Divergence type of some subgroups of finitely generated Fuchsian groups

MARY REES[†]

From the Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France

(Received 13 November 1980)

Abstract. Let Γ be a finitely generated discrete subgroup of the isometries of the hyperbolic plane H^2 with at least one parabolic element. We prove that, if Γ_1 is a subgroup of Γ with Γ/Γ_1 abelian, the 'critical exponent' of Γ_1 is the same as that of Γ . We give necessary and sufficient conditions – in terms of the rank of Γ/Γ_1 , the critical exponent of Γ , and the image of parabolic elements of Γ in Γ/Γ_1 – for the Poincaré series of Γ_1 to diverge at the critical exponent.

Introduction

The aim of this paper is to determine when a subgroup Γ_1 of a finitely generated discrete group of isometries Γ of 2-dimensional hyperbolic space H^2 , with $\Gamma_1 \lhd \Gamma$, Γ/Γ_1 abelian, is *of divergence type* [8], i.e. whether or not the series

$$\sum_{\gamma\in\Gamma_1}\exp\left\{-\alpha(x,\,\gamma x)\right\}$$

diverges at $\alpha = \delta(\Gamma_1)$, for $\delta(\Gamma_1)$ the supremum of the α for which the series diverges, where $x \in H^2$ is any fixed point and $(x, \gamma x)$ denotes hyperbolic distance between xand γx . Equivalently (for $\delta(\Gamma_1) > \frac{1}{2}$), we wish to determine whether the geodesic flow $\{\phi_t\}$ on the unit tangent bundle UT (H^2/Γ_1) of H^2/Γ_1 is ergodic with respect to certain natural measures [8]. We restrict our discussion to the case of H^2/Γ having cusps. The case of H^2/Γ without cusps was dealt with in [6].

Recently, Lyons & McKean [2] proved that, if Γ is the fundamental group of the thrice-punctured sphere, and Γ_1 is the commutator subgroup of Γ , then hyperbolic Brownian motion on H^2/Γ_1 is not recurrent, and that Γ_1 is not of divergence type (equivalent conditions by [8]) (see also [3]). This is the sort of example we have in mind. However, we do not restrict the critical exponent of Γ_1 to be 1 (as in the cited example). The main results are summarized in theorem 1.

THEOREM 1. Let Γ be a discrete finitely generated group of isometries of H^2 . Let $\Gamma_1 \lhd \Gamma$, $\Gamma/\Gamma_1 \simeq \mathbb{Z}^{v}$, and let $\Theta: \Gamma \longrightarrow_{onto} \mathbb{Z}^{v_1}$, $\Phi: \Gamma \longrightarrow_{onto} \mathbb{Z}^{v_2}$ $(v = v_1 + v_2)$ be two homomorphisms with $\Gamma_1 = \text{Ker}(\Theta \oplus \Phi)$, where, if $x_1 \cdots x_r$ are parabolic elements of Γ corresponding to the r cusps of $H^2/\Gamma(x_1 \cdots x_r)$ are unique up to taking inverses, and

[†] Address for correspondence: Dr Mary Rees, Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France.

conjugation), then $\mathbf{\Phi}(x_i) = 0$ for all *i*, and $(\mathbf{\theta}(x_1), \ldots, \mathbf{\theta}(x_r))$ is syndetic in \mathbb{Z}^{v_1} . (Clearly any homomorphism onto \mathbb{Z}^{v} can be put in the form $\mathbf{\theta} \oplus \mathbf{\Phi}$.) Then $\delta(\Gamma) = \delta(\Gamma_1) = \delta$, say.

If $\delta < 1$, Γ_1 is of divergence type if and only if $v_1 = 0$ and $v_2 \le 2$. If $\delta = 1$, Γ_1 is of divergence type if and only if either $v_1 \le 1$ and $v_2 = 0$, or $v_1 = 0$ and $v_2 \le 2$.

The proof uses symbolic dynamics and the same general method, with modification, as in [6]. Because there is no developed theory of symbolic dynamics for cusped manifolds in higher dimensions, the methods only work in dimension 2. However, as in [6], the results can be extended to 'finitely determined sub-abelian' subgroups of Γ . We do not give the details here (nor the definitions) – the analogue with § 5 of [6] is fairly exact. But, for example, if H^2/Γ is a 1-cusped surface of genus

 $g \ge 1$, with $a_1 \cdots a_g$, $b_1 \cdots b_g$ the free generators of Γ and $\prod_{i=1}^{g} [a_i, b_i]$ representing the cusp, where $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$, and if

he cusp, where $[a_i, b_i] = a_i b_i a_i b_i$, and if

$$\Gamma_1 = \{ \text{words in } \{a_i, b_i, a_i^{-1}, b_i^{-1}; i = 1, \dots, g \} : \text{sum of } a_1 \text{-powers} = \text{sum of } b_1 \text{-powers} = 0 \},$$

so that

$$\mathscr{F} = \bigcup_{i=2}^{8} \{a_i, b_i, a_i^{-1}, b_i^{-1}\} \cup \bigcup_{m,n \in \mathbb{Z} \setminus \{0\}} (a_1^m b_1^n a_1^{-m} b_1^{-n}, b_1^n a_1^m b_1^{-n} a_1^{-m}\}$$

is a set of free generators and inverses of generators of Γ_1 , and if

 $\Gamma_2 = \{ \text{words in the elements of } \mathcal{F}: \text{ sum of } [a_1, b_1] \text{-powers} = 0 \},\$

then the generalized theorem 1 gives Γ_2 is of divergence type with $\delta(\Gamma) = \delta(\Gamma_2) = 1$.

Formulation of the symbolic dynamics

In some ways, the presence of a cusp on H^2/Γ actually makes things easier. Throughout this paper, we assume without loss of generality that no $\gamma \in \Gamma$ fixes any points of H^2 , so that H^2/Γ is a manifold with Γ as its fundamental group. Since we assume H^2/Γ has at least one cusp, H^2/Γ is topologically either a k-holed sphere $(k \ge 3)$ or a k-holed surface of genus ≥ 1 $(k \ge 1)$. So Γ must be a free group, and H^2/Γ has a geodesic triangulation – i.e. the edges of the triangulation are geodesics – with vertices only at the holes. (Note that, besides one or more cusps, some of the 'holes' may be ends of infinite volume.) The point of this is that H^2/Γ has a fundamental region F on H^2 , bounded by geodesic arcs and arcs on the boundary of H^2 (possibly) with all corners on the boundary, and the images of F under Γ which are adjacent to F are a_1F , a_2F , ..., a_sF , $a_1^{-1}F$, ..., $a_s^{-1}F$, for some free generating set $\{a_1 \cdots a_s\}$ of Γ . For instance, in the example in figure 1, F is the fundamental region of a 3-holed sphere with 2 cusps and 1 infinite volume end.

