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COMPACTIFICATION OF HEREDITARILY LOCALLY
CONNECTED SPACES

E. D. TYMCHATYN

All spaces considered in this paper are completely regular and 7°;. A continuum
is a compact, connected, Hausdorff space. A continuum is hereditarily locally
connected if each of its subcontinua is locally connected. The reader may consult
Whyburn [5] or Kuratowski [2] for a discussion on hereditarily locally connected
metric continua. Nishiura and Tymchatyn [3] recently obtained some metric
characterizations of connected subsets of hereditarily locally connected metric
continua. Simone [4] extended to arbitrary hereditarily locally connected
continua some well-known characterizations of hereditarily locally connected
metric continua. In the first section of this paper some other characterizations
of hereditarily locally connected metric continua are extended to the non-
metric case. In particular, we extend Wilder’s theorem to say that a continuum
is hereditarily locally connected if and only if every connected subset is locally
connected. In the second section of this paper there are given some uniform
and some topological characterizations of connected spaces which admit a
hereditarily locally connected compactification.

1. Characterizations of hereditarily locally connected continua. Let
X be a uniform space. A family.2/ of subsets of X is said to be null if for each
uniform open cover ¥ of X there exist at most finitely many 4 € .2 such that
A  Uforany U € . If X is a compact space this is equivalent to the condi-
tion that for each pair P and Q of open subsets of X with disjoint closures at
most finitely many members of &/ meet both P and Q.

We shall need the following result of Simone [4].

TaEOREM 1 (Simone (4]). A continuum X 1s hereditarily locally connected if
and only if the components of every closed subset of X form a null family.

We let N denote the set of natural numbers. We let Cly(4) denote the closure
of a set A in a space Y. By a neighbourhood of a point we always mean open
neighbourhood.

THEOREM 2. 4 continuum X 1s heredilarily locally connected if and only if the
components of every open set in X form a null family.

Proof. Let X be hereditarily locally connected. The components of each
open set in X are open. Suppose U is an open subset of X such that the com-
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ponents of U do not form a null family. Then there exists a sequence C;) ey of
components of U which is not a null family. For each 7 there exists a continuum
D; C Cjsuch that the family D) ey is not a null family. Let

D = CIX(D()UDlU.)

For each 7 € N, C; is a neighbourhood of D; in X such that C;\ D = D,.
The sets D;) ;cy are components of D, contrary to Theorem 1. Hence, the com-
ponents of every open subset of X form a null family.

Suppose now that the family of components of every open set in X is a null
family. Then X is locally connected. Just suppose X is not hereditarily locally
connected. By Theorem 1 there exists a closed subset K of X such that the
components of K do not form a null family. Let U and V be open sets in X
with disjoint closures such that infinitely many components of K meet both U
and V. Let C; and C; be two components of K each of which meets both U and
V. Since K is compact the components of K are quasi-components so K =
U, \U V; where U, and V; are disjoint open sets in K such that C; C U, and
Cy C V1. Without loss of generality, 1/; contains infinitely many components
of K each of which meets both U and V. Since X is normal and K is closed in X,
there exist disjoint open sets P; and Q, in X such that U; C Py and V; C Q1.
Let R; be the component of P; which contains C;. Let C; be a component of K
distinct from C, which meets both U and V and such that C; C V;. Then
Vi = UsU Vy, where U, and V', are disjoint open sets in K such that Cs € U,
and C; € V.. Without loss of generality, V, contains infinitely many com-
ponents of K each of which meets both U and V. Since X is normal and V; is
closed, there exist disjoint open sets P, and Q. in X such that U, C Pq,
Vs C Qeand P2 \J Q. C Q1. Let Ry be the component of P, which contains Co.
Inductively we can define a non-null sequence R;) of disjoint connected open
sets in X. This is a contradiction. Thus X is hereditarily locally connected.

THEOREM 3. 4 continuum X is hereditarily locally connected if and only if the
quast-components of ewch subset of X form a null family.

Proof. If the quasi-components of every subset of X form a null family then
the components of every closed subset of X form a null family. By Theorem 1
X is hereditarily locally connected.

