Ports ping.

PingServer, then a monadic map, mapM, is used to call timePing four times. Within

timePing, the timeit function times the pingPong call which sends a message to

the server and waits for a reply. The client program reports relatively long times,

which is unsurprising for several reasons. Communication proceeds with a message

passing from client, to local postoffice, to remote postoffice, to server, and then

back through this chain. All these components are implemented in Haskell and the

communication is relatively high level, using sockets and the data is serialised, i.e.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 495

forkIO :: IO () → IO ThreadId

myThreadId :: IO ThreadId

newEmptyMVar :: IO (MVar a)

takeMVar :: MVar a → IO a

putMVar :: MVar a → a → IO ()

isEmptyMVar :: MVar a → IO Bool

raiseInThread :: ThreadId → Exception → a

throw :: Exception → a

catchAllIO :: IO a → (Exception → IO a) → IO a

Fig. 17. Concurrent Haskell constructs.

manipulated as text using read and show functions. The implementation is currently

being optimised.

Other Haskell with Ports applications include a chat program where users com-

municate in a client server mode, and a database where users communicate through

a client to a central database server to manipulate the data.

In summary, Haskell with Ports provides dynamically typed explicit communica-

tion of first order values and Ports using a new Ports construct. Communication

is often strict with no sharing of data and therefore no synchronisation is necessary

within the communicated data. An open system model allows programs to leave and

join, while registering ports allows a connecting program locate specific resources.

Location independence can be implemented but would require a major reimplemen-

tation of existing libraries. Exceptions and linking support robust fault tolerance.

The library is publicly available from Haskell + Ports (2001).

5.2 GdH

GdH (Pointon et al., 2000) is a modest conservative extension of Haskell98 and is

a strict superset of both Concurrent Haskell (Peyton Jones et al., 1996) and GpH.

It supports two classes of thread: stateless threads and stateful or side-effecting

I/O threads. Stateless threads are inherited from GpH and intended for parallelism,

interacting via shared variables, as described in section 4.3.1. Evaluation strategies

are used in GdH to coordinate stateless threads, exactly as in GpH. The remaining

discussion focusses on the I/O threads inherited from Concurrent Haskell.

Concurrent Haskell supports explicit interleaved concurrency with named I/O

threads created by a monadic forkIO command (Peyton Jones et al., 1999), and

the constructs are summarised in figure 17. I/O threads may interact implicitly, like

stateless threads, or explicitly within the I/O monad using polymorphic semaphore

primitives, termed MVars. Multiple threads may share an MVar, giving rise to non-

deterministic semantics. I/O Threads and MVars can be abstracted over to give

buffers, FIFO channels, merging, etc. Concurrent Haskell supports both synchronous

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

496 P. W. Trinder et al.

myPEId :: IO PEId

allPEId :: IO [PEId]

class Immobile a where

owningPE :: a → IO PEId

revalIO :: IO a → a → IO a

instance Immobile PEId

Fig. 18. GdH constructs.

- local thread creation -

forkIO :: IO () → IO ThreadId

- remote thread creation -

rforkIO :: IO () → PEId → IO ThreadId

rforkIO job p = revalIO (forkIO job) p

Fig. 19. Remote thread placement using revalIO.

and asynchronous exceptions to allow the flexible handling of exceptional or error

situations.

GdH supports distributed programming by extending the semantics of Concurrent

Haskell constructs to multiple PEs and adding the new language constructs for

location awareness given in figure 18. A GdH program is a closed system and

executes on a set of locations, each labelled with a PEId. A thread’s current location

is obtained by myPEId, and the list of all available locations is returned by allPEId.

Stateful objects, such as MVars, threads or files, are unique and fixed at a location,

although references to them are freely copied to other locations. Stateful objects are

instances of the new Immobile class and are located by the owningPE method.

While GdH supports location-awareness, significant parts of a GdH program may

be location independent. Stateless and I/O threads interact implicitly regardless

of location as in GpH. Location independent manipulation of stateful objects is

supported by rewriting the relevant libraries, like those for MVars, to encapsulate

and hide the use of owningPE to determine the object’s location.

Distributed state is manipulated using a remote evaluation function in the IO

monad: revalIO job p which blocks the calling thread until the execution of job

at location p completes. That is, revalIO temporarily relocates the thread, rather

like Java RMI (Daconta et al., 1998). Location independent properties of the remote

thread created by revalIO are preserved, e.g. error handling remains unaffected so

that an exception raised in the remote thread may propagate back to a handler in

another location. Stateful object placement can also be accomplished by revalIO,

for example figure 19 shows its use to create a distributed version of the Concurrent

Haskell forkIO command that places a thread on a specified PE.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 497

main = do

(:dest:) ← allPEId

let

timePing p = do

putStr ("Pinging "++show p++" ... ")

(name,ms) ← timeit (pingPong p)

putStrLn ("at "++name++" time="++show ms++"ms")

pingPong p = revalIO remote p

remote = getEnv "HOST"

mapM timePing (replicate 4 dest)

return ()

Pinging PE:524305 ... at ncc1708 time=3ms

Pinging PE:524305 ... at ncc1708 time=1ms

Pinging PE:524305 ... at ncc1708 time=1ms

Pinging PE:524305 ... at ncc1708 time=1ms

Fig. 20. GdH ping.

Partial distributed fault tolerance is supported in GdH by distributed exceptions

without requiring any new language concepts. The synchronous and asynchronous

exceptions supported by Concurrent Haskell are extended in a location independent

manner, e.g. an exception may be raised in a named I/O thread irrespective of

whether it is local or remote. The fault tolerance is limited because it is not easy

to detect important failures including the failure of a PE and of a thread on a PE.

Handling these failure modes is critical for the construction of robust systems and

an initial study has been conducted but not yet implemented (Trinder et al., 2000).