Patterson [5] proves that any finitely generated group Γ is of divergence type. By [1] the presence of a cusp means the critical exponent $\delta(\Gamma)$ satisfies $\frac{1}{2} < \delta(\Gamma) \le 1$. Equivalently to the divergence type condition, the geodesic flow (UT (H^2/Γ) , $\{\phi_t\}, \mu_{\nu}$) is ergodic, where μ_{ν} is the geodesic-flow invariant measure on UT (H^2/Γ) naturally corresponding to the (unique) Γ -invariant conformal density ν of dimension $\delta(\Gamma)$ on the limit set L_{Γ} of Γ [8].

FIGURE 1

We now describe a 'subshift of finite type' (Y, σ) on an infinite set of symbols $\mathcal{H} = \mathcal{H}^{-1} \subseteq \Gamma$ such that $(\mathrm{UT}(H^2/\Gamma), \{\phi_i\}, \mu_{\nu})$ is measure-theoretically isomorphic to the suspension under a positive (unbounded) function of a *Gibbs* σ -invariant probability measure (also denoted μ_{ν}) on Y. σ is defined on $Y \subseteq \mathcal{H}^{\mathbb{Z}}$ by $\sigma(\{x_i\}) = \{x_{i+1}\}$. Y is also invariant under τ , where $\tau(\{x_i\}) = \{x_{-i}^{-1}\}$, and $\tau_* \mu_{\nu} = \mu_{\nu}$.

The symbols of \mathcal{X} are obtained as follows. Each cusp vertex Z_i of F is fixed by a unique (up to taking its inverse) parabolic element of Γ , which is a word of minimal length n_i in $\{a_1 \cdots a_s, a_1^{-1} \cdots a_s^{-1}\}$. Choose N > 1 such that $n_i | N, i = 1 \cdots r$ (if r is the number of cusps on F). Let $c_1 \cdots c_r, c_1^{-1} \cdots c_r^{-1}$ denote the parabolic elements of length N fixing the cusps of F, and $d_1 \cdots d_t, d_1^{-1} \cdots d_t^{-1}$ the other words of length N. Suppose a geodesic in H^2 passes successively through

 $g_N^{-1}g_{N-1}^{-1}\cdots g_1^{-1}F, g_N^{-1}g_{N-1}^{-1}\cdots g_2^{-1}F, \ldots, g_N^{-1}F, F, h_1F, h_1h_2F, \ldots, h_1h_2\cdots h_NF,$ where $g_1\cdots g_N, h_1\cdots h_N$ are words of length N in $\{a_1\cdots a_s, a_1^{-1}\cdots a_s^{-1}\}$ (so $g_i \neq g_{i+1}^{-1}$, $h_i \neq h_{i+1}^{-1}$). Then $g_N^{-1} \neq h_1$. Moreover, the geodesic has endpoints a Euclidean distance apart bounded away from zero (in the disk model for H^2) unless $g_1\cdots g_N = h_1\cdots h_N = c$, where $c = c_i$ or c_i^{-1} , some $i = 1, \ldots, r$. Then

$$\mathcal{H} = \bigcup_{i=1}^{n} \bigcup_{n \in \mathbb{Z} \setminus \{0\}} \{c_i^n\} \cup \{d_1 \cdots d_i, d_1^{-1} \cdots d_i^{-1}\}$$
$$Y = \{\{x_i\} \in \mathcal{H}^{\mathbb{Z}} : x_i x_{i+1} \text{ is admissible}\}$$

where admissibility is defined by the following: ef is admissible if and only if

(i) the last element of $\{a_1 \cdots a_s, a_1^{-1} \cdots a_s^{-1}\}$ in the word *e* is not the inverse of the first element of the word *f*;

(ii) if $e = c_k^n$, some k, n, then $f \neq c_k^m$, any m.

The realization of $(UT(H^2/\Gamma), \{\phi_t\}, \mu_{\nu})$ as a suspension of (Y, σ, μ_{ν}) is as follows. μ_{ν} -almost all geodesics in H^2/Γ have a unique lift in H^2 passing through a bi-infinite sequence of fundamental regions

$$\cdots f_{-1}^{-1} f_{-2}^{-1} F, f_{-1}^{-1} F, F, f_0 F, f_0 f_1 F, f_0 f_1 f_2 F, \cdots$$

$$f_i \in \{a_1 \cdots a_s, a_1^{-1} \cdots a_s^{-1}\} \text{ and } f_{i+1} \neq f_i^{-1} \text{ for any } i.$$

where

These symbols $\cdots f_{-1}$, f_0 , $f_1 \cdots$ can be uniquely grouped into words of length N in $\{a_1 \cdots a_s, a_1^{-1} \cdots a_s^{-1}\}$ such that f_0 is the first element of its word. The symbols of one of the new sequences $\{g_i\}$ come from $\{c_1 \cdots c_r, c_1^{-1} \cdots c_r^{-1}\} \cup \{d_1 \cdots d_i, d_1^{-1} \cdots d_i^{-1}\}$. Now the symbols $\{g_i\}$ can be uniquely regrouped to give a bi-infinite sequence of elements of \mathcal{X} . The set of sequences thus obtained is residual in Y and, of course, has full μ_{ν} -measure in Y. See also Series [7].

The measure μ_{ν} on Y is Gibbs in the sense of [6]. The proof is the same as in [6], using the fact stated here that if a geodesic passes successively through $e^{-1}F$, F, fF, where, in the regrouping, e is the last symbol of a word of \mathcal{X} and f the first symbol of another word of \mathcal{X} , then the endpoints are a Euclidean distance apart bounded away from zero. Also lemma 2 is used to show finiteness of the measure μ_{ν} on Y (and also something more, to be used later). Since μ_{ν} is Gibbs, it has a very good approximation by Markov measures and the same general method as [6] might work.

