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Abstract

In this paper we introduce a set of orthonormal functions, {φ
[r ]
n }

∞

n=1, where φ[r ]
n is

composed of a sine function and a sigmoidal transformation γr of order r > 0. Based
on the proposed functions φ[r ]

n named by sigmoidal sine functions, we consider a series
expansion of a function on the interval [−1, 1] and the related convergence analysis.
Furthermore, we extend the sigmoidal transformation to the whole real line R and
then, by reconstructing the existing sigmoidal cosine functions ψ [r ]

n and the presented
functions φ[r ]

n , we develop two kinds of 2-periodic series expansions on R. Superiority
of the presented sigmoidal-type series in approximating a function by the partial sum is
demonstrated by numerical examples.

2000 Mathematics subject classification: primary 41A58; secondary 42A20.

Keywords and phrases: Fourier series, sigmoidal transformation, sigmoidal series.

1. Introduction

Recently [8] the author introduced an orthonormal basis {ψ
[r ]
n }

∞

n=0, where the so-called

sigmoidal cosine function ψ [r ]
n is composed of a cosine function and a sigmoidal

transformation γr of order r > 0. It was proved that a series expansion, based on
{ψ

[r ]
n }

∞

n=0, of a piecewise smooth function converges on the interval [−1, 1]. It
was also shown that a partial sum of the series expansion results in a very accurate
approximation to a function for which the Fourier series approximation is inadequate.
However, its 2-periodic extension to the real line R is not complete because of the
mismatch of the periods between even functions ψ [r ]

2k and odd functions ψ [r ]

2k−1. This
is one of the motivations of the present work. The principal results of the series based
on the functions {ψ

[r ]
n }

∞

n=0 are summarized in Section 2.
The main objective of this work is to investigate several types of series expansions

using the sigmoidal-type cosine and/or sine functions which can be properly extended
to R. First, following the procedure to develop the sigmoidal cosine function ψ [r ]

n
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432 B. I. Yun [2]

as given in [8], in this paper we introduce another orthonormal basis {φ
[r ]
n }

∞

n=1 for
a weighted L2 space L2,w([−1, 1]) with respect to a weight function w[r ] in (2.3).
The function φ

[r ]
n , named a sigmoidal sine function, is composed of a sigmoidal

transformation γr of order r > 0 and a sine function. Concerning a series based on
these sigmoidal sine functions, its convergence analysis on the interval [−1, 1] is given
in Section 3.

Though the sigmoidal transformation γr is fundamentally defined on a limited
interval [0, 1], in Section 4 we suggest two types of extended sigmoidal
transformations which make it possible to extend both the sigmoidal cosine and the
sigmoidal sine functions to the real line R. The periodicity of the extended sigmoidal
functions is also classified.

In Section 5, using the extended sigmoidal functions, we construct two extended
sigmoidal series of order r > 0 which are 2-periodic on R. In addition, one of these
series appears to be equivalent to the Fourier series in the case of r = 1.

Approximation of a function by the partial sum of a series is very important in
practical applications. Section 6 gives numerical examples with regard to functions
for which the traditional Fourier series approximation is not adequate. In the result
one can observe the availability and superiority of the presented sigmoidal-type series.

2. Preliminaries

This work is essentially based on the sigmoidal transformation, which is a one-to-
one mapping of the interval [0, 1] onto itself taking the shape of an elongated ‘S’. It
is well known that coordinate transformation techniques combined with the sigmoidal
transformation are very efficient for accurate numerical evaluation of singular integrals
[1–5, 7, 9–11].

For application to a series expansion, we recall the sigmoidal transformation as
follows.

DEFINITION 1. For any r > 0 a real-valued function, denoted by γr (y), which has the
following properties is called a sigmoidal transformation of order r :

(i) γr (y) ∈ C[0, 1] ∩ C∞(0, 1);
(ii) γr (y)+ γr (1 − y)= 1, 0 ≤ y ≤ 1;

(iii) γr (y) is strictly increasing on [0, 1] with γr (0)= 0;
(iv) on the subinterval [0, 1/2] γ ′

r (y) is strictly increasing when r > 1, and it is
strictly decreasing when r < 1; and

(v) near y = 0, γ ( j)
r (y)= O(yr− j ) for j = 0, 1, 2, . . . , brc, where brc denotes the

greatest integer less than or equal to r .

Particularly, for r = 1, it is assumed that γ1(y) := y.

Among several existing sigmoidal transformations we will use the simplest one [6]
in the form of

γr (y)=
yr

yr + (1 − y)r
, 0 ≤ y ≤ 1, (2.1)

through the present work. We note that its inverse is γ−1
r = γ1/r .
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Recently [8] the author presented a so-called sigmoidal cosine function of order
r > 0 such as

ψ
[r ]

k (x) := cos
[

kπγr

(
1 + x

2

)]
, k = 1, 2, 3, . . . , (2.2)

with ψ [r ]

0 (x) := 1/
√

2, −1 ≤ x ≤ 1. For a weight function

w[r ](x) := γ ′
r

(
1 + x

2

)
(2.3)

and an inner product of functions f and g defined by

〈 f, g〉w :=

∫ 1

−1
w[r ](x) f (x)g(x) dx, (2.4)

the set {ψ
[r ]

k }
∞

k=0 is an orthonormal basis for the weighted L2 space, L2,w([−1, 1])

equipped with a norm ‖ f ‖2,w = 〈 f, f 〉
1/2
w . The author has presented a series

expansion of a function f as follows:

