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Abstract
We prove a correspondence between κ-small fibrations in simplicial presheaf categories equipped with the
injective or projective model structure (and left Bousfield localizations thereof) and relatively κ-compact
maps in their underlying quasi-categories for suitably large regular cardinals κ . We thus obtain a transi-
tion result between weakly universal small fibrations in the (type-theoretic) injective Dugger–Rezk-style
standard presentations of model toposes and object classifiers in Grothendieck∞-toposes in the sense of
Lurie.
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1. Introduction
AGrothendieck∞-toposM is an accessible left exact localization of the presheaf (∞, 1)-category
Ĉ over some small (∞, 1)-category C (Lurie, 2009, Section 6.1). Hence, it is presented by a model
toposM given by a left exact left Bousfield localization of the simplicial category sPsh(C) of sim-
plicially enriched presheaves on an associated small simplicial category C, equipped with either
the projective or the injective model structure (Rezk, 2010, Section 6). In the following, we prove
a correspondence between κ-small fibrations in such model toposes M and relatively κ-compact
maps in their associated Grothendieck ∞-toposes M=Ho∞(M) for regular cardinals κ large
enough. This is motivated by the interpretation of univalent Tarski universes defined in Martin-
Löf-type theory (The Univalent Foundations Program 2013) as univalent fibrations universal for
the class of κ-small fibrations for suitable cardinals κ (Cisinski 2014; Shulman 2019a) and their
intended interpretation as object classifiers in higher topos theory for relatively κ-compact maps
as developed in Lurie (2009, Section 6.1.6). Therefore, even though we prove an analogous (but
slightly weaker result) result for the projective model structure and arbitrary localizations, the
main result of this paper is the following.

Theorem 3.21. Let C be a small simplicial category, T be a set of arrows in the underlying category
of sPsh(C), and M be the left Bousfield localization LTsPsh(C)inj of sPsh(C) equipped with the
injective model structure at the set T (in the classic sense of Hirschhorn 2003, Section 3.3). Assume
that the localization is left exact, and let κ be a sufficiently large regular cardinal. Then a morphism
f ∈Ho∞(M) is relatively κ-compact if and only if there is a κ-small fibration g ∈ sPsh(C) such that
g � f inHo∞(M).
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Corollary 4.1. LetM=LTsPsh(C)inj be a left exact left Bousfield localization as in Theorem 3.21,
and let κ be a sufficiently large regular cardinal. Then, a relatively κ-compact map p ∈Ho∞(M) is
a classifying map for all relatively κ-compact maps in Ho∞(M) if and only if there is a univalent
κ-small fibration π ∈M which is weakly universal for all κ-small fibrations inM such that p� π in
Ho∞(M).

As a prerequisite for the proof we are giving, in Section 2, we show that up to DK-equivalence
every simplicial category can be replaced by the localization of a suitable well-founded poset as
already observed by Shulman in (2017). This allows us to replace simplicial presheaf categories
over arbitrary small simplicial categories C by localizations of simplicial presheaf categories over
such posets I. In Section 3, we will use that such model categories come equipped with a theory
of minimal fibrations that will allow us to present relatively κ-compact maps in their underlying
quasi-category by κ-small fibrations. Those can be pushed forward to κ-small projective fibrations
in our original presheaf category over C making use of Dugger’s ideas about universal homotopy
theories in Dugger (2001b). The move to the injective model structure then follows by Shulman’s
recent observation (Shulman, 2019a, Section 8) that the cobar construction on simplicial presheaf
categories takes projective fibrations to injective ones. In Section 4, we explain the relevance of
this result for the semantics of homotopy type theory in higher topos theory, as Theorem 3.21 is
necessary to translate Tarski universes in the syntax to object classifiers in an∞-topos (when using
the common semantics via type-theoretic model categories given in Shulman 2015, Section 4).

2. Direct Poset Presentations of Simplicial Categories
In the following, simplicial categories – that is simplicially enriched categories - will be denoted
by bold faced letters C and ordinary categories will be distinguished by blackboard letters C. S
denotes the (simplicial) category of simplicial sets. By a simplicial presheaf over C, we mean a
simplicially enriched presheaf X : Cop→ S. Simplicial presheaves and simplicial natural trans-
formations form part of a simplicial category sPsh(C) (via the usual end-construction, denoted
[Cop, S] in Kelly 2005, Section 2.2) whose underlying ordinary category will be denoted by sPsh(C).

Mike Shulman noted in Shulman (2017, Lemma 0.2) that every quasi-category can be presented
by the localization of a direct – in other words, well-founded – poset of degree at most ω.1 Since
the note is unpublished, in this section, we present a slightly stronger variation of his observation
(with an accordingly slightly different proof) and discuss the resulting presentations of associated
presheaf (∞, 1)-categories. Although the following sections only will require the fact that every
(∞, 1)-category can be presented by the localization of an Eilenberg–Zilber category (Berger and
Moerdijk 2011), proving the stronger condition of posetality only requires about as much work as
the Eilenberg–Zilber condition itself.

Recall the following constructions and notation from Barwick and Kan (2012b). A relative cat-
egory is a pair (C,V) such that C is a category and V is a subcategory of C. A relative functor
F : (C,V)→ (D,W) is a functor F : C→D of categories such that F[V]⊆W. The relative func-
tor F is a relative inclusion if its underlying functor of categories is an inclusion and V =W ∩C.
The category of small relative categories and relative functors is denoted by RelCat.

There are two canonical inclusions of the category Cat of small categories into RelCat; for a cat-
egory C and its discrete wide subcategory C0, we obtain the associated minimal relative category
Č := (C,C0) and the associated maximal relative category Ĉ := (C,C).

In Barwick andKan (2012b, Section 4), Barwick andKan introduce a combinatorial subdivision
operation ξ : RelPos→ RelPos on relative posets (considered as posetal relative categories) and an
associated bisimplicial nerve construction Nξ : RelCat→ sS giving rise to the adjoint pair:

sS
Kξ

�� RelCat.
Nξ

�� (1)

https://doi.org/10.1017/S0960129523000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000051


Mathematical Structures in Computer Science 663

The left adjoint Kξ is given by Kξ (�[m, n])= ξ ( ˇ[m]× [n̂]) on representables and left Kan exten-
sion along the Yoneda embedding. The authors of Barwick and Kan (2012b) have shown that the
category RelCat inherits a transferred model structure from the Reedy model structure (sS, Rv)
which turns the pair (Kξ ,Nξ ) into a Quillen-equivalence. By construction, the set Kξ [Iv] forms a
set of generating cofibrations for the model structure in question, where

Iv := {∂�[n,m] ↪→�[n,m] | n,m≥ 0}
denotes the generating set of monomorphisms in sS. Left Bousfield localization of both sides of
(1) induces a model structure (RelCat, BK) such that (Kξ ,Nξ ) is a Quillen-equivalence to Rezk’s
model structure (sS, CS) for complete Segal spaces.

It follows that the underlying quasi-category of the model category RelCat is equivalent to the
quasi-category of small (∞, 1)-categories (Lurie 2017, Definition 1.3.4.15). We will denote the
thus associated small (∞, 1)-category to a relative category (C,V) by Ho∞(C,V) whenever it is
not necessary to specify a specific model of (∞, 1)-category theory.