LEMMA 2. There exists a constant $b_i > 0$ such that

$$\mu_{\nu}([c_{i}^{n}]) = \frac{b_{i}}{|n|^{2\delta}} \left(1 + O\left(\frac{1}{|n|}\right)\right),$$

where ν is a Γ -invariant conformal density of dimension δ -on L_{Γ} (i.e. $d\gamma_*\nu(\xi)/d\nu = |\gamma'(\xi)|^{\delta}$, $\xi \in L_{\Gamma}$, where $\gamma_*\nu(f) = \nu(f \circ \gamma^{-1})$) and $[c_i^n] = \{\{x_i\} \in Y : x_0 = c_i^n\}$.

Proof. Y can be identified measure-theoretically with the set of $(\xi, \eta) \in L_{\Gamma} \times L_{\Gamma}$ for which the geodesic from ξ to η passes through the interior of F, and then μ_{ν} identifies with the measure $d\nu(\xi) d\nu(\eta)/|\xi-\eta|^{2\delta}$ on this subset of $L_{\Gamma} \times L_{\Gamma}$, with ν suitably normalized [8]. $[c_i^n]$ then identifies with $U \times c_i^{n-1}V$ as shown, for $n \ge 1$, in figure 2. (The case $n \le -1$ is similar. Recall that c_iF is the Nth region round the cusp from F, so not next to F, since N > 1.)

U is bounded away from $\bigcup_{n\geq 0} c_i^n V$. Let η_0 be the fixed point of c_i . The maximum distance between η_0 and $c_i^n V$ (Euclidean distance for the disk) is $O(1/n^2)$ (since this is the size of the derivative of c_i^n over most of S^1). So

$$\left| \mu_{\nu}([c_{i}^{n}]) - \nu(c_{i}^{n-1}V) \int_{U} \frac{d\nu(\xi)}{|\xi - \eta_{0}|^{2\delta}} \right| \leq \frac{A\nu(c_{i}^{n-1}V)}{n^{2}}$$

(some A). Since ν is a conformal density,

$$\nu(c_i^{n-1}V) = \int \chi_V(c_i^{-(n-1)}\xi) \, d\nu(\xi) = \int \chi_V(\xi) \left| (c_i^{n-1})'(\xi) \right|^{\delta} d\nu(\xi).$$

Let x be a conformal map of the disk to the upper half plane, mapping c_1 to a parabolic transformation fixing 0, and V to the interval $[1, 2] \subseteq \mathbb{R}$, and let ν_1 be the

FIGURE 2

measure on $\mathbb{R} \cup \{\infty\}$ given by $\nu_1(f) = \nu(f \circ x)$. Then

$$\nu(c_i^{n-1}V) = \int_1^2 \frac{g(x)}{(1+a(n-1)x)^{2\delta}} \, d\nu_1(x)$$

for some a > 0 and some smooth positive function g. Then

$$\nu(c_i^{n-1}V) = \frac{1}{n^{2\delta}} \left\{ \int_1^2 \frac{g(x)}{(ax)^{2\delta}} d\nu_1(x) + O(1/n) \right\}$$

as required.

Given the symbolic dynamics, we can now reformulate theorem 1, using the notation of theorem 1. The proof of (1) of theorem 3 is as in \$\$1, 2 of [6].

THEOREM 3. (1) Let $S_k = \sum \{ \mu_{\nu}([e_0 \cdots e_{k-1}]) : e_i \in \mathcal{H}, [e_0 \cdots e_{k-1}] \subseteq Y \text{ and } \neq \emptyset, \text{ and } e_0e_1 \cdots e_{k-1} \in \Gamma_1 \text{ i.e. } (\mathbf{0} + \mathbf{\phi})(e_0e_1 \cdots e_{k-1}) = 0 \}$ where

$$\Gamma_1 \leq \Gamma$$
 and $[e_0 \cdots e_{k-1}] = \{\{x_i\} \in Y : x_i = e_i, 0 \leq i \leq k-1\}.$

Then $(\mathrm{UT}(H^2/\Gamma_1), \{\phi_t\}, \mu_\nu)$ is ergodic if and only if $\sum_{k=1}^{\infty} S_k = \infty$, where μ_ν is the unique measure on $\mathrm{UT}(H^2/\Gamma_1)$ such that local inverses of the natural projection onto $(\mathrm{UT}(H^2/\Gamma), \mu_\nu)$ are measure-preserving. Equivalently, Γ_1 is of divergence type if and only if $\sum_{k=1}^{\infty} S_k = \infty$.

(2) There exist constants A, B > 0 such that

$$\frac{A}{k^{v_i(2\delta-1)+\frac{1}{2}v_2}} \le S_k + S_{k+1} \le \frac{B}{k^{v_i/2(\delta-1)+\frac{1}{2}v_2}}$$

where $\delta = \delta(\Gamma)$.

Note. Since theorem 3 implies $S_k + S_{k+1} \ge c \sum_{\gamma \in A_k \le \Gamma} \exp\{-\delta(x, \gamma x)\}$ for some constant c > 0, and $\Gamma_1 = \bigcup_{k=1}^{\infty} A_k$ a disjoint union with $A_k \subseteq \{\gamma : (x, \gamma x) \ge dk\}$, some

constant d (essentially the same proof as 1.10 of [6]), $\delta(\Gamma_1) = \delta = \delta(\Gamma)$.

The proof of theorem 3. In modifying the proof of 4.7 in [6] to prove theorem 3, we have first to recall some notation, and define some new notation.

Notation. (1) Let ε_m denote the set of non-empty *m*-cylinders $[e_0 \cdots e_{m-1}]$ of *Y*, where

$$[e_0 \cdots e_{m-1}] = \{\{x_i\} \in Y : x_i = e_i, \ 0 \le i \le m-1\}$$

for $e_i \in \mathcal{H}$. ε_m can be regarded as a subset of Γ (by multiplying the symbols) so the homomorphisms θ , ϕ are defined on ε_m ,

$$\boldsymbol{\theta} \bigoplus \boldsymbol{\phi} \colon \boldsymbol{\varepsilon}_{m} \to \bigoplus_{i=1}^{v_1} \langle \boldsymbol{\theta}_i \rangle \oplus \bigoplus_{i=1}^{v_2} \langle \boldsymbol{\phi}_i \rangle.$$

(2) W_m is a row vector, $A_m(\theta, \phi)$ is a matrix, $V_m(\theta, \phi)$ is a column vector, rows and columns are indexed by ε_m .

$$W_m(\mathbf{c}) = 1 \quad \text{for all } \mathbf{c} \in \varepsilon_m,$$

$$V_m(\mathbf{\theta}, \mathbf{\phi})(\mathbf{c}) = \mu_\nu(\mathbf{c}) \exp\{i(\mathbf{\theta} + \mathbf{\phi})(\mathbf{c})\},$$

$$A_m(\mathbf{\theta}, \mathbf{\phi})(\mathbf{c}, \mathbf{d}) = \exp\{i(\mathbf{\theta} + \mathbf{\phi})(c_{m-1})\} \cdot \left\{\frac{\mu_\nu(\sigma^{-1}\mathbf{c} \cap \mathbf{d})}{\mu_\nu(\mathbf{d})}\right\},$$

for $\mathbf{c} = [c_0 \cdots c_{m-1}].$

(3) $\|\|\|_1$ is a norm on column vectors with $\|V\|_1 = \sum_i |V_i|$ if $V = (V_i)$, and also on matrices with $\|A\|_1 = \sup_i \sum_i |a_{ij}|$ if $A = (a_{ij})$.