Suppose now that X is locally connected and C is a subset of X such that
the quasi-components of C do not form a null family. Let U and 1 be open
sets in X with disjoint closures such that infinitely many quasi-components of
C meet both U and V. Let Q; and Q. be two quasi-components of C each of
which meets both U and V. Let V; and U, be disjoint open sets in C such that
C=U/UVy Q1 C Uy and Q» C Vi. We may suppose, without loss of
generality, that V| contains infinitely many quasi-components of C each of
which meets both Uand 7. Let W, be an open set in X such that W, N\ C = U,.
The component of W; which contains (, is an open connected set in X which
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meets both Uand V. Let S; be a connected open set in W; which meets both U
and V and such that Clx(S,) C W..

Let n be a positive integer. Suppose Qi, . .., Q.41 are quasi-components of
C each of which meets both Uand V. Suppose U;, V3, S;, W, have been defined
foreach 2 =1, ..., n such that V,_; = U;\U V,; where U, and V, are dis-
joint open sets in C, Q; C Uy, Qi1 € Vs, W, is an open set in X such that
W, C X\Clx(5;: U ... US,1), W.NC = U, S;is a connected open set in
X which meets both U and V, Clx(S;) C W;and V; contains infinitely many
quasi-components of C each of which meets both U and V.

Let Qur2 # Q,41 be a quasi-component of Cin V, such that Q,,. meets both
U and V. There exist disjoint open sets U,y; and V,,; in C such that V, =
U1 I Vi1, Opr C Upyr and Qppe C Vyp1. We may suppose, without loss of
generality, th..t /41 contains infinitely many quasi-components of C each of
which meets both U and V. Let W,,1 C X\Clx(S; U ... \US,) be an open set
in X such that W,.1 M C = U,y1. The component of W,,; which contains
Qn+1 meets both Uand V. Let S,;1 be a connected open set in X such that.S,41
meets both U and V and Clx(S,;1) C W,41. By induction we define a non-null
sequence .S;) of connected pairwise disjoint open sets in X. By Theorem 2, X is
not hereditarily locally connected. We have proved that if X is hereditarily
locally connected, then the quasi-components of every subset of X form a
null family.

THEOREM 4. 4 continuum X is hereditarily locally connected if and only if the
components of every subset of X form a null famaly.

Proof. If the components of every subset of X form a null family then X is
hereditarily locally connected by Theorem 1.

Suppose X is hereditarily locally connected. Just suppose C is a subset of X
which contains a non-null family C;) ;cx of components. Let U and V be open
sets in X with disjoint closures such that each of infinitely many C,) ;cx meet
both U and V. Without loss of generality, we may suppose each C, meets both
Uand V. Let D = Cy U C;\J C,\U . ... Then D contains a non-null family
of quasi-components contrary to Theorem 3. This completes the proof of
Theorem 4.

The following theorem was proved by Wilder (see [5]) for the case of metric
continua.

THEOREM 5. A continuum X s hereditarily locally connected if and only if
every connected subset of X 1is locally connected.

Proof. Suppose X is hereditarily locally connected. Let C be a connected
subset of X. Let x € C, let U be a neighbourhood of x in X and let Q be the
quasi-component of U /M C which contains x. Just suppose there is a net x,)
in C\Q which converges to x. Let ¥V be a neighbourhood of x in X such that
CI(V) C U. If W is a closed and open neighbourhood of x, in UM C then
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CI(W) meets the boundary of U since C is connected. By the proof of Theorem
3 there is a sequence V) of disjoint open connected sets in X each of which
meets both X\ U and V. This contradicts Theorem 2. Thus, x is a C interior
point of Q. It now follows that the quasi-components of open sets in C are open
and hence C is locally connected.

It is well-known (see [5]) that a metric continuum is hereditarily locally
connected if and only if the quasi-components of every subset of X are con-
nected. Simone proved in [4] that if X is a continuum in which the quasi-
components of each subset are connected then X is hereditarily locally con-
nected. The following question remains open:

Question. If X is a hereditarily locally connected continuum are the quasi-
components of each subset of X connected?

2. Connected subsets of hereditarily locally connected continua. A
space Yis called a perfect extension of a space X provided for each closed Cin X
which separates 4 and B in X Cly(C) separates 4 and B in Y.

LEMMA 6. Let X be a uniform space that has a basis of uniform coverings of
connected sets. Let Y be the completion of X. Then Y s a perfect extension of X.

Proof. Let C be a closed set in X which separates 4 and B in X. Then,
X\C = M U N where M and N are disjoint open sets in X such that A C M
and B C N.