A central notion of Barwick and Kan (2012b) is that of a “Dwyer map” in RelCat. A relative
functor F : (C,V)→ (D,W) is a Dwyer inclusion if F is a relative inclusion such that C is a sieve
inD and such that the cosieve ZC generated byC inD comes equipped with a strong deformation
retraction ZC→C. The relative functor F is aDwyer map if it factors as an isomorphism followed
by a Dwyer inclusion, see Barwick and Kan (2012b, Section 3.5) for more details.

A major insight of the authors was that the generating cofibrations:
Kξ (∂�[n,m]) ↪→Kξ (�[n,m]) (2)

of the model category (RelCat, BK) are Dwyer maps of (finite) relative posets (Barwick and Kan
2012b, Proposition 9.5). It follows that every cofibration in (RelCat, BK) is a Dwyer map and that
every cofibrant object is a relative poset (Barwick and Kan 2012b, Theorem 6.1).

Proposition 2.1. The underlying category of a cofibrant object in (RelCat, BK) is a direct (i.e. well-
founded) poset of degree at most ω (i.e. it comes equipped with a strictly monotone degree function
to ω).

Proof. Since the empty relative category ∅ is a relative direct poset, it suffices to show that for
every cofibration (P,V) ↪→ (Q,W) where (P,V) is a relative direct poset of degree at most ω also
(Q,W) is a relative direct poset of degree at most ω. We show this by induction along the small
object argument as follows.

The generating cofibrations (2) are maps between finite relative posets and such are clearly
direct. Both Dwyer maps and relative posets are closed under coproducts and under pushouts
between relative posets by Barwick and Kan (2012b, Proposition 9.2). Since Dwyer inclusions are
inclusions of sieves, it is easy to see that both constructions preserve well-foundedness and the
existence of a ω-valued degree function, too. Suppose we are given a transfinite composition of
Dwyer maps Aα→Aβ for α < β ≤ λ ordinals and Aα relative inverse posets of degree at most
ω. Then, as stated in the proof of Barwick and Kan (2012b, Proposition 9.6), the colimit Aλ is a
relative poset. Suppose a= (ai | i< ω) is a descending sequence of arrows inAλ and let α < λ such
that a0 ∈Aα . Then the whole sequence a is contained in Aα , because the inclusion Aα ↪→Aλ is a
Dwyer map by Barwick and Kan (2012b, Proposition 9.3) and so Aα ⊆Aλ is a sieve. Therefore,
the sequence a is finite. For the same reason, the objects in Aα still have finite degree.

In particular, every free cofibration ∅ ↪→ (P,V) – that is every transfinite composition of
pushouts of coproducts of generating cofibrations with domain ∅ – yields a relative direct poset
(P,V) of degree at most ω. But every cofibration ∅ ↪→ (Q,W) is a retract of such, and hence every
cofibrant object in RelCat is a relative direct poset of degree at most ω.

Remark 2.2. The same proof shows that the cofibrant objects in the Thomason model structure
on Cat are direct posets, using Thomason’s original observation that the cofibrant objects in the
Thomason model structure are posetal in the first place.
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Let F� : Cat→ S-Cat be the Bar construction obtained in the standard way by the monad
resolution associated with the free category functor F from the category RGraph of reflexive
graphs to Cat (Dwyer and Kan 1980b, Section 2.5). Let U : Cat→ RGraph be the correspond-
ing right adjoint forgetful functor. Recall that F� itself is not the left adjoint to the “underlying
category” functor ( · )0 : S-Cat→Cat, but instead, as often remarked in the literature, a cofibrant
replacement thereof. Furthermore, recall from Dwyer and Kan (1980b, Section 4) the (standard)
simplicial localization functor:

L� : RelCat→ S-Cat

which takes a relative category (C,V) to the simplicial category given in degree n≥ 0 by:

L�(C,V)n = F�(C)n[F�(V)−1n ].

The functor L� : (RelCat, BK)→ S-Cat is part of an equivalence of associated homotopy theories
(Barwick and Kan 2012a) so that Ho∞(C,V)�L�(C,V). Indeed, it is pointwise equivalent to the
hammock localization of a relative category (Dwyer and Kan 1980a, Section 2) and hence presents
the (∞, 1)-categorical localization of C at V (Mazel-Gee 2019, Remark 3.2, Theorem 3.8). Yet
it has the benefit of being a strict enriched construction: it is the localization of the simplicial
category F�(C) at the subcategory F�(V)0 ⊆ F�(C)0 in the following sense.

Lemma 2.3. For every relative category (C,V) and every (potentially large) simplicial category D,
the canonical simplicial functor j : F�(C)→L�(C,V) induces an isomorphism:

j∗ : S-Cat(L�(C,V),D)→ S-CatF�(V)(F�(C),D) (3)

of hom-categories.

Here, we consider S-Cat as a 2-category given by S-enriched categories, S-enriched func-
tors, and S-enriched natural transformations (Kelly 2005, Section 1.2). The right-hand side of
(3) denotes the full subcategory of S-Cat(F�(C),D) spanned by those functors which take the
arrows of F�(V)0 to isomorphisms inD0. Thus, Lemma 2.3 states that F�(V)0 ⊆ F�(C)0 is “S-well
localizable” in the sense of Wolff (1973).

Lemma 2.3 and Corollary 2.4 are not strictly necessary for the results of this paper, but may be
beneficial to motivate the simplicial localization construction.

Proof of Lemma 2.3. First, each F�(V)n is generated as a category by the iterated degeneracies
of F�(V)0. Thus, a simplicial functor F�(C)→D takes all arrows in F�(V)n to isomorphisms
in Dn for all n≥ 0 if and only if F0 takes the arrows in F�(V)0 to isomorphisms in D0. Using the
universal property of the ordinary categorical localization F�(C)n[F�(V)−1n ] at each degree n≥ 0,
it follows that (3) is bijective on objects.

Second, recall that S-Cat is cartesian closed (Kelly 2005, 2.3). Thus, Cordier’s simplicial nerve
construction N� : S-Cat→ S with left adjoint C (Lurie 2009, Section 1.1.5) yields a simplicial
enrichment of S-Cat itself. Thus, the fact that j∗ is fully faithful follows from the same objectwise
argument but applied to the simplicial category [C(�1),D]. Indeed, enriched natural trans-
formations of simplicial functors L�(C,V)→D stand in 1-1 correspondence to 1-simplices
in the nerve N�([L�(C,V),D]). Such correspond bijectively to simplicial functors C(�1)→
[L�(C,V),D], where C(�1) is the simplicial category with two objects 0, 1, and C(�1)(0, 1)∼=
C(�1)(0, 0)∼= C(�1)(1, 1)∼=�0 and C(�1)(1, 0)∼=∅. The latter functors in turn stand in 1-
1 correspondence to simplicial functors L�(C,V)→ [C(�1),D] by Kelly (2005, Section 2.3).
Such functors stand in 1-1 correspondence via restriction along j to simplicial functors of type
F�(C)→ [C(�1),D] which take arrows in F�(V)0 to isomorphisms in [C(�1),D]0 by the first
part. These are exactly the enriched natural transformations in S-CatF�(V)(F�(C),D).
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Corollary 2.4. For (C,V) ∈ RelCat and j : F�(C)→L�(C,V), the associated localization functor
of simplicial categories, the induced restriction:

j∗ : sPsh(L�(C,V))→ sPsh(F�(C)) (4)

of simplicial presheaf categories is fully faithful.