A GdH ping program is shown in figure 20. A destination PE, dest, is selected

from the list of PEs, and a monadic map, mapM calls timePing four times. Within

timePing, timeit times the pingPong function which uses revalIO to perform

a trivial operation on the remote dest PE. Compared with the pair of Haskell

with Ports programs that communicate using explicit ports, the GdH program is a

single, statically-typed and relatively compact program with all the communication

occurring within the revalIO operation. Moreover, the GdH ping is relatively fast,

returning values of the same order of magnitude as UNIX ping on our network.

This is unsurprising because the GdH runtime system uses PVM with UDP as the

underlying protocol, and C code to serialise and pack the data.

Other GdH applications include the following. A cooperative editor allows mul-

tiple users on remote machines to edit the same file (Pointon et al., 2000). A Factory

Chatroom allows multiple remote clients to interact via a TclHaskell interface to a

central server that maintains user profile and a shared factory simulation (Pointon

et al., 2001). A distributed file server and a multiuser geographical game have also

been constructed (Pointon et al., 2001).

In summary, GdH provides statically typed explicit communication of higher

order and stateful objects, e.g. functions, suspensions, MVars. The Immobile class

allows remote resources to be manipulated and shared in a location independent

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

498 P. W. Trinder et al.

manner. Furthermore implicit thread interaction occurs through shared data, with

communication occurring at the consumer’s demand. Implicit thread interaction

substantially lifts the burden of managing the communication of, and synchronis-

ation on, data structures from the programmer (Pointon et al., 2001). Additionally

GdH is unusual in simultaneously supporting parallelism through stateless threads,

and distribution through I/O threads. GdH is a closed system, and capitalises on

this by making all PEs visible so a program can manipulate any resource in the

distributed state. Distributed exception handling is provided to support limited fault-

tolerance. A more complete description of the design and implementation of GdH

can be found in Pointon et al. (2000), and the implementation is bundled with the

publicly available Glasgow Haskell Compiler, version 5.00 onwards (GHC, 2001).

5.3 Other distributed functional languages

Although the benefits of the functional paradigm for distribution have been realised

only recently, compared with parallelism, distributed functional languages have

already achieved greater commercial success in the form of Erlang (Armstrong et al.,

1996; Blau & Rooth, 1998). This section briefly relates the distributed Haskells above

to other distributed functional languages, including some Haskell-based designs.

Broadly speaking distributed coordination may be declarative, imperative, or process

algebra-based, and the languages discussed below are classified by these paradigms.

Before discussing languages by paradigm, it is worth noting that numerous recent

language implementations compile to architecture neutral virtual machines like the

Java Virtual Machine (JVM) and the CLR in Microsoft .NET. Despite problems

mapping functional virtual machines onto these platforms various classes of func-

tional language have taken this route, including sequential, concurrent, parallel,

distributed and mobile languages. An early JVM-based sequential Haskell was pro-

duced by Wakeling (1997) and he has since produced a mobile Haskell (Wakeling,

1998). A JVM-based parallel Haskell similar to GpH has been implemented by

Rauber du Bois (2001). There is also a JVM-based implementation of the Curry

language discussed below.

5.3.1 Declarative coordination

Several recent distributed Haskell designs use declarative coordination: Distributed

Haskell (Chakravarty et al., 1998b) and Curry (Hanus, 1999) use logic-based

coordination languages, while Brisk uses annotations, and an elaborated seman-

tics (Holyer et al., 1998). Distributed Haskell coordinates distribution with a con-

straint programming language. It evolved from the Goffin parallel programming

language (Chakravarty et al., 1998b) although a full implementation has not been

constructed (Chakravarty et al., 1998a). Concurrently executing processes are called

agents, and Distributed Haskell adds language constructs for agent placement and

introduces temporal constraints to the language to deal with timeouts and potentially

provide fault tolerance. External ports are introduced for communication between

applications and dynamic typing ensures the type safety of the messages.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 499

Curry is similar to Goffin in that it is a functional-logic programming language in

which communication is a constraint to be solved. To support distribution named

ports are added in the I/O monad similar to Haskell with Ports.

Brisk introduces deterministic concurrency using multiple threads within the same

shared heap, with implicit synchronisation on shared graph. The limitations of de-

terministic concurrency are weakened by allowing communication based on merging

with hierarchical timestamps (Spiliopoulou, 1999), but the coordination language

remains more restrictive than others, e.g. inherently non-deterministic programs like

the dining philosophers cannot be described. Brisk allows the communication of

higher-order values between PEs in a lazy and dynamic manner, it also supports the

communication of code for the mobility of running computations, using a remote

annotation. As Brisk is currently only partially implemented it is not clear the extend

to which distribution will be explicit or implicit.

A major advantage of declarative coordination is that it facilitates reasoning about

coordination and computation in a unified framework. Languages with declarative

coordination typically have a closed systems model, and preserve referential trans-

parency by making many coordination aspects implicit in the semantics. For example

in Brisk the independent sources of output, e.g. different windows, correspond to

independent sources of demand within the program. In consequence the imple-

mentations of these languages are often extremely elaborate, moreover declarative

coordination languages often lack expressive power, as illustrated for Brisk above.

5.3.2 Imperative coordination

Some coordination languages comprise explicit commands to create processes, com-

municate etc. Erlang is probably the most commercially successful functional lan-

guage, and was developed in the telecommunications industry for constructing dis-

tributed, real-time fault tolerant systems (Armstrong et al., 1996; Wikstrom, 1994;

Wikstrom, 1996). It has been used by a number of telecommunications companies

including One-2-One, Ericsson and NorTel to construct a wide range of telecom-

munications utilities (Tillman, 2000; Fritchie, 2000; Hinde, 2000), including some

large multiprocessor applications like the AXD301 switch (Blau & Rooth, 1998):

525K lines of code on 32 processors. Compared with Haskell, Erlang is strict, im-

pure, weakly typed and relatively simple: omitting features such as currying and

higher-order functions. However the language has a number of extremely useful

features, including the Open Telecom Platform (OTP) libraries, hot loading of new

code into running applications, explicit time manipulation to support soft real time

systems, and message authentication. Erlang systems are open, location-aware with

explicit mailbox-based communication. Sophisticated fault tolerance is provided by

timeouts, exception handlers with exceptions as values, and a mechanism where a

process can monitor the termination of other processes.