Note that $\|V_m(\boldsymbol{\theta}, \boldsymbol{\phi})\|_1$, $\|A_m(\boldsymbol{\theta}, \boldsymbol{\phi})\|_1 = 1$.

(4) For any ϕ , and $\theta \neq 0$ (regarded as real variables now), and $\frac{1}{2} < \delta \le 1$, define, for a column vector-valued function $V(\theta, \phi)$,

$$\|V\|_{1,\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\delta}} = \frac{\|V(\boldsymbol{\theta},\boldsymbol{\phi}) - V(\boldsymbol{0},\boldsymbol{\phi})\|_{1}}{|\theta_{1}|^{2\delta-1} + \dots + |\theta_{\nu_{1}}|^{2\delta-1}} \quad \text{if } \delta < 1,$$
$$= \frac{\|V(\boldsymbol{\theta},\boldsymbol{\phi}) - V(\boldsymbol{0},\boldsymbol{\phi})\|_{1}}{|\theta_{1}\log \theta_{1}| + \dots + |\theta_{\nu_{1}}\log \theta_{\nu_{1}}|} \quad \text{if } \delta = 1$$

and similarly for a matrix-valued function $A(\theta, \phi)$.

The first stage in proving (2) of theorem 3, proposition 4, is proved as 3.3 of [6]: PROPOSITION 4. For any fixed t, u, if $m^{8t+3} \le k \le m^u$,

$$S_k + S_{k+1} = \frac{2}{(2\pi)^{\nu}} \int_{[-1/m', 1/m']^{\nu}} W_m (A_m(\theta, \phi)^{k-m} V_m(\theta, \phi) \, d\theta \, d\phi + O(\eta^m),$$

For the next stage, the following analogue of 4.2 of [6] is needed: PROPOSITION 5. Let $F: \mathbb{R}^{v_1} \times \mathbb{R}^{v_2} \times \mathbb{C} \times \mathbb{C}^{\varepsilon_m} \to \mathbb{C}^{\varepsilon_m} \times \mathbb{C}$ be defined by

$$F(\mathbf{\theta}, \mathbf{\phi}, \lambda, \mathbf{y}) = \begin{pmatrix} (\lambda - A_m(\mathbf{\theta} + \mathbf{\phi}))(\boldsymbol{\mu} + \mathbf{y}) \\ \sum_{\mathbf{c} \in e_m} y(\mathbf{c}) \end{pmatrix},$$

where $\mathbf{y} = (\mathbf{y}(\mathbf{c}))$ and $\boldsymbol{\mu} = (\boldsymbol{\mu}_{\nu}(\mathbf{c}))$, so $\boldsymbol{\mu} = V_m(\mathbf{0})$. Then there exist C^0 functions $\lambda_m(\mathbf{0}, \mathbf{\phi})$, $\mathbf{y}(\mathbf{0}, \mathbf{\phi})$ defined for $|\theta_i| \leq C/m^{2/(2\delta-1)}$ or (if $\delta = 1$) $C/(m^2 \log m)$, and $|\phi_i| \leq C/m^2$, with $F(\mathbf{0}, \mathbf{\phi}, \lambda_m(\mathbf{0}, \mathbf{\phi}), \mathbf{y}(\mathbf{0}, \mathbf{\phi})) = 0$. Moreover, λ_m , \mathbf{y} are C^{∞} in $\mathbf{\phi}$, and

$$\left\| D_{\Phi}^{k} \begin{pmatrix} \lambda_{m} \\ \mathbf{y} \end{pmatrix} \right\|_{1} \leq d_{k} m^{n_{k}}$$
$$\left\| D_{\Phi}^{k} \begin{pmatrix} \lambda_{m} \\ \mathbf{y} \end{pmatrix} \right\|_{1, \mathbf{0}, \mathbf{\phi}, \delta} \leq d_{k} m^{n_{k}}$$

for constants d_k , n_k . Moreover, if the sequence $\begin{pmatrix} \lambda'_m \\ \mathbf{y}' \end{pmatrix}$ is defined inductively by

$$\begin{pmatrix} \lambda_m^0(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \mathbf{y}^0(\boldsymbol{\theta}, \boldsymbol{\phi}) \end{pmatrix} = \begin{pmatrix} 1 \\ \mathbf{0} \end{pmatrix}$$

$$\begin{pmatrix} \lambda_m^{r+1}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \mathbf{y}^{r+1}(\boldsymbol{\theta}, \boldsymbol{\phi}) \end{pmatrix} = \begin{pmatrix} \lambda_m^{r}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \mathbf{y}^{r}(\boldsymbol{\theta}, \boldsymbol{\phi}) \end{pmatrix} - (DF_{\lambda_m^{r}, \mathbf{y}^{r}})^{-1} F(\boldsymbol{\theta}, \boldsymbol{\phi}, \lambda_m^{r}, \mathbf{y}^{r}),$$

then

$$\left\| \begin{pmatrix} \lambda_m \\ \mathbf{y} \end{pmatrix} - \begin{pmatrix} \lambda_m^1 \\ \mathbf{y}^1 \end{pmatrix} \right\|_{1,\boldsymbol{\theta},\mathbf{0},\boldsymbol{\delta}} \leq dm^4 (|\boldsymbol{\theta}|^{2\delta-1} + \dots + |\boldsymbol{\theta}_{V_1}|^{2\delta-1})$$

for a constant d, where $|\mathbf{\theta}_i|^{2\delta-1}$ is replaced by $|\theta_i \log \theta_i|$ if $\delta = 1$.