Proof. Given simplicial presheaves X, Y ∈ sPsh(L�(C,V)), we want to show that the induced
map:

j∗(X, Y) : sPsh(L�(C,V))(X, Y)→ sPsh(F�(C))(j∗X, j∗Y)
of simplicial sets is a bijection on all degrees n≥ 0. But for each such integer n≥ 0, the map
j∗(X, Y)n is isomorphic to the restriction:

j∗(X, Y) : sPsh(L�(C,V))(X⊗�n, Y)→ sPsh(F�(C))(j∗(X⊗�n), j∗Y),
since simplicial presheaf categories are cotensored over S, and j∗ is cocontinuous. Thus, it is
bijective by Lemma 2.3 applied toD= S.

Hence, the map j : F�(C)→L�(C,V) induces both a localization:

(j!, j∗) : sPsh(F�(C))→ sPsh(L�(C,V))
and a colocalization:

(j∗, j∗) : sPsh(L�(C,V))→ sPsh(F�(C))

between simplicial presheaf categories. Equipping both sides with either the injective or the pro-
jective model structure, the restriction j∗ becomes a left, respectively, right Quillen functor (Lurie
2009, Proposition A.3.3.7). By Dwyer and Kan (1987, Theorem 2.2) applied to the map

j : (F�(C), F�(V))→ (L�(C,V),L�(C,V)
∼=)

of relative simplicial categories (Barwick and Kan 2012a, Section 2.2), the restriction (4) remains
fully faithful on associated homotopy theories. More precisely, equipping both sides with the
projective model structure, the pair (j!, j∗) becomes a homotopy localization and induces a
Quillen-equivalence:

(j!, j∗) : sPsh(L�(C,V))proj→Ly[F�(V)0]sPsh(F�(C))proj, (5)

where the right-hand side denotes the according left Bousfield localization. Dually, equipping both
sides in (4) with the injective model structure, the pair (j∗, j∗) becomes a homotopy colocalization.

The simplicial localization functor L� : RelCat→ S-Cat has a homotopy-inverse, the “delocal-
ization” or “flattening”

� : S-Cat→ RelCat,

given by the Grothendieck construction of a given simplicial category C considered as a simplicial
diagram C : �op→Cat. This functor was introduced in Dwyer and Kan (1987, Theorem 2.5) and
is analyzed in detail in Barwick and Kan (2012a).

Now, given a simplicial category C, consider its delocalization �(C) ∈ RelCat. Cofibrantly
replacing �(C) with some pair (P,V) in RelCat yields a direct relative poset (P,V) weakly equiv-
alent, that is, Rezk-equivalent in the language of Barwick and Kan (2012a) – to �(C). Hence,
by Barwick and Kan (2012a, Theorem 1.8), the simplicial localization L�(P,V) ∈ S-Cat is DK-
equivalent to the original simplicial category C. That means there is a zig-zag of DK-equivalences
of the form:

C
f1−→ · · · fn←−L�(P,V). (∗)
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By Lurie (2009, Proposition A.3.3.8) or Dwyer and Kan (1987, Theorem 2.1) and the sequence of
maps in ( ∗ ), we obtain a zig-zag of simplicial Quillen-equivalences:

sPsh(L�(P,V))proj
(fn)!

��
. . .

f ∗n
��

f ∗1
�� sPsh(C)proj.

(f1)!
��

Further recall from Dwyer and Kan (1980b, Proposition 2.6) that for every categoryC, the canon-
ical projection ϕ : F�C→C is a DK-equivalence of simplicial categories. So, to summarize, we
have gathered the following chain of Quillen-equivalences.

Proposition 2.5. Let C be a small simplicial category. Then there is a direct relative poset (P,V) of
degree at most ω together with a zig-zag of DK-equivalences:

C→· · ·←L�(P,V)

in S-Cat which induces a zig-zag of simplicial Quillen-equivalences of the form:

Ly[V]sPsh(P)
ϕ∗

�� Ly[F�(V)0]sPsh(F�P)
ϕ!��

j!
�� sPsh(L�(P,V))

j∗
��

sPsh(C)
(f1)!

��
. . .

f ∗1
��

f ∗n
�� sPsh(L�(P,V)),

(fn)!
��

where all simplicial presheaf categories are equipped with the projective model structure.

Proof. The only part left to show is that ϕ : F�C→C induces a Quillen-equivalence of given left
Bousfield localizations, but this follows directly from Dwyer and Kan (1980b, Proposition 2.6)
together with Dwyer and Kan (1987, Corollary 3.8).

3. Compactness in Combinatorial Model Categories
We start with some facts about compactness in presheaf categories. Given a small category C, we
denote the cardinality of C by:

|C| :=
∑

C,C′∈C
|HomC(C, C′)|.

Given a (set-valued) presheaf X ∈ Ĉ, its cardinality is denoted by:

|X| :=
∑
C∈C
|X(C)|.

Given a regular cardinal κ > |C|, recall that a presheaf X ∈ Ĉ is κ-small if |X|< κ , that is if all its
values X(C) have cardinality smaller than κ . A map f : X→ Y in Ĉ is κ-small if all its pullbacks
along maps Z→ Y with κ-small domain Z are κ-small presheaves. Equivalently, f : X→ Y is
κ-small if and only if for all objects C ∈C, the function f (C) : X(C)→ Y(C) of sets has κ-small
fibers.

Given a small simplicial category C, we also denote the cardinality of C by:

|C| :=
∑
C,C′
|HomC(C, C′)|

where the cardinality of the hom-objects C(C, C′) ∈ S is given by the cardinality of presheaves
defined above. Accordingly, given a regular cardinal κ > |C|, a simplicial presheaf X ∈ sPsh(C) is
κ-small if all its values X(C) are κ-small. A simplicial natural transformation f : X→ Y in sPsh(C)
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is κ-small if all its pullbacks along maps Z→ Y with κ-small domain Z are κ-small simplicial
presheaves.

Remark 3.1. Again, a map f : X→ Y in sPsh(C) is κ-small if and only if for all C ∈C, the map
f (C) : X(C)→ Y(C) is a κ-small map of simplicial sets.

The category sPsh(C) is locally finitely presentable (Kelly 1982, Examples 3.4, Proposition 7.5),
generated by (finite colimits of) the objects yC⊗�n for C ∈C and n≥ 0 which we refer to in the
following as the generators. When an ordinary category C is considered as a discrete simplicial
category, we have an obvious isomorphism between sPsh(C) and the set-valued presheaf category
Ĉ×�op.