S[r ]
cos( f ; x) =

∞∑
n=0

cnψ
[r ]
n (x)

=
c0
√

2
+

∞∑
n=1

cn cos
[
πnγr

(
1 + x

2

)]
, −1 ≤ x ≤ 1, (2.5)

where the coefficient cn is

cn =

∫ 1

−1
w[r ](t)ψ [r ]

n (t) f (t) dt. (2.6)

We call the series S[r ]
cos( f ; x) a sigmoidal cosine series (SM-CS) of f (x) of order

r > 0.
Now we summarize the main results of the sigmoidal cosine functions ψ [r ]

k and the

SM-CS S[r ]
cos( f ; x) which were proved in [8].

THEOREM 2.1. For each integer k ≥ 1 the function ψ [r ]

k (x), −1 ≤ x ≤ 1, has the
following properties:

(1) ψ
[r ]

k (−1)= 1, ψ [r ]

k (0)= cos[kπ/2], ψ [r ]

k (1)= (−1)k;

(2) ψ
[r ]

k (−x)= (−1)kψ [r ]

k (x);
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(3) near the end-points x = −1 and x = 1, respectively,

ψ
[r ]

k (x)= 1 + O((1 + x)2r ), ψ
[r ]

k (x)= (−1)k + O((1 − x)2r );

(4) the zeros of ψ [r ]

k are

x [r ]

k, j = 2γ−1
r

(
2 j − 1

2k

)
− 1, j = 1, 2, . . . , k.

We recall that a function f is called piecewise continuous on an interval [a, b] if
it has at most a finite number of points of discontinuity, and, in addition, the one-
sided limits exist at each point of discontinuity on the interval. Furthermore, if the
first derivative f ′ is also piecewise continuous, f is said to be piecewise smooth.
Additionally, we denote by f (x−) and f (x+) the left- and right-side limits of f (x),
respectively.

THEOREM 2.2. Let f be a piecewise smooth function on an interval [−1, 1]. Then
for any r > 0 and for each −1< x < 1, the Nth partial sum S[r ]

cos,N ( f ; x) of S[r ]
cos( f ; x)

converges such that

lim
N→∞

S[r ]

cos,N ( f ; x)=
1
2 { f (x−)+ f (x+)}, (2.7)

and, at the end-points x = ±1, for 0< r ≤ 1,

lim
N→∞

S[r ]

cos,N ( f ; 1)= f (1−), lim
N→∞

S[r ]

cos,N ( f ; −1)= f (−1+), (2.8)

respectively.

Additionally, if f is continuous on [−1, 1] then for 0< r ≤ 1 the series S[r ]
cos( f ; x)

converges uniformly to f (x) on [−1, 1].

THEOREM 2.3. Let f be a piecewise smooth function on any interval [a, b] such
that −1< a < b < 1 and assume that near x = 1 and x = −1 the behaviour of f is,
respectively,

f (x)∼ A1 + B1(1 − x)η1, f (x)∼ A2 + B2(1 + x)η2, (2.9)

where η1, η2 > 0, and Ai and Bi are constants with B2
1 + B2

2 6= 0. Then for any r such
that 0< r ≤ η = min{η1, η2} we have the following results.

(1) The partial sum S[r ]

cos,N ( f ; x) converges on the interval [−1, 1] in the form of
(2.7) and (2.8).

(2) If, in addition, f is continuous on [−1, 1] then the series S[r ]
cos( f ; x) converges

uniformly to f (x) on [−1, 1].
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[5] Sigmoidal-type series expansion 435

3. A sigmoidal sine series

As a counterpart of the function ψ [r ]

k in (2.2) we define

φ
[r ]

k (x) := sin
[

kπγr

(
1 + x

2

)]
, k = 1, 2, 3, . . . , (3.1)

on [−1, 1], which is called a sigmoidal sine function of order r > 0. For a set of
sigmoidal sine functions {φ

[r ]

k }
∞

k=1, by a change of variables such as t = γr ((1 + x)/2),
we can see its orthonormality as follows:

〈φ
[r ]

i , φ
[r ]

j 〉w :=

∫ 1

−1
w[r ](x)φ[r ]

i (x)φ[r ]

j (x) dx

= 2
∫ 1

0
sin(iπ t) sin( jπ t) dt = δi j , (3.2)

for all i, j ≥ 1. Furthermore, not only the sigmoidal cosine functions {ψ
[r ]

k }
∞

k=0 but

also the sigmoidal sine functions {φ
[r ]

k }
∞

k=1 form an orthonormal basis for the weighted
L2 space, L2,w([−1, 1]), with respect to the weight function w[r ] in (2.3). The other
main properties of φ[r ]

k are detailed in the following theorem. The proof is omitted

since it is clear from the definition of φ[r ]

k in (3.1) and the properties of the sigmoidal
transformation γr .