Similar results hold for extending the eigenvalue 1, and eigenvector W_m , of $(A_m(\mathbf{0}))^T$, with $\| \|_{\infty}$ norms, by exactly dual methods.

In order to prove proposition 5, we need the following lemma and its corollary: LEMMA 6.

$$\sum_{n=1}^{\infty} \frac{|\exp(in\theta) - 1|}{n^{2\delta}} \le A|\theta|^{2\delta - 1} \quad if \ \frac{1}{2} < \delta < 1$$
$$\le A|\theta \log \theta| \quad if \ \delta = 1.$$

Proof. For any $\varepsilon > 0$, if $[|\varepsilon/\theta|]$ denotes the integral part of $|\varepsilon/\theta|$,

$$\sum_{n=1}^{\infty} \frac{|\exp(in\theta) - 1|}{n^{2\delta}} \le 4|\theta| \sum_{n=1}^{\lceil e/\theta \rceil} n^{1-2\delta} + 2 \sum_{\lceil e/\theta \rceil + 1}^{\infty} n^{-2\delta}$$
$$\le A_1|\theta| \cdot |\theta|^{2\delta - 2} + A_2|\theta|^{2\delta - 1} \quad \text{if } \delta < 1$$
$$\le A_1|\theta| |\log \theta| + A_2|\theta| \quad \text{if } \delta = 1.$$

COROLLARY 7.

$$\|V_m\|_{1,\theta,\phi,\delta} \le Bm$$
$$\|D_{\phi}^k A_m\|_{1,\theta,\phi,\delta} \le A_k \quad (k \ge 0)$$

for some constants B, A_k .

Proof. This follows from lemmas 2, 6, and also the following property of a Gibbs measure (see [6], 1.7.2) for the bound on $||V_m||_{1,\theta,\Phi,\delta}$:

$$\mu_{\nu}([e_{0}\cdots e_{p-1}]) \leq D\mu_{\nu}([e_{0}\cdots e_{r-1}])\mu_{\nu}([e_{r}\cdots e_{p-1}]),$$

some constant D, any r.

Proof of proposition 5. As in (4.2) of [6],

$$DF_{\lambda y} = \begin{pmatrix} \boldsymbol{\mu} + \boldsymbol{y} & \lambda - \boldsymbol{A}_m \\ 0 & 1 \cdots 1 \end{pmatrix}.$$

As in (3.2) of [6],

$$\|(I - A_m(0, 0))V\|_1 \ge (D^1/m) \|V\|_1,$$

some D^1 , if $\sum_{\mathbf{c} \in \mathbf{c}} V(\mathbf{c}) = 0$, and hence (using corollary 7)

$$\|(DF_{1,0})^{-1}\|_{1} \le Dm \quad \text{if } |\theta_{i}| \le c/m^{1/(2\delta-1)}, \qquad |\phi_{i}| \le c/m \text{ for } \delta < 1, \\ |\theta_{i}| \le c/(m \log m), \qquad |\phi_{i}| \le c/m \quad \text{if } \delta = 1,$$

for some constants D, c. Hence, for $(\mathbf{0}, \mathbf{\phi})$ in this set \mathcal{U} say, $DF_{\lambda_{m}^{r},\mathbf{y}^{r}}$ is invertible if $|\lambda_{m}^{r}-1|$, $||\mathbf{y}^{r}||_{1} \leq 1/(2Dm)$, and then $||(DF_{\lambda_{m}^{r},\mathbf{y}^{r}})^{-1}||_{1} \leq 2Dm$, so that λ_{m}^{r+1} , \mathbf{y}^{r+1} are defined.

Fix a set $\mathcal{U}_1 \subseteq \mathcal{U}$, and let

$$\varepsilon_{0} = \sup_{(\mathbf{\theta}, \mathbf{\Phi}) \in \mathcal{U}_{1}} \|F(\mathbf{\theta}, \mathbf{\Phi}, \lambda_{m}^{0}, \mathbf{y}^{0})\|_{1} \quad (\text{recall } (\lambda_{m}^{0}, \mathbf{y}^{0}) = (1, \mathbf{0}))$$
$$= \sup_{(\mathbf{\theta}, \mathbf{\Phi}) \in \mathcal{U}_{1}} \|(I - A_{m}(\mathbf{\theta}, \mathbf{\Phi}))\mathbf{\mu}\|_{1}.$$

So from corollary 7, by suitable choice of \mathcal{U}_1 , ε_0 can be made arbitrarily small. As in (4.2) of [6], we have inductively that:

$$\sup_{(\boldsymbol{\theta},\boldsymbol{\phi})\in\mathcal{U}_{1}} \|F(\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\lambda}_{m}^{r},\mathbf{y}^{r})\|_{1} \leq (2Dm)^{2r-1}\varepsilon_{0}^{2r}$$
$$\sup_{(\boldsymbol{\theta},\boldsymbol{\phi})\in\mathcal{U}_{1}} \left\|\boldsymbol{\lambda}_{m}^{r}-\boldsymbol{\lambda}_{m}^{r-1}\right\|_{1} \leq (2Dm\varepsilon_{0})^{2r-1}.$$
(1)

So by suitable choice of \mathcal{U}_1 (in fact, the choice indicated in the statement of the proposition) we may assume that λ'_m , \mathbf{y}' exist for all r, $|\lambda'_m - 1| \|\mathbf{y}'\|_1 \le 1/(2Dm)$, and the sequence $\begin{pmatrix} \lambda'_m \\ \mathbf{y}' \end{pmatrix}$ converges uniformly to $\begin{pmatrix} \lambda_m \\ \mathbf{y} \end{pmatrix}$ which solves $F(\mathbf{\theta}, \mathbf{\phi}, \lambda_m(\mathbf{\theta}, \mathbf{\phi}), \mathbf{y}(\mathbf{\theta}, \mathbf{\phi})) = 0.$

The bound on $\left\| D_{\Phi}^{k} \begin{pmatrix} \lambda_{m} \\ \mathbf{y} \end{pmatrix} \right\|_{1}$ then follows from the repeated differentiation of $D_{\Phi} \begin{pmatrix} \lambda_{m} \\ \mathbf{y} \end{pmatrix} = (DF_{\lambda_{m},\mathbf{y}})^{-1} ((D_{\Phi}A_{m}(\mathbf{\theta}, \mathbf{\phi}))(\mathbf{\mu} + \mathbf{y})), \tag{2}$

using corollary 7 and the bound $||(DF_{\lambda_m,\mathbf{y}})^{-1}||_1 \leq 2Dm$.