If 9 is an uniform cover of X let A = {Cly(U)|U € A}. Then A is a uniform
cover of ¥V by [1, Theorem I1.9].

Let p € Cly(M)\Cly(C). Let A be a uniform cover of X by connected sets
such that St(p, A) is disjoint from Cly(C). Let U € A such that Cl,(U) con-
tains a neighbourhood of p in ¥. Then U M M # @. Since U is connected and
C separates M and N, UM N = @. Thus, p ¢ Cly (V). It follows that Cly (M)
M Cly(N) C Cly(C) and Cly(C) separates A and B in Y.

A uniform space X is said to have properiy S if each uniform open cover of X
has a finite refinement whose members are connected sets.

Let ¥ be a compactification of a space X. Then YV is said to be a perfect
compactification of X if YV is a perfect extension of X. We say ¥ has ponctiforme
remainder if Y\X contains no non-degenerate continuum.

We shall call a space hereditarily locally comnmected if and only if all of its
subsets are locally connected. By Theorem 5 this definition agrees with the
usual definition of hereditary local connectedness on continua.

Let D denote the set of dyadic rationals in [0, 1].

THEOREM 7. For a connected, locally connected Tychonoff space X the following
conditions are equivalent:
1) X has a heredilarily locally connected compactification.
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1) X is herediiarily locally connected and has a perfect compactification with
ponctiforme remainder.

iii) There exists a uniformity for X such that every connected open subset of X
has property S.

iv) There exists a uniformity for X such that each family of pairwise disjoint,
open, connected subsets of X is null.

v) For each x € X and each closed set A in X\{x} there exists a family
Ud)aep of neighbourhoods of x such that for each d < e in D Cl(U,;) C U, C
X\A4 and there does not exist a family V;) en of open, connected, pairwise disjoint
sets each of which meels both Ugand X\U .

vi) There exists a family fi)aca of continuous functions of X into the unait
interval [0, 1] which separate points and closed sets of X and such that for each
a € Aand x <y in [0, 1] there does not exist a family V) en of pairwise dis-
joint, open, connected sets each of which meets both fo= (x) and fo=1(y).

Proof.1) = iv). This follows from Theorem 4.

iv) = iii). Let p be a uniformity on X such that every family of pairwise
disjoint, connected, open sets in X is a null family. We prove first that X with
the uniformity p has property S.

Let % € u be a uniform cover of X by open sets. Suppose that no finite
subfamily of % covers X. Let " ¢ u such that 7"** <% . Let V, € ¥  and
let Uy € % such that St(V,, ¥*) C U, Let x; € X\U,. Let V, €% such
that x; € Vyand let U; € % such that St(Vy,7*) C U,. Then St(V,,77) N
St(V1,?”) = @ and X\ (U, U U,) # 0. Inductively, we can construct a pair-
wise disjoint family St(V;, % ).cv of open non-empty sets. For each 1 € N
at least one component C; of St(V,;, %) meets V. Let?” € wsuch that#™* <
¥ . Then C; C W for any W € ¥ Thus C;) is a non-null family of pairwise
disjoint, open, connected subsets of X. This is a contradiction. Hence each
uniform open cover of X has a finite subcover.

Let C be a connected open set in X. Let %,7 € u be uniform covers of X
by open sets such that? ** < % . Let V € ¥ and U € % such that St(V, 7 *)
C U. Each component of U M C which meets V is open and is not contained in
any member of ¥”. Since every family of pairwise disjoint open connected sets
in X is null at most finitely many components of U /M C meet V. Since X is
covered by finitely many members of ¥ it follows that C has property S.

iii) = ii). Let p be a uniformity for X such that every open connected subset
of X has property S. For % ¢ ulet %' = {C|C is a component of St(U, %),
U € % and UN C 5 @}. Let » be the uniformity generated by {%'|% € u}.
Then » generates the topology of X. Every member of » has a finite uniform
refinement consisting of connected sets and every open connected subset of X
has property S.

Let Y be the completion of the uniform space X with uniformity ». Then ¥V
is a perfect extension of X by Lemma 6. By Isbell [1, Theorem I1.29], ¥ is
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compact. Since X has property .S, ¥ has property S by Isbell [1, Theorem I1.9].
Hence Y is locally connected.