THEOREM 3.1. For each integer k ≥ 1 the function φ[r ]

k (x), −1 ≤ x ≤ 1, has the
following properties:

(1) φ
[r ]

k (−1)= φ
[r ]

k (1)= 0, φ[r ]

k (0)= sin[kπ/2];

(2) φ
[r ]

k (−x)= (−1)k+1φ
[r ]

k (x);
(3) near x = −1 and x = 1,

φ
[r ]

k (x)= O((1 − x2)r );

(4) the zeros of φ[r ]

k are

ξ
[r ]

k, j = 2γ−1
r

(
j

k

)
− 1, j = 0, 1, 2, . . . , k.

For a piecewise continuous function f on an interval [−1, 1] we consider a series,
named a sigmoidal sine series (SM-SS) of order r > 0, such that

S[r ]

sin( f ; x) :=

∞∑
n=1

dnφ
[r ]
n (x)

=

∞∑
n=1

dn sin
[
πnγr

(
1 + x

2

)]
, −1 ≤ x ≤ 1, (3.3)
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where the coefficient dn is

dn =

∫ 1

−1
w[r ](t)φ[r ]

n (t) f (t) dt. (3.4)

By changing variables as s = γr (1 + t/2), the coefficients in (3.4) can be represented
by

dn = 2
∫ 1

0
sin[πns] f (2γ−1

r (s)− 1) ds. (3.5)

Referring to Theorems 2.2 and 2.3 and the related convergence analysis for the
SM-CS S[r ]

cos in [8], we can obtain similar results for the SM-SS S[r ]

sin as well. These are
included in the following theorems, whose proofs are omitted as they are parallel to
the case of the SM-CS.

THEOREM 3.2. Let f be a piecewise smooth function on an interval [−1, 1]. Then
for any r > 0 and for each −1< x < 1, the Nth partial sum S[r ]

sin,N ( f ; x) of S[r ]

sin( f ; x)
converges such that

lim
N→∞

S[r ]

sin,N ( f ; x)=
1
2 { f (x−)+ f (x+)}, (3.6)

and, at the end-points x = ±1, for 0< r ≤ 1,

lim
N→∞

S[r ]

sin,N ( f ; 1)= lim
N→∞

S[r ]

sin,N ( f ; −1)= 0. (3.7)

Additionally, if f is continuous on [−1, 1] and f (−1)= f (1)= 0 then for 0< r ≤ 1
the series S[r ]

sin( f ; x) converges uniformly to f (x) on [−1, 1].

THEOREM 3.3. Let f satisfy all the conditions in Theorem 2.3. Then for 0< r ≤ η

= min{η1, η2} we have the following results.

(1) The partial sum S[r ]

sin,N ( f ; x) converges on the interval [−1, 1] in the form of
(3.6) and (3.7).

(2) If, in addition, f is continuous on [−1, 1] and f (−1)= f (1)= 0 then the series
S[r ]

sin( f ; x) converges uniformly to f (x) on [−1, 1].

The condition f (−1)= f (1)= 0 in Theorems 3.2 and 3.3(2) can be weakened,
such as f (−1)= f (1), because, in this case, one has only to add a constant f (1) to
the series S[r ]

sin(F; x) of the redefined function F(x)= f (x)− f (1).

4. Extension of the sigmoidal transformation to R

The sigmoidal transformation γr is defined on a finite interval [0, 1] fundamentally,
and thus the sigmoidal sine or cosine series in itself cannot be used for a function
defined on the real line R. Fortunately, however, we can make it possible by some
proper modifications.
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We consider an extension of the sigmoidal transformation γr onto R such as

γ ∗
r (x) := γr

(∣∣∣∣x − 2
⌊

x + 1
2

⌋∣∣∣∣), x ∈ R. (4.1)

Since |x − 2b
1
2 (x + 1)c| ≤ 1 for every real number x , the function γ ∗

r (x) is well
defined.

LEMMA 4.1. For all x ∈ R, it follows that:

(1) γ ∗
r (x) is continuous;

(2) γ ∗
r (x) is 2-periodic and even; and

(3) γ ∗
r (x)+ γ ∗

r (1 − x)= 1.

PROOF. For the property (1) we only have to check the continuity at any integer k.
The left- and right-side limits respectively become

lim
x→k−

γ ∗
r (x) = lim

x→k−
γr

(∣∣∣∣x − 2
⌊

x + 1
2

⌋∣∣∣∣)

=


γr

(∣∣∣∣k − 2
(

k − 1
2

)∣∣∣∣) = γr (1)= 1 (k: odd),

γr

(∣∣∣∣k − 2
(

k

2

)∣∣∣∣) = γr (0)= 0 (k: even),

and

lim
x→k+

γ ∗
r (x)=


γr

(∣∣∣∣k − 2
(

k + 1
2

)∣∣∣∣) = γr (1)= 1 (k: odd),

γr

(∣∣∣∣k − 2
(

k

2

)∣∣∣∣) = γr (0)= 0 (k: even),

which implies that γ ∗
r (x) is continuous at x = k.

