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Abstract. This is the first paper in a two-part series containing some results on dimension
estimates for C1 iterated function systems and repellers. In this part, we prove that the
upper box-counting dimension of the attractor of any C1 iterated function system (IFS)
on R

d is bounded above by its singularity dimension, and the upper packing dimension of
any ergodic invariant measure associated with this IFS is bounded above by its Lyapunov
dimension. Similar results are obtained for the repellers for C1 expanding maps on
Riemannian manifolds.
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1. Introduction
The dimension theory of iterated function systems (IFSs) and dynamical repellers has
developed into an important field of research during the last 40 years. One of the main
objectives is to estimate variant notions of dimension of the invariant sets and measures
involved. Despite many new and significant developments in recent years, only the cases of
conformal repellers and attractors of conformal IFSs under a certain separation condition
have been completely understood. In such cases, the topological pressure plays a crucial
role in the theory. Indeed, the Hausdorff and box-counting dimensions of the repeller
X for a C1 conformal expanding map f are given by the unique number s satisfying
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the Bowen–Ruelle formula P(X, f , −s log ‖Dxf ‖) = 0, where the functional P is the
topological pressure; see [8, 23, 38]. A similar formula is obtained for the Hausdorff
and box-counting dimensions of the attractor of a conformal IFS satisfying the open set
condition (see, for example, [34]).

The study of dimension in the non-conformal cases has proved to be much more
difficult. In his seminal paper [13], Falconer established a general upper bound on the
Hausdorff and box-counting dimensions of a self-affine set (which is the attractor of an
IFS consisting of contracting affine maps) in terms of the so-called affinity dimension, and
proved that for typical self-affine sets under a mild assumption this upper bound is equal
to the dimension. So far substantial progress has been made towards understanding when
the Hausdorff and box-counting dimensions of a concrete planar self-affine set are equal to
its affinity dimension; see [3, 24] and the references therein. However, very little has been
known in the higher-dimensional case.

In [15, Theorem 5.3], by developing a subadditive version of the thermodynamical
formalism, Falconer showed that the upper box-counting dimension of a mixing repeller
� of a non-conformal C2 mapping ψ , under the distortion condition

‖(Dxψ)−1‖2‖Dxψ‖ < 1 for x ∈ �, (1.1)

is bounded above by the zero point of the (subadditive) topological pressure associated
with the singular value functions of the derivatives of iterates of ψ . We write this
zero point as dimS∗ � and call it the singularity dimension of � (see Definition 6.1
for the details). Condition (1.1) is used to prove the bounded distortion property of
the singular value functions, which enables one to control the distortion of balls after
many iterations (see [15, Lemma 5.2]). Examples involving ‘triangular maps’ were
constructed in [32] to show that the condition (1.1) is necessary for this bounded distortion
property.

Using a quite different approach, Zhang [40] proved that the Hausdorff dimension of
the repeller of an arbitrary C1 expanding map ψ is also bounded above by the singularity
dimension. (We remark that the upper bound given by Zhang was defined in a slightly
different way, but it is equal to the singularity dimension; see [2, Corollary 2] for a proof.)
The basic technique used in Zhang’s proof is to estimate the Hausdorff measure of ψ(A)
for small sets A (see [40, Lemma 3]), which is applied to only one iteration so it avoids
assuming any distortion condition. However, his method does not apply to the box-counting
dimension.

Thanks to the results of Falconer and Zhang, a natural question arises as to whether the
upper box-counting dimension of a C1 repeller is always bounded above by its singularity
dimension. The challenge here is the lack of valid tools to analyze the geometry of the
images of balls under a large number of iterations of C1 maps. In [4, Theorem 3], Barreira
made a positive claim concerning this question, but his proof contains a crucial mistake†,
as found by Manning and Simon [32]. In a recent paper [9, Theorem 3.2], Cao, Pesin
and Zhao obtained an upper bound for the upper box-counting dimension of the repellers

† This result was cited or applied in several papers (e.g., [2, Corollary 4], [11, Theorems 4.4–4.7]) without
noticing the mistake in [4].
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of C1+α maps satisfying a certain dominated splitting property. However, that upper
bound depends on the splitting involved and is usually strictly larger than the singularity
dimension.

In the present paper, we give an affirmative answer to the above question. We also
establish an analogous result for the attractors of C1 non-conformal IFSs. Meanwhile we
prove that the upper packing dimension of an ergodic invariant measure supported on a C1

repeller (respectively, the projection of an ergodic measure on the attractor of a C1 IFS) is
bounded above by its Lyapunov dimension.

In the continuation of this paper [22] we verify that upper bound estimates of the
dimensions of the attractors and ergodic measures in the previous paragraph give the
exact values of the dimensions for some families of C1 non-conformal IFSs in R

d at
least typically. ‘Typically’ means that the assertions hold for almost all translations of the
system. These families include the C1 non-conformal IFSs in R

d for which all differentials
are either diagonal matrices, or all differentials are lower triangular matrices and satisfy a
certain domination condition.