Distributed Poly/ML and Facile Antigua both extend ML with imperative co-

ordination constructs (Matthews, 1989; Matthews, 1991; Thomsen et al., 1993). A

Distributed Poly/ML program creates processes using fork and rfork primitives,

and is location-aware as a PE can be specified. Communication is over channels,

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

500 P. W. Trinder et al.

using send and receive primitives. Unusually Distributed Poly/ML provides a non-

deterministic choice primitive that selects the first of two processes to terminate.

In addition to primitives similar to those in Distributed Poly/ML, Facile Antigua

provides a ping to ascertain the liveness of a PE and kill to reset a PE. Both

languages have a closed system model and are location-aware, with explicit thread

interaction, and some support for fault tolerance.

OZ, the language of the MOZART system, is a multi-paradigm distributed

language combining functional, object-oriented, and logic paradigms (Haridi et al.,

1997). It provides a variety of primitives for distribution and fault tolerance and

supports the communication of higher order values including variables. It uses

exceptions for robust fault tolerance and distinguishes between lazy error detection

by handlers for synchronous exceptions, and eager error detection by watchers for

the management of asynchronous exceptions which may be generated by remote

objects.

Concurrent Clean (Nöcker et al., 1991), introduced in section 4.5, supports dis-

tribution using explicit message passing (Serrarens, 2001). It has Channels that

allow lazy normal form copying of data structures. Moreover it provides primitives

for creating, sharing, and type-checking channels between programs enabling the

construction of open systems. Exception-based fault tolerance is also provided.

Imperative approaches are almost always explicit and location aware. Compared

with process algebra and declarative coordination languages, it is relatively easy to

construct a sophisticated imperative coordination model. The downside is that while

it is still easy to reason about the computational parts of a program, it is hard

to reason about the entire program because the imperative coordination restricts

referential transparency. However, experience with Erlang suggests that making even

part of a large distributed system declarative is of considerable benefit.

5.3.3 Process algebra coordination

The imperative coordination model for some languages is based on process algebras

like CCS (Milner, 1989) or CSP (Hoare, 1986). Pict is a concurrent language based

on asynchronous π-calculus (Turner, 1995), and Nomadic Pict is an extension (Woj-

ciechowski, 2000). The language has explicit coordination commands, e.g. processes

synchronise to send and receive. Nomadic Pict programs are location aware: it is

possible to migrate a process to a PE.

Process algebra languages make coordination explicit, and have the great advan-

tage having a ready-made algebra for reasoning about coordination, timing etc.

However, such algebras are very different from the equational approach used for

reasoning about the computational parts of a program.

6 Discussion

To facilitate direct comparison, Table 1 summarises the coordination constructs

of parallel and distributed Haskells using the concepts from section 3. Some of

the distributed language implementations are not yet mature enough to allow

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 501

Table 1. Haskell coordination language summary

Language Threadsa Location Interactiona System Fault-

model tolerance

Sequential

Haskell98 N/A N/A N/A N/A No

Concurrent

Concurrent Haskell Exp. N/A Imp. & Exp. N/A Yes

Parallel

HDC Imp. Indep. Imp. Closed No

Data Parallel Haskell Imp. Indep. Imp. Closed No

Data Field Haskell Imp. Indep. Imp. Closed No

Nepal Imp. Indep. Imp. Closed No

GpH Semi-Exp. Indep. Imp. Closed No

Eden Semi-Exp. Indep. Imp. & Exp.b Closed No

Caliban Semi-Exp. Indep. Exp. Closed No

Distributed

Haskell with Ports Exp. Aware Imp. & Exp.b Open Yes

GdH Exp. Aware Imp. & Exp. Closed Partial

Brisk Exp. Aware Imp. Closed Undef.

Distributed Haskell Exp. Aware Imp. & Exp. Undef. Undef.

Curry Exp. Aware Imp. & Exp.b Undef. Undef.

a Imp - Implicit, Exp - Explicit.
b Restrictions exist on interactions between locations.

complete definitive classification: these are marked as ‘Undef.’ in the table. Parallel

Haskells cover all the major parallelism paradigms, and coordination ranges from

fully implicit like HDC, to relatively explicit like Caliban. In comparison to other

parallel language paradigms, all of the functional languages are relatively implicit.

In comparison to other distributed languages paradigms, many distributed Haskells

are closed and do not have well-developed fault tolerance. Coordination of state-

transforming threads in distributed Haskells is almost always explicit, and the

amount of implicit coordination possible in real distributed applications remains an

open question.

Research Challenges

Parallel and distributed programming in a functional paradigm raises the following

wide range of challenges, and Haskell-based research languages are likely to be

suitable vehicles for investigating many of them.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

502 P. W. Trinder et al.

Reasoning about coordination

A major challenge is to develop high-level equivalences between expressions in the

coordination language, especially for extensible languages describing dynamic co-

ordination. Potentially coordination equivalences will aid the derivation and trans-

formation of parallel and distributed programs, and may be incorporated into

compilers. The functional programming community has well-developed equational

techniques for reasoning about the computation language, but reasoning about co-

ordination is far less developed. Parallel cost models statically predict the time and

space required to evaluate an expression, and parallel cost models add a model

identifying the expressions simultaneously under evaluation to model coordination

aspects such as average parallelism, runtime, and total space usage. Good parallel

cost models exist for some skeleton languages (Skillicorn, 1990; Bacci et al., 1995),

and some data parallel languages (Blelloch, 1996). However, there are few models

for more dynamic and extensible coordination, and most are low-level, e.g. parallel

operational semantics (Blelloch & Greiner, 1996; Roe, 1991; Baker-Finch et al.,

2000; Hidalgo Herrero & Ortega Mallén, 2000). The challenge is greater for Haskell

because time and space cost models are far harder to develop for lazy languages

than for strict (Sands, 1990; Loidl, 1998).