For any integer x = k the property (2) holds from the results above. Moreover,
noting that

bξ + 1c = bξc + 1, b−ξc = −bξc − 1,

for a noninteger ξ , we can prove the property (2) for any noninteger x as follows:

γ ∗
r (x + 2) = γr

(∣∣∣∣x + 2 − 2
⌊

x + 1
2

+ 1
⌋∣∣∣∣)

= γr

(∣∣∣∣x + 2 − 2
⌊

x + 1
2

⌋
− 2

∣∣∣∣)
= γr

(∣∣∣∣x − 2
⌊

x + 1
2

⌋∣∣∣∣) = γ ∗
r (x)
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and

γ ∗
r (−x) = γr

(∣∣∣∣ − x − 2
⌊

−x + 1
2

⌋∣∣∣∣)
= γr

(∣∣∣∣x + 2
⌊

−x + 1
2

⌋∣∣∣∣)
= γr

(∣∣∣∣x − 2
(⌊

x − 1
2

⌋
+ 1

)∣∣∣∣)
= γr

(∣∣∣∣x − 2
⌊

x + 1
2

⌋∣∣∣∣) = γ ∗
r (x).

For the property (3) we observe that

γ ∗
r (x)= γr

(∣∣∣∣x − 2
⌊

x + 1
2

⌋∣∣∣∣), γ ∗
r (1 − x)= γr

(∣∣∣∣1 − x − 2
⌊

−x + 2
2

⌋∣∣∣∣).
For 0< x < 1, since b

1
2 (x + 1)c = b

1
2 (−x + 2)c = 0, we have

γ ∗
r (x)+ γ ∗

r (1 − x)= γr (x)+ γr (1 − x)= 1.

For 1 ≤ x ≤ 2, since b
1
2 (x + 1)c = 1 and b

1
2 (−x + 2)c = 0, we have

γ ∗
r (x)+ γ ∗

r (1 − x) = γr (|x − 2|)+ γr (|1 − x |)

= γr (1 − (x − 1))+ γr (x − 1)= 1.

Noting that γ ∗
r is a 2-periodic even function as shown previously, one can see that the

equation in (3) is valid for all x ∈ R. 2

For an integer k we denote by ψ
∗[r ]

k and φ
∗[r ]

k the sigmoidal cosine and sine
functions defined as

ψ
∗[r ]

k (x) := cos
[

kπγ ∗
r

(
1 + x

2

)]
, φ

∗[r ]

k (x) := sin
[

kπγ ∗
r

(
1 + x

2

)]
, (4.2)

for all x ∈ R. Then, from Lemma 4.1, it follows that

ψ
∗[r ]

k (x + 2) = cos
[

kπγ ∗
r

(
1 +

1 + x

2

)]
= cos

[
kπγ ∗

r

(
1 −

1 + x

2

)]
= cos

[
kπ

{
1 − γ ∗

r

(
1 + x

2

)}]
= (−1)kψ∗[r ]

k (x),

and similarly

φ
∗[r ]

k (x + 2)= sin
[

kπ

{
1 − γ ∗

r

(
1 + x

2

)}]
= (−1)k+1φ

∗[r ]

k (x).
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(x )

FIGURE 1. Extended sigmoidal transformations γ ∗
r (x) and γ̃r (x), −2 ≤ x ≤ 3, with r = 2.

Therefore the even functions ψ∗[r ]

2n and φ∗[r ]

2n−1 are 2-periodic while the odd functions

ψ
∗[r ]

2n−1 and φ∗[r ]

2n are 4-periodic. This mismatch of the periods between the even and
odd sigmoidal functions is not reasonable in approximation to arbitrary 2-periodic
functions on R in general.

As an alternative idea we suggest another extension of γr such as

γ̃r (x) := bxc + γr (x − bxc), x ∈ R. (4.3)

Although γ̃r (x) is not periodic in x , for any integer k its graphs on every interval
[k, k + 1] are repetitive and they are glued continuously at the end-points x = k and
x = k + 1. Rigorous investigation for these properties is given in the following lemma
and the global behaviour of γ̃r (x) is shown in Figure 1 in comparison with γ ∗

r (x).

LEMMA 4.2. For all x ∈ R, it follows that:

(1) γ̃r (x) is continuous;
(2) γ̃r (1 + x)= 1 + γ̃r (x); and
(3) γ̃r (−x)= −γ̃r (x), that is, γ̃r is an odd function.

PROOF. For the property (1) it is sufficient to see the continuity at x = k for each
integer k. That is,

lim
x→k−

γ̃r (x)= k − 1 + lim
x→k−

γr (x − (k − 1))= k − 1 + γr (1)= k

and
lim

x→k+
γ̃r (x)= k + lim

x→k+
γr (x − k)= k + γr (0)= k.

The property (2) results from

γ̃r (1 + x) = b1 + xc + γr (1 + x − b1 + xc)

= 1 + bxc + γr (x − bxc)= 1 + γ̃r (x).
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Finally, for each integer x it can be seen that γ̃r (−x)= −x + γr (0)= −γ̃r (x)
clearly. On the other hand let x be noninteger. Then since b−xc = −bxc − 1 it follows
that

γ̃r (−x) = −bxc − 1 + γr (−x + bxc + 1)

= −bxc − 1 + 1 − γr (x − bxc)

= −bxc − γr (x − bxc)= −γ̃r (x).