Notation 3.2. To develop a general theory of accessible categories, Adámek and Rosický intro-
duce for pairs of regular cardinals μ < κ the sharply larger relation (Adámek and Rosický 1994,
Definition 2.12) and a special case “�” in Adámek and Rosický (1994, Example 2.13.(4)) which is
used as well in Lurie (2009, Definition 5.4.2.8) to develop a theory of accessible (∞, 1)-categories.
Here, μ� κ if for all cardinals κ0 < κ and μ0 < μ, also κ

μ0
0 < κ .

The order “�” is chosen in such a way that whenever μ� κ holds, then μ < κ and μ-
accessibility of a quasi-category C implies κ-accessibility of C (Lurie 2009, Proposition 5.4.2.11).
As noted in Lurie (2009), the order is unbounded in the class of regular cardinals as for any regular
cardinal μ we have μ� sup{τμ | τ < μ}+. In particular, we always find a regular cardinal sharply
larger than a given regular μ. In fact, if μ is regular, then μ+ is already sharply larger than μ

(Adámek and Rosický 1994, Examples 2.13.(2)). Whenever λ < μ is a regular cardinal andμ� κ ,
then also λ� κ . Thus, for any set X of cardinals, there is a regular cardinal μ such that κ�μ for
all κ ∈ X.

Recall that an object C in an accessible categoryC is κ-compact if its associated corepresentable
preserves κ-directed colimits. A map f in C is relatively κ-compact if the pullback of f along any
map with κ-compact domain in C is itself again κ-compact.

Lemma 3.3. Let C be a small simplicial category and κ� |C| an infinite regular cardinal. Then

1. An object X ∈ sPsh(C) is κ-compact if and only if it is κ-small.
2. A map f ∈ sPsh(C) is relatively κ-compact if and only if it is κ-small.

Proof. Let C be a small simplicial category. For Part 1, recall that a presheaf X is κ-compact if
and only if it is a retract of a κ-small directed colimit of finite colimits of the generators yC⊗�n

via Adámek and Rosický (1994, Remark 2.15). But κ� |C| being infinite and regular implies
that all generators yC⊗�n are κ-small, and hence so are all their finite colimits. Hence, every
κ-compact presheaf X is a subobject of a κ-small colimit of κ-small presheaves and hence κ-small.
Vice versa, every simplicial presheaf X is the colimit of its canonical diagram of generators yC⊗
�n; whenever X is κ-small, so is the associated canonical diagram by the Yoneda Lemma. Thus, X
is a κ-small colimit of the generators yC⊗�n. Closing the generators under finite colimits gives
a description of X as a κ-small directed colimit of κ-compact objects, so X is κ-compact again by
Adámek and Rosický (1994, Remark 2.15). Part 2 follows directly from Part 1 by definition.

Lemma 3.4. Let C and D be locally presentable categories and let

F : C �� D : G��

be an adjoint pair. Let κ be a regular cardinal such that
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1. both F and G preserve κ-compact objects,
2. κ-compact objects in C are closed under fiber products.

Then G preserves relatively κ-compact maps.

Proof. Straight-forward.

Remark 3.5. Although the class of μ-compact objects in a locally κ-presentable category is not
necessarily closed under fiber products for all μ� κ , the class of such μ is unbounded in the class
of regular cardinals sharply larger than κ (Shulman 2019a, Proposition 4.5). It nevertheless is a
trivial property in the case of (simplicial) presheaf categories wheneverμ is infinite by Lemma 3.3,
since μ-smallness of sets is closed under finite limits.

Corollary 3.6. Let C and D be small simplicial categories and let

F : sPsh(C) �� sPsh(D) : G��

be an adjoint pair. Let κ�max(|C|, |D|) be regular and suppose both F and G preserve κ-small
objects. Then G preserves κ-small maps.

Proof. Follows directly from Lemmas 3.3.2, 3.4 and Remark 3.5.

The aim of this section is to compare this ordinary notion of compactness in a combinatorial
model categoryM with the notion of compactness in its underlying (∞, 1)-category Ho∞(M,W)
(Lurie 2009, Definitions 5.3.4.5, 6.1.6.4). The validity of this comparison was addressed in a
question posted in Lurie (2012) by Shulman; for objects it is given in Proposition 3.11 in a special
case, and in Corollary 3.16 in general. For maps it is given in Theorem 3.15 in case M is (the
left Bousfield localization of) a simplicial presheaf category equipped with the projective model
structure, and in Theorem 3.21 in case it is such equipped with the injective model structure.
An argument for the objectwise statement was outlined by Lurie in the same post, which in one
direction coincides with our proof given in Proposition 3.11. Before we state the theorems, we
make the following ad hoc construction, give one auxiliary folkore lemma, and define a simple
axiomatic framework of minimal fibrations in a general model category that will provide a
convenient setup to state intermediate results in.

Given a λ-accessible quasi-category C with generating setA and a regular cardinalμ≥ λ, define
the full subcategory Jμ ⊆ C recursively as follows. Let

Jμ,00 :=A

and Jμ,0 be the full subcategory of C generated by Jμ,00 . Whenever β < μ is a limit ordinal, let

Jμ,β0 =
⋃
α<β

Jμ,α0

and Jμ,β the full subcategory generated by Jμ,β0 . On successors, given Jμ,α , let

Jμ,α+10 := {colimF | F : I→ Jμ,α , I ∈QCat is μ-small and λ-filtered} (6)

(so we choose a set of representatives V�op
μ for μ-small simplicial sets) and Jμ,α+1 be the corre-

sponding full subcategory. Eventually, we define the full subcategory Jμ of C to have the set of
objects:

Jμ0 :=
⋃
α<μ

Jμ,α0 .
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The following lemma is noted in Lurie (2009, Section 5.4.2) and is a generalization of the
corresponding 1-categorical statement for accessible categories (Adámek and Rosický 1994,
Remark 2.15).

Lemma 3.7. Let C and D be presentable quasi-categories.

(1) Suppose C is λ-presentable. Then, for every regular μ� λ, the μ-compact objects in C are,
up to equivalence, exactly the retracts of objects in Jμ.

(2) Let F : C→D be an accessible functor. Then there is a cardinal μ such that F preserves
κ-compact objects for all regular κ�μ.

Proof. See Stenzel (2019, Lemma 8.3.4).

Notation 3.8. The following group of statements will in each case claim that a certain comparison
holds for all κ “sufficiently large” or “large enough.” That means in each case there is a cardinal
μ such that for all κ�μ the given statement holds true. As we are not interested in a precise
formula for the lower bound μ, we generally will not make the cardinal μ explicit. Instead, we
note that we will have to impose the condition on κ to be “large enough” only finitely often and
eventually take the corresponding supremum.

Definition 3.9. Let M be a model category. Say M has a theory of minimal fibrations if there is
a pullback stable class Fmin

M
of fibrations in M – the class of minimal fibrations – such that the

following hold.

(1) Let p : X� Y and q : X′� Y be minimal fibrations. Then every weak equivalence between
X and X′ over Y is an isomorphism.

(2) For every fibration p : X� Y in M, there is an acyclic cofibration M
∼
↪→ X such that the

restriction M→ Y is a minimal fibration.

Lemma 3.10. Let M be a model category with a theory of minimal fibrations. Let T be a class of
maps in M such that the left Bousfield localization LTM exists. Then the model category LTM has
a theory of minimal fibrations.