Higher-level coordination

A major challenge is to develop language constructs, static analyses and dynamic

techniques to automatically introduce and control coordination. Many parallel and

distributed functional language designers agree that coordination should be as

high-level, i.e. implicit, as possible. Current substantially-implicit languages like

skeleton-based, data-parallel or distributed languages with declarative coordination,

have restricted coordination models as discussed above. The key problem for par-

allel languages is that functional programs have massive amounts of fine-grained

parallelism. In lazy languages like Haskell expressions that can safely be evaluated

in parallel can be identified by strictness analyses. Identifying expressions that are

worthwhile evaluating in parallel requires accurate parallel cost models. It may also

help the programmer if visualisations of the coordination, e.g. a process network,

can be produced statically.

Improved dynamic coordination control mechanisms reduce the explicit coordi-

nation control required in the language. This is especially important for non-strict

parallel Haskells that naturally support highly-dynamic coordination, and chal-

lenges include the following. An important new parallelism concept is architecture

independence, i.e. a program can be easily and systematically ported between archi-

tectures while preserving good parallel performance. Runtime systems must make

good use of emerging architecture independent concepts. For example a runtime

system may be parameterised by important architecture characteristics to facili-

tate good performance on a variety of architectures. Alternately, a runtime system

may measure key architecture characteristics and adapt itself. The massive fine-

grained parallelism in functional programs facilitates adaptation to multiple archi-

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 503

tectures, but better mechanisms are required to aggregate small tasks into larger

tasks and to manage threads cheaply. There is also a need for improved load

management strategies to effectively utilise all PEs, and alleviate heavily loaded

PEs.

Language constructs with appropriate semantics enable high-level coordination.

Languages like Eden and Brisk attempt to capture many coordination aspects in the

language semantics. Currently the coordination in these languages is limited, and

the high-level constructs are augmented with additional coordination primitives, e.g.

Eden uses evaluation strategies in addition to the process constructs. The challenge

is to develop a small set of adequately expressive high-level coordination constructs.

Just as skeletons abstract over common parallel coordination patterns, it may be

possible to construct distributed skeletons to abstract over common distributed

coordination patterns, like client-server.

Pragmatic challenges

An ongoing challenge for parallel and distributed language implementors is to

make the best of new technologies. Developing and maintaining the elaborate

implementations required by parallel and distributed Haskells is a real issue for

research groups. Development is aided by new architecture independent parallel

middleware, like the PVM and MPI libraries (PVM, 1993; MPI, 1997), and it is not

unusual to find a language available on half-a-dozen architectures. Similarly, the

languages gain from improvements in functional compilation technology (Peyton

Jones et al., 1993; SML, 1993; Leroy, 1996). Finally, implementations must adapt

to new technologies, e.g. pervasive architecture neutral platforms like the JVM and

.NET, or to make effective use of the increasingly cheap and popular clusters of

commodity processors (Ridge et al., 1997).

Programming methodology

The finest programming language is useless without an established methodology

for developing programs systematically. Emerging parallel functional programming

methodologies have been discussed in section 4.6. Distributed functional program-

ming is far newer, and few systematic development techniques have been used, an

exception being (Karlsen, 1999). Specific issues are as follows. Better tools are re-

quired to support parallel and distributed program development, including improved

profilers with better visualisation. Functional languages currently lack dynamic tools

to visualise or control parallel and distributed programs during execution. A standard

suite of parallel and distributed benchmarks, analogous to the nofib suite (Partain,

1992) would facilitate direct language and implementation comparison. In principle

languages like Haskell are a good basis for architecture-independent programming

with their massive parallelism and dynamic high-level coordination, but further

investigation is required to establish or refute this proposition.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

504 P. W. Trinder et al.

References

Armstrong, J. L., Virding, S. R., Williams, M. C. and Wikstrom, C. (1996) Concurrent

Programming in Erlang. 2nd edn. Prentice-Hall.

Augustsson, L. and Johnsson, T. (1989) Parallel graph reduction with the 〈v, G〉-machine.

FPCA’89 – Conference on Functional Programming Languages and Computer Architecture,

pp. 202–213. Imperial College, London. ACM Press.

Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S. and Vanneschi, M. (1995) P3L: A structured

high level programming language and its structured support. Concurrency—Practice &

Exper. 7(3): 225–255.

Bacci, B., Gorlatch, S., Lengauer, C. and Pelagatti, S. (1999) Skeletons and transformations in

an integrated parallel programming environment. PACT’99 – International Conference on

Parallel Architecture and Compilations Techniques: LNCS 1662, pp. 13–27. Springer-Verlag.

Baker-Finch, C., King, D. J., Hall, J. G. and Trinder, P. W. (2000) An operational semantics

for parallel lazy evaluation. ICFP’00 – International Conference on Functional Programming,

pp. 162–173. (pp 471, 502)

Barendregt, H. P., van Eekelen, M. C. J. D., Hartel, P. H., Hertzberger, L. O., Plasmeijer,

M. J. and Vree, W. G. (1987) The Dutch Parallel Reduction Machine Project. Future

Generat. Comput. Syst. 3: 261–270.

Blau, S. and Rooth, J. (1998) AXD301 – A new generation ATM switching system. Ericsson

Rev. 75(1): 10–17. (pp 470, 498, 499)

Blelloch, G. E. (1996) Programming parallel algorithms. Comm. ACM, 39(3): 85–97.

Blelloch, G. E. and Greiner, J. (1996) A provable time and space efficient implementation of

NESL. ICFP’96 – International Conference on Functional Programming, pp. 213–225.

Blelloch, G. E. and Narlikar, G. (1997) A practical comparison of N-body algorithms.

Parallel Algorithms. Series in Discrete Mathematics and Theoretical Computer Science, vol.

30. American Mathematical Society.

Blelloch, G. E., Miller, G. L. and Talmor, D. (1996) Developing a practical projection-based

parallel Delaunay algorithm. Symposium on Computational Geometry. ACM.