The second equality results from the fact that γr (1 − α)= 1 − γr (α) for 0 ≤ α ≤ 1 as
given in Definition 1(ii). Thus the property (3) has been proved. 2

We now denote the sigmoidal cosine and sine functions combined with γ̃r by ψ̃ [r ]

k

and φ̃[r ]

k , respectively. That is, for any integer k,

ψ̃
[r ]

k (x) := cos
[

kπγ̃r

(
1 + x

2

)]
, φ̃

[r ]

k (x) := sin
[

kπγ̃r

(
1 + x

2

)]
, (4.4)

with x ∈ R. Naturally ψ̃ [r ]

k and φ̃[r ]

k are, respectively, extensions of ψ [r ]

k and φ[r ]

k since

ψ̃
[r ]

k (x)= ψ
[r ]

k (x), φ̃
[r ]

k (x)= φ
[r ]

k (x),

on the interval [−1, 1].

LEMMA 4.3. For any integer n ≥ 1 both the even sigmoidal cosine function ψ̃ [r ]

2n and

the odd sigmoidal sine function φ̃[r ]

2n are 2-periodic on R. In addition, ψ̃ [r ]

2n−1 and φ̃[r ]

2n−1
are 4-periodic.

PROOF. From Lemma 4.2(2) we have, for any integer k,

ψ̃
[r ]

k (x + 2) = cos
[

kπγ̃r

(
1 +

1 + x

2

)]
= cos

[
kπ

{
1 + γ̃r

(
1 + x

2

)}]
= (−1)kψ̃ [r ]

k (x),

and

φ̃
[r ]

k (x + 2)= sin
[

kπ

{
1 + γ̃r

(
1 + x

2

)}]
= (−1)k φ̃[r ]

k (x).

This implies that both ψ̃
[r ]

2n and φ̃
[r ]

2n are 2-periodic. Additionally, it follows

straightforwardly that ψ̃ [r ]

2n−1(x + 4)= ψ̃
[r ]

2n−1(x) and φ̃[r ]

2n−1(x + 4)= φ̃
[r ]

2n−1(x). 2

In Table 1 the extended sigmoidal functions discussed above are classified
according to their properties. The possible choices of the suitable 2-periodic
orthonormal basis, with respect to the interval [−1, 1], are as follows:

(B1) {ψ̃
[r ]

2n }
∞

n=0 ∪ {φ̃
[r ]

2n }
∞

n=1;

(B2) {φ
∗[r ]

2n−1}
∞

n=1 ∪ {φ̃
[r ]

2n }
∞

n=1.
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TABLE 1. Classification of the extended sigmoidal functions.

2-periodic 4-periodic

Even ψ̃
[r ]

2n = ψ
∗[r ]

2n φ̃
[r ]

2n−1

functions φ
∗[r ]

2n−1

Odd φ̃
[r ]

2n ψ̃
[r ]

2n−1 = ψ
∗[r ]

2n−1

functions φ
∗[r ]

2n

5. Extended sigmoidal series on R

Now, for a function f assumed to be 2-periodic on R, a desirable 2-periodic
extension of the sigmoidal cosine/sine series to the whole real line can be realized by
employing the extended sigmoidal functions developed in the previous section. Taking
account of the basis (B1), we define an extended sigmoidal series (ESM-S) of order
r > 0 in the form

S̃[r ]( f ; x) :=

∞∑
n=0

c2nψ̃
[r ]

2n (x)+

∞∑
n=1

d2nφ̃
[r ]

2n (x), (5.1)

which is 2-periodic on R, and the coefficients are

c2n =

∫ 1

−1
w[r ](t)ψ [r ]

2n (t) f (t) dt, d2n =

∫ 1

−1
w[r ](t)φ[r ]

2n (t) f (t) dt. (5.2)

In particular, when f = feven is an even function,

c2n = 2
∫ 1

0
w[r ](t)ψ [r ]

2n (t) feven(t) dt, d2n = 0,

and when f = fodd is an odd function,

c2n = 0, d2n = 2
∫ 1

0
w[r ](t)φ[r ]

2n (t) fodd(t) dt.

It is worthwhile to note the case of r = 1. Since γ̃1(x)= x ,

ψ̃
[1]

2n (x)= (−1)n cos(nπx), φ̃
[1]

2n (x)= (−1)n sin(nπx),

with w[1]
≡ 1. Therefore, from (5.1) and (5.2), it follows that

S̃[1]( f ; x)=
a0

2
+

∞∑
n=1

an cos(nπx)+

∞∑
n=1

bn sin(nπx), (5.3)
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where an and bn are just the Fourier coefficients. This implies that the presented
series S̃[r ]( f ; x) in the form of (5.1) is a generalization of the Fourier series according
to an auxiliary parameter r > 0 preserving its periodicity. In order to approximate a
2-periodic function f on R by a partial sum of the series, we define the N th partial
sum of the extended sigmoidal series S̃[r ]( f ; x) as

S̃[r ]

N ( f ; x) :=

N∑
n=0

c2nψ̃
[r ]

2n (x)+

N∑
n=1

d2nφ̃
[r ]

2n (x). (5.4)

For a 2-periodic function f such that f (−1)= f (1)= 0, by using the basis (B2)
given in the previous section, one can also consider another series of the form

S̃∗[r ]

sin ( f ; x) :=

∞∑
n=1

d2n−1φ
∗[r ]

2n−1(x)+

∞∑
n=1

d2nφ̃
[r ]