Proof. Given amodel categoryM and a classT ofmaps inM as stated, simply define the classFmin
T

of minimal fibrations in LTM to be the class of fibrations in LTM which are minimal fibrations
inM. Pullback stability of Fmin

T is immediate. Property 1 follows readily, as T-local weak equiva-
lences between T-local fibrations are weak equivalences inM itself. For Property 2, let p : X� Y
be a fibration in LTM. By the assumption that M has a theory of minimal fibrations, there is an
acyclic cofibrationM

∼
↪→ X inM such that the restrictionM� Y is a minimal fibration inM. But

M→ X is a weak equivalence from the fibration M� Y to the fibration p : X� Y over Y . The
latter is a fibration in LTM, and it hence follows by Hirschhorn (2003, Proposition 3.4.6) that
M� Y is a fibration in LTM, too.

Proposition 3.11. LetM be a combinatorial model category.

(1) For all sufficiently large regular cardinals κ , an object C in Ho∞(M) is κ-compact if there is
a κ-compact object D∈M such that C�D inHo∞(M).

(2) SupposeM has a theory of minimal fibrations. Then the converse of Part 1 holds.

Proof. For Part 1 and κ large enough, κ-filtered colimits in M are homotopy colimits and
the κ-compact objects in M are exactly the κ-compact objects in the quasi-category N(M). So
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the localization N(M)→Ho∞(M) preserves κ-filtered colimits and hence is κ-accessible. The
statement now follows from Lemma 3.7.

For Part 2, we note that by our assumption and by Dugger’s presentation theorem for combina-
torial model categories (Dugger, 2001a, Theorem 1.1), it suffices to show the statement for objects
C ∈ Jκ on the one hand and left Bousfield localizations of simplicial presheaf categories sPsh(C)
on the other. Indeed, given a combinatorial model category M together with a category C, a set
T ⊂ sPsh(C) of arrows and a Quillen-equivalence of the form:

LT(sPsh(C))proj
L �� M,
R

��

suppose we have shown the statement for all C ∈ Jκ and all κ large enough in the case of
LT(sPsh(C))proj. Then, as both categories M and sPsh(C) are presentable, we find κ� |C| large
enough such that the right adjoint R preserves κ-compact objects. Certainly, the derived functors
LL andRR preserve κ-compactness in Ho∞(M), so whenever an objectC ∈Ho∞(M) is contained
in Jκ , we may choose a κ-compact presheaf D ∈ sPsh(C) weakly equivalent to RRX. Without loss
of generality D is cofibrant by Dugger (2001a, Proposition 2.3.(iii)) and so L(D) is κ-compact in
M and presents C in Ho∞(M).

Now, every κ-compact object A ∈Ho∞(M) is the retract of an object C ∈ Jκ by Lemma 3.7.1.
We thus may present A by a bifibrant object B ∈M, and C by a κ-compact bifibrant object
D ∈M again via Dugger (2001a, Proposition 2.3.(iii)) and by the above. This yields a map
j : B→D with homotopy retract r : D→ B in M. Pick a minimal fibrant object ι : M ↪→ B. Since
every acyclic cofibration between fibrant objects allows a retract ρ itself, we see thatM is a homo-
topy retract of D. Hence, the composition (ρr)(jι) is homotopic to the identity 1M and thus a
homotopy equivalence (Hovey 1999, Theorem 1.2.10.(iv)). It follows that it is an isomorphism in
virtue of minimality ofM. Thus,M is a retract of D and as such κ-compact inM itself.

Therefore, assume M=LT(sPsh(C))proj, and suppose C ∈Ho∞(M) is contained in Jκ . The
representatives for the colimits in the construction of (Jκ ,α|α < κ) can be chosen to be homotopy
colimits of strict diagrams F : I→M for κ-small categories I by Lurie (2009, Proposition 4.2.3.14)
and Lurie (2017, Proposition 1.3.4.25). Hence, they can be computed according to the Bousfield–
Kan formula:

hocolimF= coeq

⎛
⎝ ∐

i→j
F(i)⊗N(j/I)op ��

��
∐
i
F(i)⊗N(i/I)op

⎞
⎠

becauseM=LTsPsh(C)proj is a simplicial model category (Hirschhorn 2003, Example 18.3.6). But
this representative of the homotopy colimit is κ-compact whenever I is κ-small and furthermore
each F(i) for i ∈ I in M is κ-compact. Hence, by induction, every object C ∈ Jκ is presented by a
κ-compact object D in sPsh(C).

In the following, we generalize Proposition 3.11 to relatively κ-compact maps.

Proposition 3.12. LetM be a combinatorial model category.

(1) Suppose the converse of Proposition 3.11.1 holds in M. Then for all sufficiently large regular
cardinals κ , a morphism f : C→D inHo∞(M) is relatively κ-compact if there is a relatively
κ-compact fibration p ∈M between fibrant objects such that p� f inHo∞(M).

(2) Suppose M has a theory of minimal fibrations and κ-compact objects inM are closed under
fiber products. Then the converse of Part 1. holds.

Proof. For Part 1, let p : X� Y be a relatively κ-compact fibration between fibrant objects in M.
Let g : A→ Y be a map in Ho∞(M) with κ-compact domain. In order to show that the pullback
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of X along g is κ-compact in Ho∞(M), by assumption we can present A by a κ-compact object
A′ in M. Without loss of generality A′ is bifibrant by Dugger (2001a, Proposition 2.3.(iii)), so we
obtain a map g′ : A′ → Y presenting g. Also the pullback (g′)∗X is a homotopy pullback and it is
κ-compact in M by assumption. Hence, it is κ-compact in Ho∞(M) again by Proposition 3.11.
This shows that p is relatively κ-compact in Ho∞(M).

For Part 2, assume that f : C→D is relatively κ-compact in Ho∞(M) and p : X� Y is a fibra-
tion in M such that Y is fibrant in M and p� f in Ho∞(M). By assumption, there is an acyclic
cofibrationM

∼
↪→ X such that the restrictionm : M� Y of p is a minimal fibration. Asm and p are

homotopy equivalent over Y , the fibrationm is relatively κ-compact in Ho∞(M), too. We want to
show that m is a relatively κ-compact fibration inM. Therefore, let g : Z→ Y be a map for some
κ-compact object Z ∈M; we have to show that the pullback:

g∗M ��

g∗m
��

·� M

��

Z g
�� Y

is a κ-compact object in M as well. By Dugger (2001a, Proposition 2.3.(iii)) there is a κ-compact
fibrant replacement RZ of Z. Since the object Y itself is fibrant, we obtain an extension g′ : RZ→ Y
of g along the acylic cofibration Z

∼
↪→ RZ and hence a factorization of the following form.

g∗M ��

g∗m

����

���
��

��
��

�
M

m

����

(g′)∗M

�����������

����

Z g
��� �

∼
���

��
��

��
��

� Y

RZ
g′

�����������

All three faces of the diagram are pullback squares, and by assumption κ-compact objects in M
are closed under fiber products. Hence, in order to show that the object g∗M ∈M is κ-compact, it
suffices to show that the object (g′)∗M ∈M is κ-compact.