It remains to compute $\| \|_{1,\theta,\phi,\delta}$ -seminorms. First,

$$\|DF_{\lambda_{m}^{r},\mathbf{y}^{r}}\|_{1,\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\delta}} \leq \left\| \begin{pmatrix} \lambda_{m}^{r} \\ \mathbf{y}^{r} \end{pmatrix} \right\|_{1,\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\delta}} + \|A_{m}\|_{1,\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\delta}}.$$

Divergence type of subgroups of finitely generated Fuchsian groups 217

Hence, from the definition of $\begin{pmatrix} \lambda_m^{r+1} \\ \mathbf{v}^{r+1} \end{pmatrix}$,

$$\begin{aligned} \left\| \begin{pmatrix} \lambda_{m}^{r+1} - \lambda_{m}^{r} \\ \mathbf{y}^{r+1} - \mathbf{y}^{r} \end{pmatrix} \right\|_{1,\mathbf{\theta},\mathbf{\phi},\delta} \\ \leq 2Dm \|F(\lambda_{m}^{r},\mathbf{y}^{r})\|_{1,\mathbf{\theta},\mathbf{\phi},\delta} + \|(DF_{\lambda_{m}^{r},\mathbf{y}^{r}})^{-1}\|_{1,\mathbf{\theta},\mathbf{\phi},\delta} \|F(\lambda_{m}^{r},\mathbf{y}^{r})\|_{1} \\ \leq 2Dm \|F(\lambda_{m}^{r},\mathbf{y}^{r})\|_{1,\mathbf{\theta},\mathbf{\phi},\delta} \end{aligned}$$

 $+ (2Dm)^2 \left(\left\| \begin{pmatrix} \lambda'_m \\ \mathbf{y}' \end{pmatrix} \right\|_{1, \mathbf{0}, \mathbf{\phi}, \delta} + \|A_m\|_{1, \mathbf{0}, \mathbf{\phi}, \delta} \right) \|F(\lambda'_m, \mathbf{y}')\|_1.$ Since F is quadratic in λ , y, the Taylor expansion of (3)

$$F\left(\binom{\lambda_m^{r-1}}{\mathbf{y}^{r-1}} + \binom{\lambda_m^r - \lambda_m^{r-1}}{\mathbf{y}^r - \mathbf{y}^{r-1}}\right)$$

is particularly simple, and we obtain

$$\|F(\lambda_{m}^{r}, \mathbf{y}^{r})\|_{1, \mathbf{0}, \mathbf{\phi}, \delta} \leq C_{1} \|(DF_{\lambda_{m}^{r-1}, \mathbf{y}^{r-1}})^{-1}F(\lambda_{m}^{r-1}, \mathbf{y}^{r-1})\|_{1, \mathbf{0}, \mathbf{\phi}, \delta} \|(DF_{\lambda_{m}^{r-1}, \mathbf{y}^{r-1}})^{-1}F(\lambda_{m}^{r-1}, \mathbf{y}^{r-1})\|_{1} \leq C_{2}m \left\| \begin{pmatrix} \lambda_{m}^{r} - \lambda_{m}^{r-1} \\ \mathbf{y}^{r} - \mathbf{y}^{r-1} \end{pmatrix} \right\|_{1, \mathbf{0}, \mathbf{\phi}, \delta} \|F(\lambda_{m}^{r-1}, \mathbf{y}^{r-1})\|_{1}.$$
(4)

Substituting from (1) and (4), (3) becomes

$$\left\| \begin{matrix} \lambda_{m}^{r+1} - \lambda_{m}^{r} \\ \mathbf{y}^{r+1} - \mathbf{y}^{r} \end{matrix} \right\|_{1, \mathbf{\theta}, \mathbf{\Phi}, \delta}$$

$$\leq C_{3}m (2Dm\varepsilon_{0})^{2^{r-1}} \left(\left\| A_{m} \right\|_{1, \mathbf{\theta}, \mathbf{\Phi}, \delta} + \left\| \begin{pmatrix} \lambda_{m}^{r} \\ \mathbf{y}^{r} \end{pmatrix} \right\|_{1, \mathbf{\theta}, \mathbf{\Phi}, \delta} + \left\| \begin{pmatrix} \lambda_{m}^{r} - \lambda_{m}^{r-1} \\ \mathbf{y}^{r} - \mathbf{y}^{r-1} \end{pmatrix} \right\|_{1, \mathbf{\theta}, \mathbf{\Phi}, \delta} \right).$$
(5)

Inductively we can prove:

$$\left\| \begin{pmatrix} \lambda_{m}^{r+1} - \lambda_{m}^{r} \\ \mathbf{y}^{r-1} - \mathbf{y}^{r} \end{pmatrix} \right\|_{1, \boldsymbol{\theta}, \boldsymbol{\phi}, \delta} \leq C_{4} m^{3} (2Dm\varepsilon_{0})^{2r-1} \quad \text{if } r \geq 1,$$
(6)

provided that

$$\|\boldsymbol{A}_m\|_{1,\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\delta}} + \left\| \begin{pmatrix} \boldsymbol{\lambda}_m^1 \\ \boldsymbol{y}^1 \end{pmatrix} \right\|_{1,\boldsymbol{\theta},\boldsymbol{\phi},\boldsymbol{\delta}} + 2\sum_{r=0}^{\infty} C_4 m^3 (2Dm\varepsilon_0)^{2r} \leq (C_4/C_3)m^2.$$

This can be arranged for C_4 large enough, and $\varepsilon_0 = C/m^2$, C small enough, since (a) $||A_m||_{1,\theta,\phi,\delta}$ is bounded, by corollary 7;

(b)
$$\left\| \begin{pmatrix} \lambda_m^1 \\ \mathbf{y}^1 \end{pmatrix} \right\|_{1,\mathbf{0},\mathbf{\phi},\delta} = \left\| \begin{pmatrix} \lambda_m^1 - \lambda_m^0 \\ \mathbf{y}^1 - \mathbf{y}^0 \end{pmatrix} \right\|_{1,\mathbf{0},\mathbf{\phi},\delta} = \left\| (DF_{1,\mathbf{0}})^{-1}F(\cdots 1,\mathbf{0}) \right\|_{1,\mathbf{0},\mathbf{\phi},\delta}$$