2n (x), (5.5)

where the coefficients are

dk =

∫ 1

−1
w[r ](t)φ[r ]

k (t) f (t) dt, (5.6)

for all integers k ≥ 1. The series S̃∗[r ]

sin is called an extended sigmoidal sine series

(ESM-SS) of order r > 0. One can note that S̃∗[r ]

sin = S[r ]

sin on the interval [−1, 1], that

is, S̃∗[r ]

sin is a 2-periodic extension of S[r ]

sin to the real line R.
On the other hand, for a function f defined only on the interval [−1, 1] where

ψ̃
[r ]

2n = ψ
[r ]

2n and φ̃[r ]

2n = φ
[r ]

2n , we denote its series expansion in (5.1) as

S[r ]( f ; x) :=

∞∑
n=0

c2nψ
[r ]

2n (x)+

∞∑
n=1

d2nφ
[r ]

2n (x), −1 ≤ x ≤ 1, (5.7)

which is called a sigmoidal series (SM-S). We recall that in this case both the SM-CS
S[r ]

cos( f ; x)=
∑

∞

n=0 cnψ
[r ]
n (x) in (2.5) and the SM-SS S[r ]

sin( f ; x)=
∑

∞

n=1 dnφ
[r ]
n (x)

in (3.3) are also available because the periodicity does not need to be considered.
Finally, we have the following theorem regarding the convergence of the SM-S S[r ] on
the interval [−1, 1].

THEOREM 5.1. Let f be a piecewise smooth function on an interval [−1, 1]. Then
for each −1< x < 1, the Nth partial sum S[r ]

N of the SM-S S[r ] converges such that

lim
N→∞

S[r ]

N ( f ; x)=
1
2 { f (x−)+ f (x+)}, (5.8)

for any r > 0 and, at both end-points x = ±1, it converges to

1
2 ( f (1−)+ f (−1+)) (5.9)

for 0< r ≤ 1.
Additionally, if f is continuous on [−1, 1] and f (−1)= f (1) then the SM-S S[r ]

with 0< r ≤ 1 converges uniformly to f (x) on [−1, 1].
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PROOF. Set

γr

(
1 + x

2

)
=

1 + ξ

2
, −1 ≤ ξ ≤ 1,

then in the formula (5.7)

ψ
[r ]

2n (x) = cos
[

2nπγr

(
1 + x

2

)]
= cos[nπ(1 + ξ)] = (−1)n cos(nπξ),

φ
[r ]

2n (x) = sin
[

2nπγr

(
1 + x

2

)]
= sin[nπ(1 + ξ)] = (−1)n sin(nπξ),

and the coefficients become

c2n = (−1)n
∫ 1

−1
cos(nπs) f

(
2γ−1

r

(
1 + s

2

)
− 1

)
ds,

d2n = (−1)n
∫ 1

−1
sin(nπs) f

(
2γ−1

r

(
1 + s

2

)
− 1

)
ds.

We define a function h as

h(ξ)= f

(
2γ−1

r

(
1 + ξ

2

)
− 1

)
,

which is piecewise smooth on any subinterval [a, b] of [−1, 1] with −1< a < b < 1.
Therefore, if we denote by SF

N the N th partial sum of the Fourier series then it follows
that for −1< x < 1 (that is, −1< ξ < 1)

lim
N→∞

S[r ]

N ( f ; x) = lim
N→∞

SF
N (h; ξ)

=
1
2 {h(ξ−)+ h(ξ+)}

=
1
2

{
f

(
2γ−1

r

(
1 + ξ−

2

)
− 1

)
+ f

(
2γ−1

r

(
1 + ξ+

2

)
− 1

)}
=

1
2 { f (x−)+ f (x+)},

for any r > 0. The last equality holds from the fact that γ−1
r is a smooth and increasing

one-to-one mapping on (−1, 1).
On the other hand, the derivative of h is

h′(ξ)= (γ−1
r )′

(
1 + ξ

2

)
f ′

(
2γ−1

r

(
1 + ξ

2

)
− 1

)
,

and its asymptotic behaviour near ξ = 1 and ξ = −1 becomes

h′(ξ)= O((1 − ξ)(1/r)−1), h′(ξ)= O((1 + ξ)(1/r)−1),

respectively. Thus h is piecewise smooth on the interval [−1, 1] as long as 0< r ≤ 1,
which implies the pointwise convergence of the series at both end-points x = ±1 (that
is, ξ = ±1). In addition, when f is continuous on [−1, 1] and f (−1)= f (1), the
uniform convergence of S[r ] with 0< r ≤ 1 results from the property of the Fourier
series directly. 2
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THEOREM 5.2. Let f satisfy all of the conditions in Theorem 2.3. Then for all
0< r ≤ η = min{η1, η2} we have the following results.

(1) The partial sum S[r ]

N ( f ; x) converges on the interval [−1, 1] in the form of (5.8)
and (5.9).

(2) If, in addition, f is continuous on [−1, 1] then the series S[r ]( f ; x) converges
uniformly to f (x) on [−1, 1].