Breitinger, S., Loogen, R., Ortega Mallén, Y. and Peña Mari, R. (1997) The Eden Coordina-

tion Model for Distributed Memory Systems. HIPS ’97-High Level Parallel Programming

Models and Supportive Environments IEEE Press.

Breitinger, S., Loogen, R. and Priebe, S. (1998) Parallel programming with Haskell and MPI.

IFL’98 – International Workshop on the Implementation of Functional Languages, pp. 135–

154. Draft proceedings.

Burn, G. L. (1991) Implementing the evaluation transformer model of reduction on parallel

machines. J. Functional Programming, 1(3): 329–366.

Cann, D. (1992) Retire Fortran? A debate rekindled. Comm. ACM, 35(8): 81–89.

Carriero, N. and Gelernter, D. (1989) How to write parallel programs: A guide to the

perplexed. ACM Comput. Surv. 21(3): 323–357.

Chakravarty, M., Guo, Y. and Köhler, M. (1998a) Distributed Haskell: Goffin on the Internet.

Fuji International Symposium on Functional and Logic Programming, pp. 80–97.

Chakravarty, M. M. T. and Keller, G. (2000) More types for nested data parallel programming.

ICFP’00 – International Conference on Functional Programming, pp. 94–105.

Chakravarty, M. M. T., Yike Guo, Köhler, M. and Lock, H. C. R. (1998b) Goffin: Higher-order

functions meet concurrent constraints. Sci. Comput. Programming, 30(1–2): 157–199.

Chakravarty, M. M. T., Keller, G., Lechtchinsky, R. and Pfannenstiel, W. (2001) Nepal – Nested

Data-Parallelism in Haskell. EuroPar’01 – European Conference on Parallel Processing.

Manchester, UK. Springer-Verlag. LNCS 2150.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 505

Cole, M. (1999) Algorithmic skeletons. In: Hammond, K. and Michaelson, G., editors,

Research Directions in Parallel Functional Programming, pp. 289–303. Springer-Verlag.

Daconta, M. C., Saganich, A., Monk, E. and Snyder, M. (1998) Java 1.2 and JavaScript for C

and C++ Programmers. Wiley.

Darlington, J., Guo, Y. and To, H. W. (1996) Structured Parallel Programming: Theory meets

Practice. Research Directions in Computer Science. Cambridge University Press.

Di Napoli, C., Giordano, M. and Furnari, M. M. (1996) A paralation model implementation

based on a concurrent Lisp interpreter community. PDP’96 – Euromicro Workshop on

Parallel and Distributed Processing, pp. 429–436. Braga, Portugal. IEEE Press.

Feng, M. D., Wong, W. F. and Yuen, C. K. (1995) Compiling parallel Lisp for a shared memory

multiprocessor. International Conference on Parallel and Distributed Computing and Systems,

pp. 487–490.

Flanagan, C. and Nikhil, R. S. (1996) pHluid: The design of a parallel functional lan-

guage implementation on workstations. ICFP’96 – International Conference on Functional

Programming, pp. 169–179. ACM Press.

Foster, I., Olson, R. and Tuecke, S. (1992) Productive parallel programming: The PCN

approach. J. Scientific Programming, 1(1): 51–66.

Fritchie, S. L. (2000) Sendmail meets Erlang: Experiences using Erlang for email applications.

International Erlang/OTP User Conference.

GHC (2001) Glasgow Haskell Compiler. WWW page. http://www.haskell.org/ghc/.

Gifford, D. K., Jouvelot, P., Sheldon, M. A. and O’Toole, J. W. (1992) Report on the FX-91

Programming Language. Technical report, INRIA.

Goldberg, B. (1988) Multiprocessor execution of functional programs. Int. J. Parallel Pro-

gramming, 17(5): 425–473.

Goldman, R., Gabriel, R. and Sexton, C. (1989) Qlisp: Parallel processing in Lisp. Workshop

on Parallel Lisp: LNCS 441. Sendai, Japan. Springer-Verlag.

Goldsmith, R., McBurney, D. L. and Sleep, M. R. (1993) Term Graph Rewriting: Theory and

Practice. Wiley

GPH (2001) Glasgow Parallel Haskell. WWW page. http://www.cee.hw.ac.uk/~dsg/gph/.

Grelck, C. (1998) Shared memory multiprocessor support for SAC. IFL’98 – International

Workshop on the Implementation of Functional Languages: LNCS 1595, pp. 38–54. London,

UK. Springer-Verlag.

Hains, G. (1994) Parallel functional languages should be strict. Workshop on GPPP – World

Computer Congress, pp. 527–532. Hamburg, Germany. North-Holland.

Halstead, R. (1985) Multilisp: A language for concurrent symbolic computation. ACM Trans.

Programming Lang. Syst. 7(4): 106–117.

Hammes, J., Lubeck, O. and Böhm, W. (1995) Comparing Id and Haskell in a Monte Carlo

photon transport code. J. Functional Programming, 5(3): 283–316.

Hanus, M. (1999) Distributed programming in a multi-paradigm declarative language.

PPDP’99 – Principles and Practice of Declarative Programming.

Haridi, S., van Roy, P. and Smolka, G. (1997) An overview of the design of Distributed Oz.

PASCO 97 – International Symposium on Parallel Symbolic Computation.

Hartel, P. H., Hofman, R. F. H., Langendoen, K. G., Muller, H. L., Vree, W. G. and Hertzberger,

L. O. (1995) A toolkit for parallel functional programming. Concurrency—Practice & Exper.

7(8): 765–793.

Haskell+Ports (2001) Haskell with Ports. WWW page.

http://www-i2.informatik.rwth-aachen.de/hutch/distributedHaskell.

Hernandez, F., Peña, R. and Rubio, F. (1999) From GranSim to Paradise. SFP’99 – Scottish

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

506 P. W. Trinder et al.

Functional Programming Workshop, pp. 11–19. Trends in Functional Programming, vol. 1.