As RZ is κ-compact in M, it also is κ-compact in the underlying quasi-category Ho∞(M) by
Proposition 3.11, and hence so is the (homotopy-)pullback (g′)∗M by our assumption on the
morphism f that we started with.

By Proposition 3.11 and Dugger (2001a, Proposition 2.3.(iii)), we find a cofibrant κ-compact
object X together with a weak equivalence e : X→ (g′)∗M. The composition (g′)∗m ◦ e : X→ RZ
is a map between κ-compact objects in M, and so we find a factorization X

∼
↪→ RX� RZ such

that RX is κ-compact as well again by Dugger (2001a, Proposition 2.3.(iii)). We obtain a weak
equivalence RX→ (g′)∗M between the respective fibrations over RZ as a lift to the resulting
square.

Since M has a theory of minimal fibrations, there is an acyclic cofibration j : N ∼
↪→ RX such

that the restriction n : N � RZ of RX� RZ is a minimal fibration. Since j is an acyclic cofibration
between fibrations, it has a retraction, and so N is still κ-compact in M. But the composition of
weak equivalences N � (g′)∗M over RZ is a weak equivalence between minimal fibrations and
hence is an isomorphism. Thus, (g′)∗M is κ-compact inM.
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Corollary 3.13. Let P be an Eilenberg–Zilber category in the sense of Cisinski (2014, Section 2.1)
andM= sPsh(P)inj be the category of simplicial presheaves on P equipped with the injective model
structure. Then for all sufficiently large regular cardinals κ , a morphism f ∈Ho∞(M) is relatively
κ-compact if and only if there is a κ-small fibration p ∈M between fibrant objects such that p� f in
Ho∞(M).

Proof. The model categoryM supports a theory of minimal fibrations as shown in Cisinski (2014,
2.13–2.16), and κ-small objects in (simplicial) presheaf categories are closed under fiber products
for infinite κ . Thus, the statement follows from Proposition 3.12 forM= sPsh(P)inj.

3.1 The projective case
We now make use of the observations in Section 2 to generalize Corollary 3.13 to the category of
simplicial presheaves over arbitrary small simplicial categories.

Therefore, we want to make use of Dugger (2001b, Proposition 5.10, Corollary 6.5) which
shows that any zig-zag M1←· · ·→Mn of Quillen-equivalences between combinatorial model
categories can be reduced to a single Quillen-equivalence whenever either M1 or Mn is a “stan-
dard presentation” of the form LTsPsh(C)proj for some small category C and some set of maps
T ⊂ sPsh(C). In our case however, we we wish to start with model categories of the form
LTsPsh(C)proj for general small simplicial categories C instead. Therefore, we show a simplicially
enriched version of Dugger (2001b, Proposition 5.10) first.

Proposition 3.14. Let C be a small simplicial category, and M, N be simplicial model categories
together with a simplicial Quillen-equivalence (L, R) : N ∼−→M. Let T be a class of arrows in sPsh(C)
such that its left Bousfield localization exists, and let (F,G) : LTsPsh(C)proj→M be a simplicial
Quillen pair. Then there is a simplicial Quillen pair (F′,G′) : LTsPsh(C)proj→N such that the
functors L ◦ F′ and F are Quillen-homotopic in the sense of Dugger (2001b, Definition 5.9). In
other words, simplicial Quillen pairs with domain LTsPsh(C)proj can be lifted up to homotopy along
Quillen-equivalences.

Proof. Let λ and ρ denote cofibrant and fibrant replacements, respectively, and L= λ∗, R= ρ∗
denote their associated left and right derivations of functors. Let the composition

λR(R)Fy : C→N

be denoted by p. Note that the left and right derivation L and R of simplicial functors may be
chosen to be simplicial again by Riehl (2014, Corollary 13.2.4); thus, p is a simplicial functor and
we can consider the simplicially enriched left Kan extension:

C
y
��

p
�� N.

sPsh(C)
Lanyp

���
�

�
�

�

We claim that F′ := Lanyp is the left Quillen functor we are looking for. First, let us construct the
Quillen homotopies connecting L ◦ F′ and F.

Recall that, as explained for instance in Kelly (2005, 4.31), for every presheaf X ∈ sPsh(C) the
object Lanyp(X) is the colimit of p weighted by X, that is,

F′ = � p.
The left Quillen functor L : N→M is a left adjoint and hence preserves weighted colimits;
thus, we have that L ◦ F′ ∼= � Lp. Furthermore, by Gambino (2010, Theorem 3.3), the weighted
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colimit functor

� : sPsh(C)proj × [C,M]inj→M

is a left Quillen bifunctor. In particular, for cofibrant presheaves X ∈ sPsh(C)proj the X-weighted
colimit

X � : [C,M]inj→M

is a left Quillen functor. But both Fy and Lp∼=L(L)R(R)Fy are cofibrant objects in [C,M]inj: the
former because representables are projectively cofibrant and F preserves cofibrant objects, and the
latter because L preserves cofibrant objects. Thus, if ρFy : Fy→ r(Fy) denotes an injective fibrant
replacement of Fy, the counit εr(Fy) : Lp⇒ r(Fy) of the Quillen-equivalence (L, R) induces a span
of natural weak equivalences between the cofibrant objects Lp, r(Fy), and Fy. Thus, for cofibrant
presheaves X ∈ (sPsh(C))proj, we obtain a zig-zag of natural weak equivalences between X � Lp
and X � Fy. But � Fy is just F (by Kelly 2005, 4.51), so we have constructed a span of Quillen
homotopies between L ◦ F′ and F.

Second, the fact that F′ : sPsh(C)proj→N is a left Quillen functor with right adjoint G′(N)=
N(p ,N) was basically already shown above (following for instance, as it were, from Gambino
2010, Theorem 3.3.).

We are left to show that, third, the Quillen pair

(F′,G′) : sPsh(C)proj→N

descends to the localization at T whenever F does so. That is, we have to show that every arrow
f ∈ T is mapped to a weak equivalence by F′ in N assuming every such arrow is mapped to a weak
equivalence by F inM. Without the loss of generality, all arrows f ∈ T have cofibrant domain and
codomain. Then, given f ∈ T, the arrow F(f ) is a weak equivalence in M, and so is LF′(f ) ∈M
since F and LF′ are Quillen-homotopic. Thus, R(R)(LF′(f )) is a weak equivalence in N, but this
arrow is weakly equivalent to F′(f ) since (L, R) is a Quillen-equivalence. It follows that F′(f ) is a
weak equivalence in N itself.

Theorem 3.15. Let C be a small simplicial category, T ⊂ sPsh(C) be a set of maps and M=
LT(sPsh(C))proj. Then for all sufficiently large regular cardinals κ , a morphism f ∈Ho∞(M) is
relatively κ-compact if and only if there is a κ-small fibration p ∈M between fibrant objects such
that p� f inHo∞(M).

Proof. Let C be a small simplicial category and T ⊂ sPsh(C) be a set of maps. By Proposition 2.5,
we obtain a relative poset (P,V) of degree at most ω and a zig-zag of Quillen-equivalences of the
form:

Ly[V]sPsh(P)inj
id

�� Ly[V]sPsh(P)proj
ϕ∗

��
id�� Ly[F�(V)]sPsh(F�P)proj

ϕ!��

Ly[F�(V)]sPsh(F�P)proj
j!