PROOF. Continuing the proof of Theorem 5.1,

S[r ]( f ; x)= SF(h; ξ),

in which the asymptotic behaviour of the derivative of h(ξ) becomes

h′(ξ)= O((1 − ξ)(1/r)−1(1 − ξ)(η1−1)/r )= O((1 − ξ)(η1/r)−1)

near the right end-point ξ = 1, and

h′(ξ)= O((1 + ξ)(η2/r)−1)

near the left end-point ξ = −1. Thus for any r ≤ η the function h is piecewise smooth
on [−1, 1]. This fact implies the convergence of the Fourier series SF(h; ξ) or that of
the SM-S S[r ]( f ; x) as given in (1) and (2). 2

6. Numerical examples

In this section we explore some numerical examples to show the availability of the
proposed series. We denote by EN f the L2-norm error for the N th partial sum of a
series expansion of f on the interval [−1, 1]. That is,

EN f =

[ ∫ 1

−1
{ f (x)− SN ( f ; x)}2 dx

]1/2

, (6.1)

for an arbitrary partial sum SN ( f ; x).
All numerical computations in this section have been performed on a Pentium PC

using Mathematica (V.5) software.

EXAMPLE 1. First, we consider a smooth function

f1(x)= 1 + x(1 + x)(1 − x2), −1 ≤ x ≤ 1.

Since f1(−1)= f1(1) 6= 0, the N th partial sum of the SM-SS in (3.3) should be
modified as

S[r ]

sin( f1; x)= f1(1)+

∞∑
n=1

d ′

kφ
[r ]

k (x), (6.2)

with

d ′

k =

∫ 1

−1
w[r ](t)φ[r ]

k (t){ f1(t)− f1(1)} dt. (6.3)

https://doi.org/10.1017/S1446181108000060 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000060


[15] Sigmoidal-type series expansion 445

TABLE 2. Numerical results of EN f1 for the series S[r ]

cos,2N ( f1; x), S[r ]

sin,2N ( f1; x), S[r ]

N ( f1; x) and

SF
N ( f1; x).

Sigmoidal-type series Fourier series

r N S[r ]

cos,2N S[r ]

sin,2N S[r ]

N SF
N (=S[1]

N )

4 3.7 × 10−2 9.4 × 10−3 2.4 × 10−2 2.4 × 10−2

8 1.4 × 10−2 1.8 × 10−3 9.4 × 10−3 9.4 × 10−3

1 12 7.7 × 10−3 6.5 × 10−4 5.3 × 10−3 5.3 × 10−3

16 5.0 × 10−3 3.2 × 10−4 3.5 × 10−3 3.5 × 10−3

20 3.6 × 10−3 1.8 × 10−4 2.5 × 10−3 2.5 × 10−3

4 8.8 × 10−4 2.6 × 10−3 9.8 × 10−4 —
8 2.6 × 10−5 2.2 × 10−4 1.4 × 10−4 —

1
2 12 5.5 × 10−6 7.2 × 10−5 4.8 × 10−5 —

16 1.8 × 10−6 3.2 × 10−5 2.1 × 10−5 —
20 7.7 × 10−7 1.7 × 10−5 1.1 × 10−5 —

4 7.6 × 10−2 7.8 × 10−2 6.2 × 10−2 —
8 2.0 × 10−3 2.8 × 10−3 1.8 × 10−3 —

1
4 12 3.2 × 10−5 4.9 × 10−5 3.0 × 10−5 —

16 3.8 × 10−7 6.2 × 10−7 3.6 × 10−7 —
20 3.0 × 10−9 7.0 × 10−9 6.9 × 10−9 —

Since f1(x) is continuous as well as piecewise smooth on the interval [−1, 1],
Theorems 2.2, 3.2 and 5.1 imply that all of the SM-CS S[r ]

cos( f1; x), the SM-SS
S[r ]

sin( f1; x) and the SM-S S[r ]( f1; x) converge uniformly to the original function f1(x)
on [−1, 1] for any 0< r ≤ 1.

Table 2 includes numerical results of the partial sums S[r ]

cos,2N ( f1; x), S[r ]

sin,2N ( f1; x)

and S[r ]

N ( f1; x), r = 1, 1/2, 1/4, of the sigmoidal-type series developed in this work.
One can see that the sigmoidal-type partial sums with r < 1 greatly improve the L2-
norm errors of the traditional Fourier series, except for the case of N = 4 with r = 1/4.
When r = 1 the errors of S[r ]

cos,2N( f1; x) for N = 4(4)20 are all greater than those of

the Fourier series SF
N ( f1; x)= S[1]

N ( f1; x).
Figure 2 shows the outstanding uniform convergence of the partial sum

S[1/2]

N ( f1; x) compared with the Fourier partial sum SF
N ( f1; x) for small values of N .

In addition, the L2-norm errors of S[r ]

N ( f1; x) with respect to the order 1/8 ≤ r ≤ 1
(that is, 1/r = 1, 1.5, 2, . . . , 8) are illustrated in Figure 3. Therein the horizontal
lines indicate the errors of SF

N ( f1; x). We can observe that the optimal errors occur
near r = 1/4.