Intellect.

Herrmann, C. (2000) The Skeleton-Based Parallelization of Divide-and-Conquer Recursions.

PhD thesis, University of Passau.

Herrmann, C. & Lengauer, C. (2000) HDC: A Higher-Order Language for Divide-and-

Conquer. Parallel Processing Letters, 10(2-3): 239–250.

Hidalgo Herrero, M. and Ortega Mallén, Y. (2000) A distributed operational semantics for a

parallel functional language. SFP’00 – Scottish Functional Programming Workshop. Trends

in Functional Programming, vol. 2.

Hill, J. (1994) Data-Parallel Lazy Functional Programming. PhD thesis, Queen Mary and

Westfield College, University of London.

Hinde, S. (2000) Use of Erlang/OTP as a service creation tool for INS services. International

Erlang/OTP User Conference.

Hoare, C. A. R. (1986) Communicating Sequential Processes. Prentice Hall.

Holmerin, J. and Lisper, B. (2000) Development of parallel algorithms in Data Field

Haskell. EuroPar’00 – European Conference on Parallel Processing: LNCS 1900, pp. 762–

766. Springer-Verlag.

Holyer, I., Davies, N. and Spiliopoulou, E. (1998) Distribution in a demand driven style.

International Workshop on Component-based Software Development in Computational Logic.

HPF (1993) High Performance Fortran Language Specification. Technical report, Rice Univer-

sity, TX.

Huch, F. and Norbisrath, U. (2000) Distributed programming in Haskell with ports.

IFL’00 – International Workshop on Implementation of Functional Languages: LNCS 2011,

pp. 87–100.

Hudak, P. (1986) Para-Functional Programming. IEEE Computer, 19(8): 60–70.

Impala (2001) Impala – (IMplicitly PArallel LAnguage Application Suite).

http://www.csg.lcs.mit.edu/impala/.

Jagannathan, S. (1993) TS/Scheme: Distributed data structures in Lisp. In: Ito, T. and Hal-

stead, R. H. Jr., editors, Parallel Symbolic Computing: Languages, Systems, and Applications:

LNCS 748, pp. 260–267. Springer-Verlag.

Janson, S., Montelius, J. and Haridi, S. (1993) Ports for objects in concurrent logic programs.

In: Agha, G., Wegner, P. and Yonezawa, A., editors, Research Directions in Concurrent

Object-Oriented Programming, pp. 211–231. MIT Press. (p 493)

Jay, C. B. and Steckler, P. A. (1998) The functional imperative: Shape! In: Hankin, C., editor,

ESOP’98 – European Symposium on Programming: LNCS 1381, pp. 139–53. Springer-Verlag.

Karlsen, E. W. (1999) Tool Integration in a Functional Programming Language. PhD thesis,

Universität Bremen, Germany.

Kawamoto, S. (1999) A study on parallel a LISP system with multiple evaluation strategies.

Record of Electrical & Communication Engineering Conversazione, 68: 158–160.

Keller, G. and Chakravarty, M. M. T. (1999) On the distributed implementation of aggregate

data structures by program transformation. HIPS’99 – Int. Workshop on High-Level Parallel

Programming Models and Supportive Environments: LNCS 1586, pp. 108–122. San Juan,

Puerto Rico. Springer-Verlag.

Kelly, P. and Taylor, F. (1999) Coordination languages. In: Hammond, K. and Michaelson,

G., editors, Research Directions in Parallel Functional Programming, pp. 305–321. Springer-

Verlag.

Kelly, P. H. J. (1989) Functional Programming for Loosely-Coupled Multiprocessors. Research

Monographs in Parallel and Distributed Computing. MIT Press.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 507

Kesseler, M. (1996) The Implementation of Functional Languages on Parallel Machines with

Distributed Memory. PhD thesis, University of Nijmegen.

Kingdon, H., Lester, D. R. and Burn, G. (1991) The HDG-machine: a Highly Distributed

Graph-reducer for a transputer network. Comput. J. 34(4): 290–301.

Klusik, U., Loogen, R. and Priebe, S. (2000a) Controlling parallelism and data distribution in

Eden. SFP’00 —Scottish Functional Programming Workshop, pp. 53–64. Trends in Functional

Programming, vol. 2.

Klusik, U., Loogen, R., Priebe, S. and Rubio, F. (2000b) Implementation Skeletons in Eden:

Low Effort Parallel Programming. IFL’00 – International Workshop on the Implementation

of Functional Languages: LNCS 2011, pp. 71–88.

Klusik, U., Peña Mari, R. and Rubio Diez, F. (2001) Replicated workers in Eden.

CMPP’00 – Constructive Methods for Parallel Programming. Nova Science.

Kranz, D. A., Halstead Jr., R. H. and Mohr, E. (1989) Mul-T: A high-performance parallel

Lisp. PLDI’91 – Programming Languages Design and Implementation, pp. 81–90. (SIGPLAN

Notices, 24(7).)

LANL (2001) Sisal Performance Data.

http://www.llnl.gov/sisal/PerformanceData.html.

Leroy, X. (1996) The Objective Caml System. Technical report, INRIA.

Loidl, H.-W. (1998) Granularity in Large-Scale Parallel Functional Programming. PhD thesis,

Department of Computing Science, University of Glasgow.

Loidl, H.-W., Trinder, P. W., Hammond, K., Junaidu, S. B., Morgan, R. G. and Peyton Jones,

S. L. (1999) Engineering parallel symbolic programs in GPH. Concurrency—Practice &

Exper., 11(12): 701–752.

Loidl, H.-W., Rubio Diez, F., Scaife, N., Hammond, K., Klusik, U., Loogen, R., G. J.,

Michaelson, Peña Marı́, R., Rebón Portillo, A., Priebe, S. and Trinder, P. W. (2001a)

Comparing Parallel Functional Languages: Programming and Performance. Submitted for

publication.