 $\leq 2Dm \|F(\cdots 1,\mathbf{0})\|_{1,\mathbf{0},\mathbf{\phi},\delta} + (2Dm)^2 \|DF_{1,\mathbf{0}}\|_{1,\mathbf{0},\mathbf{\phi},\delta} \| (I - A_m(\mathbf{0},\mathbf{\phi})) \mathbf{\mu} \|_1$
 $\leq C_5 m^2, \text{ by corollary 7.}$

The bound on $\|\lambda_m - \lambda_m^1\|_{1,0,0,\delta}$ follows from (6) since, by corollary 7, and the definition of ε_0 , if $\mathscr{U}_1 = \{(\mathbf{0}^1, 0): |\theta_i^1| \le |\theta_i|\}$ then

$$\varepsilon_0 \le C_6(|\theta_1|^{2\delta-1} + \dots + |\theta_{\nu_1}|^{2\delta-1}) \quad \text{if } \delta < 1$$

$$\varepsilon_0 \le C_6(|\theta_1 \log \theta_1| + \dots + |\theta_{\nu_1} \log \theta_{\nu_1}|) \quad \text{if } \delta = 1.$$

As for $\left\| D_{\Phi}^{k} \begin{pmatrix} \lambda_{m} \\ \mathbf{y} \end{pmatrix} \right\|_{1}$, the bounds on $\left\| D_{\Phi}^{k} \begin{pmatrix} \lambda_{m} \\ \mathbf{y} \end{pmatrix} \right\|_{1, \mathbf{0}, \Phi, \delta}$ follow from differentiating (2).

Proposition 5 is used to prove the following corollaries:

COROLLARY 8 (analogue of (4.4) of [6]). For any sufficiently large t, independent of m, if $m^{8t+3} \le k \le m^n$,

$$S_{k} + S_{k+1} = 2(1 + O(1/m)) \frac{1}{(2\pi)^{\nu}} \int_{[-1/m', 1/m']^{\nu}} (\lambda_{m}(\theta, \phi))^{k-m} d\theta d\phi + O(\eta^{m}), \text{ some } \eta < 1.$$

Proof. Exactly as in (4.4) of [6], using the decomposition, for θ , ϕ near 0, $\mathbb{R}^{\epsilon_m} = \operatorname{Im} P_m(\theta, \phi) \oplus \operatorname{Ker} P_m(\theta, \phi)$, where $A_m(\theta, \phi)$ has eigenvalue $\lambda_m(\theta, \phi)$ on $\operatorname{Im} P_m(\theta, \phi)$, and $||(A_m(\theta, \phi))^{m+s}||_1 < \beta < 1$ on the $A_m(\theta, \phi)$ -invariant subspace $\operatorname{Ker} P_m(\theta, \phi)$, some s, β independent of m ((3.2) of [6] is used here). The Hölder continuity of λ_m , P_m at 0 established in proposition 5 (the dual results of proposition 5 for A_m^T are needed to prove Hölder continuity of P_m) are enough for the proof. \Box Note. As in (4.1) of [6], $\lambda_m(\theta, \phi)$ is real, so the first ϕ -derivatives of λ_m vanish at $(\theta, \phi) = (0, 0)$.

COROLLARY 9 (immediate from proposition 5).

$$\lambda_m(\boldsymbol{\theta}, \boldsymbol{\phi}) = \lambda_m^1(\boldsymbol{\theta}, \boldsymbol{\theta}) + \frac{1}{2}(\phi_1 \cdots \phi_{\nu_2}) \left(\frac{\partial^2 \lambda_m(\boldsymbol{\theta})}{\partial \phi_i \partial \phi_j}\right) \begin{pmatrix} \phi_1 \\ \phi_{\nu_2} \end{pmatrix}$$
$$+ O(m^4(|\theta_1|^{2\delta-1} + \cdots + |\theta_{\nu_1}|^{2\delta-1})^2) + O\left(\sum_{i,j} m^{n_1} |\theta_i|^{2\delta-1} |\phi_j|\right)$$
$$+ O\left(\sum_{i,j} m^{n_2} |\theta_i|^{2\delta-1} |\phi_j|^2\right) + O\left(\sum_j m^{n_3} |\phi_j|^3\right)$$

with $|\theta_i|^{2\delta-1}$ replaced by $|\theta_i| |\log \theta_i|$ if $\delta = 1$.

Note. The aim is to show $\lambda_m^1(\mathbf{\theta}, \mathbf{0}) = 1 - O(|\theta_1|^{2\delta - 1} + \dots + |\theta_{v_1}|^{2\delta - 1})$. For exactly as in (4.6) of [6], $(\phi_1 \cdots \phi_{v_2}) \left(\frac{\partial^2 \lambda_m(\mathbf{0})}{\partial \phi_i \partial \phi_j}\right) \left(\frac{\phi_1}{\phi_{v_2}}\right)$ is boundedly negative definite of rank v_2 (we can reduce to the case of a finite symbol space by putting $\mathbf{\theta} = \mathbf{0}$ and replacing $\{c_i^n\}_{n>0}$, $\{c_i^{-n}\}_{n<0}$ by single symbols). It is then not hard to see that $\lambda_m^1(\mathbf{\theta}, \mathbf{0}) + \frac{1}{2}(\phi_1 \cdots \phi_{v_2}) \left(\frac{\partial^2 \lambda_m(\mathbf{0})}{\partial \phi_i \partial \phi_j}\right) \left(\frac{\phi_1}{\phi_{v_2}}\right)$ is the dominating part of $\lambda_m(\mathbf{\theta}, \mathbf{\phi})$ (in spite of the $|\theta_i \log \theta_i|$ terms when $\delta = 1$). Calculation of $\lambda_m^1(\mathbf{\theta}, \mathbf{0})$. By definition,

$$\lambda_m^1(\boldsymbol{\theta}, \boldsymbol{0}) = 1 - (DF_{1,\boldsymbol{\theta}}(\boldsymbol{\theta}, \boldsymbol{0}))^{-1} \begin{pmatrix} (I - A_m(\boldsymbol{\theta}, \boldsymbol{0})) \\ 0 \end{pmatrix}$$

218

It can be checked that $(DF_{1,0})^{-1}$ is of the form $\begin{pmatrix} 1 \cdots 1 & 0 \\ B_m(\theta, \phi) & \mu \end{pmatrix}$, where, if $M = (\mu \cdots \mu)$ (a matrix with rows and columns indexed by ε_m), then

$$B_m(\theta, \phi)(I - A_m(\theta, \phi)) = (I - A_m(\theta, \phi))B_m(\theta, \phi) = I - M$$