EXAMPLE 2. We consider a 2-periodic continuous function

f2(x)= ex
√

1 − x2, −1 ≤ x ≤ 1,

with f2(x + 2)= f2(x) for all x ∈ R.
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FIGURE 2. Errors f1(x)− SF
N ( f1; x) and f1(x)− S[1/2]

N ( f1; x) for N = 4 and 8.
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FIGURE 3. L2-norm errors EN f1, N = 10, 20, 40, for the partial sums of the sigmoidal series, S[r ]

N ( f1; x)
for 1 ≤ 1/r ≤ 8.
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TABLE 3. Numerical results of EN f2 for the series S[r ]

cos,2N ( f2; x), S[r ]

sin,2N ( f2; x), S[r ]

N ( f2; x) and

SF
N ( f2; x).

Sigmoidal-type series Fourier series

r N S[r ]

cos,2N S[r ]

sin,2N S[r ]

N SF
N (=S[1]

N )

4 1.4 × 10−2 1.2 × 10−3 1.0 × 10−2 9.6 × 10−2

8 4.1 × 10−3 1.6 × 10−4 3.1 × 10−3 5.1 × 10−2

1
2 12 1.9 × 10−3 5.0 × 10−4 1.5 × 10−3 3.5 × 10−2

16 1.1 × 10−3 2.2 × 10−5 8.8 × 10−4 2.6 × 10−2

20 7.5 × 10−4 1.2 × 10−5 5.8 × 10−4 2.1 × 10−2

4 2.3 × 10−2 2.2 × 10−3 1.6 × 10−2 —
8 2.3 × 10−4 4.6 × 10−4 2.5 × 10−4 —

1
4 12 3.7 × 10−6 3.9 × 10−5 2.3 × 10−5 —

16 8.7 × 10−7 1.6 × 10−5 9.0 × 10−6 —
20 3.7 × 10−7 8.2 × 10−6 4.7 × 10−6 —

4 1.1 × 10−1 7.8 × 10−2 7.8 × 10−2 —
8 5.7 × 10−3 6.6 × 10−3 5.0 × 10−3 —

1
6 12 3.0 × 10−4 4.2 × 10−4 2.9 × 10−4 —

16 1.9 × 10−5 2.1 × 10−5 1.6 × 10−5 —
20 1.1 × 10−6 9.0 × 10−7 8.8 × 10−7 —

The function f2(x) is not piecewise smooth on [−1, 1] because its derivative
is unbounded at the end-points x = ±1. Thereby, even though its Fourier series
converges to f2(x) in L2-norm, it cannot guarantee pointwise convergence nor uniform
convergence. In contrast, Theorems 2.3, 3.3 and 5.2 imply that all the sigmoidal-type
series S[r ]

cos( f2; x), S[r ]

sin( f2; x) and S[r ]( f2; x) converge uniformly to f2 as long as
0< r ≤ η = 1/2.

Table 3 shows that the L2-norm errors EN f2 of S[r ]

cos,2N ( f2; x), S[r ]

sin,2N ( f2; x) and

S[r ]

N ( f2; x) with r = 1/2, 1/4, 1/6 become much better than those of SF
N ( f2; x) as the

value of N grows larger.
Figure 4 compares the differences f2 − SF

N ( f2; x) and f2 − S[1/4]

N ( f2; x) for N =

4, 8, which implies uniform convergence of the present SM-S in contrast with the
Fourier series SF

N ( f2; x). For each N = 10, 20, 30, numerical results of the errors

EN f2 for S[r ]

N ( f2; x) with respect to various r are shown in Figure 5. It is seen that for

all r over the interval 1< 1/r ≤ 8 the partial sum S[r ]

N ( f2; x) is very efficient compared
with the Fourier partial sum SF

N ( f2; x).
On the other hand, concerning the 2-periodicity of the given function f2(x) on

the real line R, we can take either the ESM-S S̃[r ]( f2; x) in (5.1) or the ESM-SS
S̃∗[r ]

sin ( f2; x) in (5.5). For instance, Figure 6 shows the approximations to f2(x) by

the partial sums SF
N ( f2; x) and S̃[1/2]

N ( f2; x) of the Fourier series SF( f2; x) and the

https://doi.org/10.1017/S1446181108000060 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000060


448 B. I. Yun [18]

-1 -0.5  0  0.5  1
(x )

N =  4

S N
F

S N
[1/4]

-1 -0.5  0  0.5  1
(x )

N =  8

-0.2

-0.1

0

0.1

0.2

-0.2

-0.1

0

0.1

0.2

FIGURE 4. Errors f2(x)− SF
N ( f2; x) and f2(x)− S[1/4]

N ( f2; x) for N = 4 and 8.
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FIGURE 5. L2-norm errors EN f2, N = 10, 20, 40, for the partial sums of the sigmoidal series, S[r ]

N ( f2; x)
for 1 ≤ 1/r ≤ 8.
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FIGURE 6. The 2-periodic approximation to the function f2(x) by the Fourier series SF
N ( f2; x) (in (a))

and the ESM-S S̃[1/2]

N ( f2; x) (in (b)), for N = 2 (upper row) and N = 4 (lower row).

ESM-S S̃[1/2]( f2; x), respectively. Though the number of the sum is very small, such
as N = 2 or 4, S̃[1/2]

N ( f2; x) seems to be decidedly superior to SF
N ( f2; x). By further

numerical experiment one can find that the partial sum S̃∗[r ]

sin,N ( f2; x) of the ESM-SS

S̃∗[r ]

sin ( f2; x) with r ≤ 1/2 also gives similar results to those of S̃[r ]

N ( f2; x).
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