Loidl, H.-W., Trinder, P. W. and Butz, C. (2001b) Tuning task granularity and data locality of

data parallel GpH programs. Parallel Processing Letters. Selected papers from “HLPP’01

— Intl. Workshop on High-level Parallel Programming and Applications”. To appear.

Loogen, R. (1999) Programming language constructs. In: Hammond, K. and Michaelson, G.,

editors, Research Directions in Parallel Functional Programming. Springer-Verlag.

Loogen, R., Kuchen, H. and Indermark, K. (1989) Distributed implementation of programmed

graph reduction. PARLE 89 – Conference on Parallel Architectures and Languages Europe:

LNCS 365, pp. 136–157. Springer-Verlag.

Loulergue, F. (2000) Parallel composition and bulk synchronous parallel functional program-

ming. SFP’00 – Scottish Functional Programming Workshop, pp. 77–88. Trends in Functional

Programming, vol. 2.

Matthews, D. C. J. (1989) Papers on Poly/ML. Technical report, University of Cambridge

Computer Laboratory.

Matthews, D. C. J. (1991) A Distributed Concurrent Implementation of Standard ML. Technical

report, University of Edinburgh.

Merrick, L. (1996) DCOM Technical Overview. Technical report, Microsoft White Paper.

Michaelson, G., Scaife, N., Bristow, P. and King, P. (2001) Nested algorithmic skeletons from

higher order functions. Parallel Algorithms and Applications. (To appear).

Milner, R. (1989) Communication and Concurrency. Prentice Hall.

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1997) The Definition of Standard ML

(Revised). MIT Press.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

508 P. W. Trinder et al.

Mirani, R. and Hudak, P. (1995) First-class schedules and virtual maps. FPCA’95 – Conference

on Functional Programming Languages and Computer Architecture, pp. 78–85. ACM Press.

Mohr, E., Kranz, D. A. and Halstead Jr., R. H. (1991) Lazy task creation: A technique for

increasing the granularity of parallel programs. IEEE Trans. Parallel & Distr. Syst. 2(3):

264–280.

MPI (1997) MPI-2: Extensions to the Message-Passing Interface. Technical report, University

of Tennessee, Knoxville.

Nikhil, R. S., Arvind, Hicks, J., Aditya, S., Augustsson, L., Maessen, J.-W. and Zhou, Y.

(1995) pH Language Reference Manual. Technical report, CSG Memo 369. Laboratory for

Computer Science, MIT.

Nöcker, E. G. J. M. H., Smetsers, J. E. W., van Eekelen, M. C. J. D. and Plasmeijer, M. J.

(1991) Concurrent Clean. PARLE’91 – Parallel Architectures and Languages Europe: LNCS

505, pp. 202–219. Veldhoven, The Netherlands. Springer-Verlag.

O’Donnell, J. (1999) Data parallelism. In: Hammond, K. and Michaelson, G., editors, Research

Directions in Parallel Functional Programming, pp. 191–206. Springer-Verlag.

O’Donnell, J. and Rünger, G. (2000) Abstract parallel machines. Comput. & Artif. Intell. 19:

105–129.

Padget, J., Bretthauer, H. and Nuyens, G. (1993) An overview of EuLisp. Lisp & Symbolic

Computation, 6(1/2): 9–98.

Pareja, C., Pena, R., Rubio, F. and Segura, C. (2000) Optimising Eden by transformation.

SFP’00 – Scottish Functional Programming Workshop. Trends in Functional Programming,

vol. 2.

Partain, W. D. (1992) The nofib benchmark suite of Haskell programs. Glasgow Workshop on

Functional Programming, pp. 195–202. Ayr, Scotland. Springer-Verlag.

Pena, R. and Segura, C. (2000) Non-determinism analysis in a parallel-functional language.

IFL’00 – International Workshop on Implementation of Functional Languages: LNCS 2011.

Springer-Verlag.

Pepper, P. (1993) Deductive derivation of parallel programs. Parallel Algorithm Derivation and

Program Transformation, pp. 1–53 Kluwer Academic.

Peterson, J., Trifonov, V. and Serjantov, A. (2000) Parallel functional reactive programming.

PADL’00 – Practical Aspects of Declarative Languages.

Peyton Jones, S. L., Clack, C., Salkild, J. and Hardie, M. (1987) GRIP – a high-performance

architecture for parallel graph reduction. FPCA’87 – Conference on Functional Programming

Languages and Computer Architecture: LNCS 274, pp. 98–112. Portland, OR. Springer-

Verlag.

Peyton Jones, S. L., Hall, C., Hammond, K., Partain, W. and Wadler, P. L. (1993) The Glasgow

Haskell Compiler: a technical overview. UK Joint Framework for Information Technology,

Technical Conference, pp. 249–257.

Peyton Jones, S. L., Gordon, A. and Finne, S. (1996) Concurrent Haskell. POPL’96 – Sym-

posium on Principles of Programming Languages, pp. 295–308. St Petersburg, FL. ACM.

Peyton Jones, S. L., Hughes, J., Augustsson, L., Barton, D., Boutel, B., Burton, W., Fasel, J.,

Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J., Meijer, E.,

Peterson, J., Reid, A., Runciman, C. and Wadler, P. (1999) Haskell 98: A Non-strict, Purely

Functional Language. Electronic document available on-line at http://www.haskell.org/.

Plasmeijr, R., van Eekelen, M., Pil, M. and Serrarens, P. (1999) Parallel and distributed

programming in Concurrent Clean. In: Hammond, K. and Michaelson, G., editors, Research

Directions in Parallel Functional Programming, pp. 323–338. Springer-Verlag.

Pointon, R. F., Trinder, P. W. and Loidl, H.-W. (2000) The design and implementation of

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

Parallel and Distributed Haskells 509

Glasgow distributed Haskell. IFL’00 – International Workshop on the Implementation of

Functional Languages: LNCS 2011, pp. 101–116.

Pointon, R. F., Priebe, S., Loidl, H.-W., Loogen, R. and Trinder, P. W. (2001) Functional vs

object-oriented distributed languages. Eurocast’01 – International Conference on Computer

Aided Systems Theory. LNCS 2178, pp. 642–656.