�� sPsh(L�(P,V))proj
j∗

��

(fn)!
��
. . .

f ∗n
��

f ∗1
�� sPsh(C)proj.

(f1)!
��

This yields a zig-zag of Quillen-equivalences:

L(y[V]∪T̄)sPsh(P)inj
��
. . .

��
�� LTsPsh(C)proj��

where T̄ ⊂ sPsh(P) is obtained from T ⊂ sPsh(C) by transferring T along the finitely many
Quillen-equivalences successively. We denote the union y[V]∪ T̄ ⊂ sPsh(P) short-handedly
by U.
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By Proposition 3.14, this chain of Quillen-equivalences induces a single Quillen-equivalence:

LTsPsh(C)proj
F �� LUsPsh(P)inj.
G

�� (7)

The left Bousfield localizationLUsPsh(P)inj has a theory of minimal fibrations by Lemma 3.10 and
Corollary 3.13. Thus, let κ� |C|, |P| be regular and, first, large enough such that Corollary 3.13
applies to P, second, large enough such that Proposition 3.12 applies to LUsPsh(P)inj, and third,
large enough such that both F and G preserves κ-compact objects (via Lemma 3.7 or its ordinary
categorical analogon as right adjoints between locally presentable categories are accessible again).

Now, let f ∈Ho∞(M) be relatively κ-compact. Since the pair (7) is a Quillen-equivalence,
the quasi-category Ho∞(M) is equivalent to the underlying quasi-category of LUsPsh(P)inj.
Then, by Proposition 3.12, there is a κ-small fibration p : X� Y between fibrant objects in
LUsPsh(P)inj presenting f in Ho∞(M). By assumption, both adjoints preserve κ-compact objects,
so by Corollary 3.6 the right Quillen functor G preserves κ-small maps. Thus, Gp : GX�GY is a
κ-small fibration between fibrant objects presenting f in Ho∞(M).

In particular, the converse of Proposition 3.11.1 holds inM for every such κ , and so the other
direction follows directly from Proposition 3.12.1.

Corollary 3.16. LetM be a combinatorial model category.

(1) For all sufficiently large regular cardinals κ , an object C inHo∞(M) is κ-compact if and only
if there is a κ-compact object D∈M such that C�D inHo∞(M).

(2) Let LT(sPsh(C))proj be the presentation ofM from Dugger’s representation theorem for com-
binatorial model categories in Dugger (2001a). Then for all sufficiently large regular cardinals
κ , a morphism f ∈Ho∞(M) is relatively κ-compact if and only if there is a κ-small fibration
p ∈LT(sPsh(C))proj between fibrant objects such that p� f inHo∞(M).

Proof. For Part 1, one direction is exactly Proposition 3.11.1. For the other direction, let

LTsPsh(C)proj
L �� M
R

��

be the Quillen-equivalence from Dugger’s representation theorem. Then for κ large enough and
every κ-compact object C ∈Ho∞(M), we obtain a κ-compact object D ∈LTsPsh(C)proj from
Theorem 3.15 which presents C. As the left adjoint L preserves κ-compact objects, we find a
κ-compact fibrant replacement of L(D) inM which presents C.

Part 2 is just a special case of Theorem 3.15.

Remark 3.17. The reason why in Corollary 3.16.2 we do not obtain the comparison result forM
itself is that there is no obvious reason why the Quillen-equivalence:

LTsPsh(C)proj
L �� M
R

��

given by Dugger’s presentation theorem should preserve relatively κ-compact maps. While the
right adjoint certainly does preserve such maps, the left adjoint does not seem to exhibit any
properties with that respect.

3.2 The injective case
In this section, we prove an analogous result for the injective model structure and get rid of the
condition on fibrancy of the bases whenever the localization is left exact. We will make use of
Shulman’s results (Shulman, 2019a) in two ways. Therefore, applied to the special case relevant
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for this paper, recall the forgetful functor:

U : sPsh(C)→ SOb(C) (8)
with right adjoint:

G : SOb(C)→ sPsh(C).
The functor G takes objectsW ∈ SOb(C) to the presheaf evaluating an object C ∈C at

G(W)(C) :=
∏
C′∈C

W(C′)C(C′,C) ∈ S.

The adjoint pair (U,G) gives rise to a comonad on sPsh(C) with standard resolution:

C•(G,UG,U ) : sPsh(C)→ sPsh(C)�.
The associated cobar construction C(G,UG,U ) : sPsh(C)→ sPsh(C) is then defined as the
pointwise totalization:

Tot(C•(G,UG,U ))=
∫
[n]∈�

(Cn(G,UG,U ))�
n
.

A crucial observation of Shulman is that the cobar construction takes (acyclic) projective
fibrations to pointwise weakly equivalent (acyclic) injective fibrations. More precisely, the nat-
ural coaugmentation η : id⇒ C(G,UG,U ) is a pointwise weak equivalence, and the arrow
C(G,UG,Up) is an (acyclic) injective fibration whenever p is an (acyclic) projective fibration. All
this is covered in Shulman (2019a, Section 8) in much greater generality. It is not hard to see that
the cobar construction preserves κ-smallness (for κ large enough).

Lemma 3.18. Let C be a small simplicial category and f : X→ Y be a κ-small map in sPsh(C) for
κ large enough. Then C(G,UG,Uf ) is κ-small, too.

Proof. The forgetful functor (8) preserves κ-smallness of both objects and maps by Remark 3.1.
Hence, by Lemma 3.4, the right adjoint G preserves κ-smallness of maps, too. It follows that for
every κ-small map f : X→ Y in sPsh(C), themap C•(G,UG,Uf ) of cosimplicial objects is levelwise
κ-small. Thus, we are only left to show that totalization preserves κ-smallness of cosimplicial
objects. But, being a subobject of a countable product of κ-small simplicial sets, the statement
follows.

Therefore, we directly obtain an analogue of Theorem 3.15 for the injective model structure as
follows.

Proposition 3.19. Let C be a small simplicial category, T ⊂ sPsh(C) be a set of maps and M=
LTsPsh(C)inj. Then for all sufficiently large regular cardinals κ , a morphism f ∈Ho∞(M) is rela-
tively κ-compact if and only if there is a κ-small fibration p ∈M between fibrant objects such that
p� f inHo∞(M).

Proof. Let f be relatively κ-compact in Ho∞(M). By Theorem 3.15, there is a κ-small fibra-
tion p : X� Y between fibrant objects in LTsPsh(C)proj such that p� f in the underlying
quasi-category. Hence, by Lemma 3.18 and Shulman (2019a, Section 8), the map

C(G,UG,Up) : C(G,UG,UX)� C(G,UG,UY)
is a κ-small injective fibration between injectively fibrant objects. But the coaugmentations ηX
and ηY are pointwise weak equivalences in LTsPsh(C)inj, and so the objects C(G,UG,UX) and
C(G,UG,UY) are T-local and thus fibrant in M. Hence, the map C(G,UG,Up) is a fibration
between fibrant objects inM.
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The other direction follows immediately from Theorem 3.15, since every injective fibration is
a projective fibration.