= projection on $\left\{ (y(\mathbf{c})): \sum_{\mathbf{c} \in \varepsilon_m} y(\mathbf{c}) = 0 \right\}$ along sp (μ)

 $(B_m(\theta, \phi) \text{ does exist, since by § 3 of } [6] ||A_m(0, 0)||_1 < 1 \text{ on Im } (I - M), \text{ hence also for nearby } (\theta, \phi).)$ So

$$\lambda_m^1(\boldsymbol{\theta}, \boldsymbol{0}) = 1 - (1 \cdots 1)(I - A_m(\boldsymbol{\theta}, \boldsymbol{0}))\boldsymbol{\mu}$$
$$= 2 \sum_{i=1}^r \sum_{n=1}^\infty \boldsymbol{\mu}_{\nu}([c_i^n]) \cos n \boldsymbol{\theta}(c_i)$$

(using the fact that $\mu_{\nu}([c_i^n]) = \mu_{\nu}([c_i^{-n}]))$.

Hence, from lemma 2,

$$\lambda_m^1(\boldsymbol{\theta}, \boldsymbol{\theta}) = 2 \sum_{i=1}^r b_i \sum_{n=1}^\infty \frac{1}{n^{2\delta}} \cos n \boldsymbol{\theta}(c_i) + O(|\boldsymbol{\theta}(c_1)| + \cdots + |\boldsymbol{\theta}(c_r)|),$$

since any cosine series with *n*th term $O(1/n^{2\delta+1})(\delta > \frac{1}{2})$ is C^1 with first derivative at 0 vanishing.

LEMMA 10. If

$$f(\theta) = \sum_{n=1}^{\infty} \frac{\cos n\theta}{n^{2\delta}}, \qquad f(\theta) = \sum_{n=1}^{\infty} \frac{1}{n^{2\delta}} (1 - C|\theta|^{2\delta - 1} + O(|\theta|^{2\delta - 1}))$$

for some constant C > 0 ($\delta > \frac{1}{2}$).

Proof. This is standard complex analysis. Since, clearly, $f(\theta) = f(-\theta)$, we need only consider the expansion for $\theta > 0$. If

$$0 \le \theta \le 2\pi$$
, $f(\theta) = \lim_{N \to \infty} \frac{1}{2i} \int_{\gamma_N} \frac{\cos(\pi - \theta)z}{z^{2\delta} \sin \pi z} dz$

where γ_N is the contour shown in figure 3. In the limit as $N \to \infty$, the integral vanishes except on the imaginary axis and half-circle. If $\delta = 1$, the imaginary axis integral also cancels out, and the integral around the half-circle, which is a C^{∞} function, has derivative $-\frac{1}{2}\pi$ at 0. If $\frac{1}{2} < \delta < 1$,

$$f(\theta) = g(\theta) - \sin \pi \delta \int_0^\infty \frac{1 - \exp(-y\theta)}{y^{2\delta}} dy$$
, where g is C^∞ .

But

$$\int_0^\infty \frac{1 - \exp(-y\theta)}{y^{2\delta}} \, dy = \theta^{2\delta - 1} \int_0^\infty \frac{1 - \exp(-y)}{y^{2\delta}} \, dy \quad \text{by change of variable.} \quad \Box$$

Completion of the proof of theorem 3. It has now been proved that

$$\lambda_m(\mathbf{\theta}, \mathbf{\phi}) = 1 - \sum_{i=1}^{\infty} a_i |\theta(c_i)|^{2\delta - 1} + \frac{1}{2} (\phi_1 \cdots \phi_{\nu_2}) \left(\frac{\partial^2 \lambda_m(\mathbf{0})}{\partial \phi_i \partial \phi_j} \right) \left(\frac{\phi_1}{\phi_{\nu_2}} \right) + \text{ higher order terms,}$$

for constants $a_i > 0$, where $-\frac{1}{2}(\phi_1 \cdots \phi_{\nu_2}) \left(\frac{\partial^2 \lambda_m(\mathbf{0})}{\partial \phi_i \partial \phi_j} \right) \left(\frac{\phi_1}{\phi_{\nu_2}} \right)$ converges geometrically fast to a function $G(\phi_1 \cdots \phi_{\nu_2})$, where G is boundedly positive definite (from [6], (4.6)). So from corollary 8,

$$S_{k} + S_{k+1} = \frac{2}{(2\pi)^{\nu}} \left(1 + O\left(\frac{1}{m}\right) \right) \int_{[-1/m', 1/m']^{\nu}} \left(\exp\left\{ -(k-m) \left(\sum_{i=1}^{r} a_{i} |\theta(c_{i})|^{2\delta-1} \right) + G(\phi_{1} \cdots \phi_{\nu_{2}}) + \text{higher order terms} \right\} \right) d\theta \, d\phi + O(\eta^{m}), \text{ some } \eta < 1.$$

Change of variable then gives

$$S_{k} + S_{k+1} \sim \frac{2}{(2\pi)^{v}} k^{-(v_{1}/(2\delta-1)+\frac{1}{2}v_{2})} \int_{\mathbb{R}^{v}} \exp\left\{-\left(\sum_{i=1}^{r} a_{i} |\theta(c_{i})|^{2\delta-1} + G(\phi_{1}\cdots\phi_{v_{2}})\right)\right\} d\theta d\phi$$

and theorem 3 is proved.

The author was supported by a junior research fellowship at St Hilda's College, Oxford, England.

REFERENCES

 A. F. Beardon. The exponent of convergence of Poincaré series, Proc. London Math. Soc. (3) 18 (1968), 461-483.

- [2] T. Lyons & H. P. McKean. The winding of plane Brownian motion. Advances in Math. (in the press).
- [3] H. P. McKean & D. Sullivan. In preparation.
- [4] M. Morse. Symbolic Dynamics (notes by R. Oldenburger). I.A.S.: Princeton, 1966.
- [5] S. J. Patterson. The limit set of a Fuchsian group. Acta Math. 136 (1976), 241-273.
- [6] M. Rees. Checking ergodicity of some geodesic flows with infinite Gibbs measure. Ergod. Th. and Dynam. Sys. 1 (1981), 107-133.
- [7] C. Series. Symbolic dynamics for geodesic flows. Acta Math. (in the press).
- [8] D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. *IHES Publ. Math.* 50 (1979), 171-202.