PVM (1993) Parallel Virtual Machine Reference Manual. University of Tennessee.

Rauber, T. and Rünger, G. (1996) The compiler TwoL for the design of parallel imple-

mentations. PACT’96 – International Conference on Parallel Architecture and Compilations

Techniques, pp. 292–301. Boston, MA. IEEE Press.

Rauber Du Bois, A. R. (2001) Distributed execution of functional programs on the JVM.

EUROCAST’01 – 8th International Conference on Computer Aided Systems Theory and Tech-

nology. To appear.

Reppy, J. H. (1992) Higher-order Concurrency. PhD thesis, Department of Computer Science,

Cornell University. (Also: Technical Report 92-1285.)

Ridge, D., Becker, D., Merkey, P. and Sterling, T. (1997) Beowulf: Harnessing the power of

parallelism in a Pile-of-PCs, pp. 79–91: IEEE Aerospace Conference.

Roe, P. (1991) Parallel Programming using Functional Languages. PhD thesis, Department of

Computing Science, University of Glasgow, Glasgow, Scotland.

Röjemo, N. (1995) Garbage Collection, and Memory Efficiency, in Lazy Functional Languages.

PhD thesis, Department of Computing Science, Chalmers University of Technology.

Sabot, G. W. (1988) The Paralation Model: Architecture Independent Programming. MIT Press.

Sands, D. (1990) Calculi for Time Analysis of Functional Programs. PhD thesis, Imperial

College, University of London.

Sargeant, J. (1993) Uniting functional and object-oriented programming. International Sym-

posium on Object Technologies for Advanced Software: LNCS 742, pp. 1–26.

Scaife, N., Michaelson, G. and Horiguchi, S. (2001) Comparative cross-platform performance

results from a parallelizing SML compiler. IFL’01 – International Workshop on the Imple-

mentation of Functional Languages. In preparation.

Scholz, S.-B. (1996) Single Assignment C – Entwurf und Implementierung einer funktionalen

C-Variante mit spezieller Unterstützung shape-invarianter Array-Operationen (in German).

PhD.thesis, Institut für Informatik und praktische Mathematik, Universität Kiel.

Serrarens, P. (2001) Communication Issues in Distributed Functional Programming. PhD thesis.

Katholieke Universiteit Nijmegen.

Siegel, J. (1997) CORBA Fundamentals and Programming. Wiley.

Skillicorn, D. B. (1990) Architecture-independent parallel computation. IEEE Computer,

23(12): 38–50.

Skillicorn, D. B. and Talia, D. (1998) Models and languages for parallel computation. ACM

Comput. Surv. 30(2): 125–169.

SML (1993) Standard ML of New Jersey: User’s Guide, Version 0.93. Technical report, AT&T

Bell Laboratories.

Spiliopoulou, E. (1999) Concurrent and Distributed Functional Systems. PhD thesis, Depart-

ment of Computer Science, University of Bristol.

Taylor, F. S. (1997) Parallel Functional Programming by Partitioning. PhD thesis, Department

of Computing, Imperial College, London.

Thinking Machine Corporation (1990) Programming in ∗lisp. 6.0 edn.

Thomsen, B., Leth, L., Prasad, S., Kuo, T.-M., Krammer, A., Knabe, F. and Giacalone, A.

(1993) Facile Antigua Release Programming Guide. Technical report, European Computer-

Industry Centre, Germany.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

510 P. W. Trinder et al.

Tillman, B. (2000) NETSim - Six Years with Erlang. International Erlang/OTP User Confer-

ence.

Trinder, P. W., Hammond, K., Mattson Jr., J. S., Partridge, A. S. and Peyton Jones, S. L.

(1996) GUM: a portable implementation of Haskell. PLDI’96 – Programming Language

Design and Implementation.

Trinder, P. W., Hammond, K., Loidl, H.-W. and Peyton Jones, S. L. (1998) Algorithm +

Strategy = Parallelism. J. Functional Programming, 8(1): 23–60.

Trinder, P. W., Pointon, R. F. and Loidl, H.-W. (2000) Towards runtime system level fault

tolerance for a distributed functional language. SFP’00 – Scottish Functional Programming

Workshop, pp. 103–113. Trends in Functional Programming, vol. 2. Intellect.

Turner, D. N. (1995) The Polymorphic Pi-calculus: Theory and Implementation. PhD thesis,

University of Edinburgh.

Valiant, L. G. (1990) A bridging model for parallel computation. Comm. ACM, 33(8).

Wakeling, D. (1997) A Haskell to Java Virtual Machine code compiler. IFL’97 – International

Workshop on the Implementation of Functional Languages: LNCS 1467, pp. 39–52.

Wakeling, D. (1998) Mobile Haskell: Compiling lazy functional programs for the Java Virtual

Machine. PLILP – International Symposium on Programming Languages, Implementations,

Logics and Programs, pp. 335–352.

Weber, M. (2000) hMPI – Haskell with MPI.

http://www-i2.informatik.rwth-aachen.de/~michaelw/hmpi.html.

Wegner, P. (1971) Programming Languages, Information Structures and Machine Organisation.

McGraw-Hill.

Wikstrom, C. (1994) Distributed programming in Erlang. PASCO’94 – International Sym-

posium on Parallel Symbolic Computation.

Wikstrom, C. (1996) Implementing distributed real-time control systems in a functional

language. IEEE Workshop on Parallel and Distributed Real-Time Systems.

Winstanley, N. and O’Donnell, J. (1997) Parallel distributed programming with Haskell+PVM.

EuroPar’97 — European Conference on Parallel Processing: LNCS 1300, pp. 670–677.

Springer-Verlag.

Wojciechowski, P. (2000) Nomadic Pict: Language and Infrastructure Design for Mobile Com-

putation. PhD thesis, University of Cambridge.

https://doi.org/10.1017/S0956796802004343 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004343