Remark 3.20. Whenever M satisfies the fibration extension property for relatively κ-compact
maps (Stenzel 2019, Definition 2.2.1), we can get rid of the fibrancy condition on the bases of maps
in Proposition 3.19. That is, because in that case every relatively κ-compact fibration is weakly
equivalent to a relatively κ-compact fibration with fibrant base. For example, every left exact left
Bousfield localization of sPsh(C)inj is a type-theoretic model topos by Shulman (2019a, Corollary
8.31, Theorem 10.5) and hence has univalent universes (with fibrant base) for κ-small fibrations
for every regular κ large enough (Shulman 2019a, Theorem 5.22). It follows that the class Sκ

of κ-small maps does satisfy the fibration extension property in every left exact left Bousfield
localization of sPsh(C)inj (Stenzel 2019, Lemma 2.2.2).

Theorem 3.21. Let C be a small simplicial category, and let T ⊂ sPsh(C) be a set of maps such that
the localizationM=LTsPsh(C)inj is left exact. Then for all sufficiently large regular cardinals κ , a
morphism f ∈Ho∞(M) is relatively κ-compact if and only if there is a κ-small fibration p ∈M such
that p� f inHo∞(M).

Proof. Immediate by Proposition 3.19 and Remark 3.20.

4. Object Classifiers and Weak Tarski Universes
We conclude with a comment on the relevance of these results for the (∞, 1)-categorical semantics
of homotopy type theory. Let M be an∞-topos and let C be a small simplicial category with a
set T of arrows in sPsh(C) such that the localization sPsh(C)inj→LTsPsh(C)inj is left exact and
presentsM. Then,M :=LTsPsh(C)inj is a type-theoretic model category as shown in Gepner and
Kock (2012, Section 7). Shulman recently has shown in Shulman (2019a) (among other results)
that this presentationM in fact can be enhanced to a type-theoreticmodel topos and hence exhibits
an infinite sequence of categorical models of univalent strict Tarski universes. Furthermore, as for
example stated in the Introduction of Gepner and Kock (2012), it is somewhat folklore to assume
that these categorical models of universes are object classifiers inM, and that more generally the
object classifiers in M correspond to categorical models for univalent weak Tarski universes in
M. Here, by a categorical model of a weak Tarski universe, we understand a regular (or potentially
more specific) cardinal κ together with a fibration that is weakly universal for the class of κ-small
fibrations. Weak universality of a fibration p : E� B for a class S of fibrations in turn means that
p is contained in S, that it is univalent, and that for all fibrations q : X� Y in S there is a map
w : X→ B such that q is the homotopy pullback of p along w. Clearly, every univalent strictly
universal fibration is a weakly universal fibration for the same class of maps whenever the model
categoryM is right proper.

Since all fibrant objects in M=LTsPsh(C)inj are cofibrant and M is right proper indeed, it is
easy to see that a univalent weakly universal fibration for a pullback stable class S of fibrations
in M yields a classifying object for the class Ho∞[S] of morphisms in M and that, vice versa,
every classifying object for a pullback stable class T of morphisms inM yields a univalent weakly
universal fibration for the class:

T̄ := {f ∈FM | f ∈Ho∞(M) is in T}
of maps inM. Here, the higher categorical notion of univalence that characterizes object classifiers
corresponds to the model categorical – and hence to the syntactical – notion of univalence by
Gepner and Kock (2012, Proposition 7.12).

There is one such pair of classes (S, T) of maps in each case which is relevant for the construc-
tion of strict Tarski universes in the internal language ofM on the one hand, and the definition of
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object classifiers inM on the other. That is, given a sufficiently large regular cardinal κ , the class Sκ

of κ-small fibrations in sPsh(C) and the class Tκ of relatively κ-compact maps inM. In the former
case, the common constructions of univalent universal fibrations πκ : Ũκ �Uκ use various func-
torial closure properties of Sκ and the fact that an infinite sequence of inaccessible cardinals yields
a cumulative hierarchy of universal fibrations which are closed under all standard-type formers
in this way. In the latter case, Lurie (2009, Theorem 6.1.6.8) characterizes∞-toposes in terms of
classifying objects pκ : Ṽκ→Vκ for Tκ for all sufficiently large regular cardinals κ .

While the classifying map pκ : Ṽκ→Vκ lifts to a fibration in M which is weakly universal for
T̄κ , and πκ descends to a classifying object for the class Ho∞[Sκ ], it is a priori unclear whether
Sκ ⊆ T̄κ and Tκ ⊆Ho∞[Sκ ] hold. In other words, without a comparison of relative compactness
notions as considered in Section 3, it is not clear whether the categorical construction of (either
weak or strict) universal κ-small fibrations inM – which models Tarski universes in the associated
type theory – also models universes in the underlying quasi-category. Theorem 3.21 however does
show Tκ =Ho∞[Sκ ]. In other words, we obtain the following corollary.

Corollary 4.1. Let M=LTsPsh(C)inj be a model topos, and let κ be a sufficiently large regular
cardinal. Then a relatively κ-compact map p ∈Ho∞(M) is a classifying map for all relatively κ-
compact maps in Ho∞(M) if and only if there is a univalent κ-small fibration π ∈M which is
weakly universal for all κ-small fibrations inM such that p� π inHo∞(M).

Remark 4.2. Let us finish with a note on the closure under standard-type formers of a given Tarski
universe, with regard to the existence of “sufficiently large” regular cardinals that has been a stand-
ing assumption along the way (Notation 3.8). Given a model topos of the formM=LTsPsh(C)inj,
for a regular cardinal κ to be sufficiently large means to be contained in the class Shl(λ) of regular
cardinals sharply larger than a specified cardinal λ associated with the small simplicial category
C – or to the∞-toposM that is.2 For a universal fibration πκ ∈M as in Corollary 4.1 to be closed
under the standard-type formers in an appropriate sense (Shulman 2019a, Section 6), the cardinal
κ has to be assumed to be strongly inaccessible. Thus, if we start with an∞-topos M and wish
to show that its type-theoretic presentation M :=LTsPsh(C)inj exhibits a universal fibration for
κ-small fibrations that is closed under all standard-type formers, we need an object classifier Vκ in
M classifying relatively κ-compact maps for a strongly inaccessible κ in Shl(λ). The same holds
if we want to show that a given cumulative hierarchy of universal fibrations associated to strong
inaccessibles κi inM yields a corresponding hierarchy of object classifiers in M. Thus, the trans-
lation of the categorical structure together with a universe (or even a cumulative infinite hierarchy
of such) between homotopy type theory and higher topos theory requires the existence of inacces-
sibles within any such given class of sharply larger cardinals. Fortunately, for strongly inaccessible
cardinals κ , we have λ� κ if and only if λ < κ . We hence do not need to make any large cardinal
assumptions beyond the existence of the inaccessibles themselves.
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Notes
1 Shulman in fact argues for a presentation by inverse posets. But since localization commutes with taking opposite categories,
this amounts to the same statement.
2 See Shulman (2019b) for an illuminating discussion on directly related issues.
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