Just suppose Y\X contains a non-degenerate continuum K. Let x,y € K so
that x ¢ y. Let U and V be neighbourhoods in ¥ of x and y respectively such
that U and V have disjoint closures and U is connected. Let W, be a connected
neighbourhood of X in V. Since ¥ is a perfect compactification of X, Wy M X
is connected. So W)\ K is continuumwise connected. Let K, be a continuum in
W\K which meets both U and V. Let Oy be a connected neighbourhood of K
in ¥ such that Cly(0y) C Wo\K. Then Oy N X is a connected open set in X
which meets both U and V. Let W, be a connected neighbourhood of K in ¥V
such that W, C W\Cly(Oy). By a similar argument one can find a connected
open set Oy in Y, with Cly(0,) C Wi\K such that O; meets both U and V.
By induction there exists a sequence O;) ¢y of pairwise disjoint open connected
sets in ¥ such that each O; meets both U and V. Hence (U\U O, U 0, U . ..)
M X is a connected open set in X which does not have property S. This is a
contradiction. Hence Y\X is ponctiforme.

If W is an open set in ¥ the components of W are open since Y is locally
connected. Let {C,}qcs denote the family of components of W. Just suppose
there exist open sets U and 17 in ¥ with disjoint closures such that infinitely
many of C, meet both U and V. Since Y is a locally connected continuum we
may suppose U is connected. Then

O = U\ {Colaca, UN Co # B and VN C, # B}

is a connected open set in Y. Since V is a perfect compactification of X, 0 M X
is a connected open set in X. However, O M X does not have property S. This
is a contradiction. Therefore, the components of every open subset of ¥ form
a null family. By Theorem 2, V is hereditarily locally connected. By Theorem 5,
X is hereditarily locally connected.

i1) = 1). Suppose X is hereditarily locally connected and has a perfect com-
pactification ¥ with ponctiforme remainder. It is clear that ¥ is locally con-
nected at each point of X. Since a continuum cannot fail to be locally con-
nected only at points of a ponctiforme set, ¥ is locally connected.

Just suppose Y is not hereditarily locally connected. By Theorem 2, there
exists an open set U in ¥ and a non-null family U;)x of components of U.
For each 7 € N, let 7, C Cly(V;) C U, be a connected open set such that
V) ien is not a null family. Then Cly (V) C Cly (U 4 V;) = @foreachs € N.
Let x and y be two points of X which lie in the same component of lim sup V..
Such points exist since Y\X is ponctiforme. Let U and 1" be connected neigh-
bourhoods in ¥ of x and y respectively such that Cly(U) N Cly(V) = 0.
Without loss of generality, one may suppose U meets V', for each 2. Then W =
UVU VyU ViU ... is a connected open set in Y. Since YV is a perfect com-
pactification of X, W M X is connected. Hence (W M X) U {y} is a connected
set in X which is not locally connected at y. This is a contradiction. Hence Y is
hereditarily locally connected.
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i) = v). This follows from Theorem 2.
v) = vi). Construct Urysohn functions using the sets Uy)acp.

vi) = iv). Let § be a family of continuous functions of X into [0, 1] which
satisfy the conditions of vi). Let u be the coarsest uniformity on X which in-
cludes all of the inverse images of uniform coverings of [0, 1] under these
mappings. Then p satisfies the conditions of iv).

A space X is said to be rim-compact if it has a basis of open sets with compact
boundaries.

The following result was obtained in [3] for the case of separable metric
spaces.

COROLLARY 8. 4 rim-compact, hereditarily locally connected, completely regular,
Ty space has a hereditarily locally connected compactification.

Proof. The Freudenthal compactification ¥ of a rim-compact space X is
perfect and has zero-dimensional remainder (see [1, Theorem VI.36]).

THEOREM 9. For a separable melric connected space the following conditions are
equivalent:

1) X has a hereditarily locally connected compactification.

i1) X has a hereditarily locally connected metric compactification.

Proof. Suppose X has a hereditarily locally connected compactification Y.
Let ¥ be the set of all continuous functions of ¥ onto [0, 1]. Then § =
{g|X|g € ¥} satisfies vi) of Theorem 7.

Let U be an open set in X and let x € U. There exists f € § such that f
separates x and X\ U. Since f is continuous it separates a neighbourhood of x
and X\U. Since U is Lindelof there exists a countable subfamily §, of § such
that for each y € U there is an f, € §y such that f, separates y and X\ U.
Since X has a countable base there is a countable subfamily § of § which
separates points and closed sets of X. This family defines a metric hereditarily
locally connected compactification of X.
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