We first state our results for C1 IFSs. To this end, let us introduce some notation
and definitions. Let Z be a compact subset of Rd . A finite family {fi}�i=1 of contracting
self-maps on Z is called a C1 iterated function system, if there exists an open set U ⊃ Z

such that each fi extends to a contracting C1-diffeomorphism fi : U → fi(U) ⊂ U . Let
K be the attractor of the IFS, that is, K is the unique non-empty compact subset of Rd such
that

K =
�⋃
i=1

fi(K) (1.2)

(cf. [16]).
Let (�, σ) be the one-sided full shift over the alphabet {1, . . . , �} (cf. [7]). Let � :

� → K denote the canonical coding map associated with the IFS {fi}�i=1. That is,

�(x) = lim
n→∞ fx1 ◦ · · · ◦ fxn(z), x = (xn)

∞
n=1, (1.3)

with z ∈ U . The definition of � is independent of the choice of z.
For any compact subset X of � with σX ⊂ X, we call (X, σ) a one-sided subshift or

simply a subshift over {1, . . . , �} and let dimS X denote the singularity dimension of X
with respect to the IFS {fi}�i=1 (cf. Definition 2.5).

For a set E ⊂ R
d , let dimBE denote the upper box-counting dimension of E (cf. [16]).

The first result in this paper is the following theorem, stating that the upper box-counting
dimension of �(X) is bounded above by the singularity dimension of X.

THEOREM 1.1. Let X ⊂ � be compact and σX ⊂ X. Then dimB�(X) ≤ dimS X. In
particular,

dimBK ≤ dimS �.

For an ergodic σ -invariant measure m on�, let dimL m denote the Lyapunov dimension
of m with respect to {fi}�i=1 (cf. Definition 2.6). For a Borel probability measure η on R

d
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(or a manifold), let dimP η denote the upper packing dimension of η. That is,

dimP η = esssupx∈supp(η)d(η, x), with d(η, x) := lim sup
r→0

log η(B(x, r))
log r

,

where B(x, r) denotes the closed ball centered at x of radius r. Equivalently,

dimP η = inf{dimP F : F is a Borel set with η(F ) = 1},
where dimP F stands for the packing dimension of F (cf. [16]). See, for example, [17] for
a proof.

Our second result can be viewed as a measure analogue of Theorem 1.1.

THEOREM 1.2. Let m be an ergodic σ -invariant measure on �. Then

dimP (m ◦�−1) ≤ dimL m,

where m ◦�−1 stands for the push-forward of m by �.

The above theorem improves a result of Jordan and Pollicott [26, Theorem 1] which
states that

dimH (m ◦�−1) ≤ dimL m

under a slightly more general setting, where dimH (m ◦�−1) stands for the upper
Hausdorff dimension ofm ◦�−1. Recall that the upper Hausdorff dimension of a measure
is the infimum of the Hausdorff dimension of Borel sets of full measure, which is always
less than or equal to the upper packing dimension of the measure. It is worth pointing out
that Theorem 1.2 was proved previously by Jordan [25] and Rossi [36] in the special case
when {fi}�i=1 is an affine IFS.

Next, we turn to the case of repellers. Let MMM be a smooth Riemannian manifold of
dimension d and ψ :MMM →MMM a C1-map. Let � be a compact subset of MMM such that
ψ(�) = �. We say that ψ is expanding on the repeller � if:
(a) there exists λ > 1 such that ‖(Dzψ)v‖ ≥ λ‖v‖ for all z ∈ �, v ∈ TzMMM (with respect

to a Riemannian metric onMMM);
(b) there exists an open neighborhood V of � such that

� = {z ∈ V : ψn(z) ∈ V for all n ≥ 0}.
We refer the reader to [35, §20] for more details. In what follows we always assume that�
is a repeller of ψ . Let dimS∗ � denote the singular dimension of � with respect to ψ (see
Definition 6.1). For an ergodic ψ-invariant measure μ on �, let dimL∗ μ be the Lyapunov
dimension of μ with respect to ψ (see Definition 6.2). Analogously to Theorems 1.1–1.2,
we have the following results.

THEOREM 1.3. Let � be the repeller of ψ . Then

dimB� ≤ dimS∗ �.
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THEOREM 1.4. Let μ be an ergodic ψ-invariant measure supported on �. Then

dimPμ ≤ dimL∗ μ.

For the estimates of the box-counting dimension of attractors of C1 non-conformal IFSs
(respectively, C1 repellers), the reader may reasonably ask what difficulties arose in the
previous work [15] which the present paper overcomes. Below we give an explanation and
roughly illustrate our strategy for the proof.

Let us give an account of the IFS case. The case of repellers is similar. Let K be the
attractor of a C1 IFS {fi}�i=1. To estimate dimBK , by definition one needs to estimate for
given r > 0 the smallest number of balls of radius r required to cover K, say, Nr(K).
To this end, one may iterate the IFS to get K = ⋃

i1...in
fi1...in (K) and then estimate

Nr(fi1...in (K)) separately, where fi1...in := fi1 ◦ · · · ◦ fin . For this purpose, one needs to
estimate Nr(fi1...in (B)), where B is a fixed ball covering K.

Under the strong assumption of distortion property, Falconer was able to show that
fi1...in (B) is roughly comparable to the ellipsoid (Dxfi1...in )(B) for each x ∈ B (see
[15, Lemma 5.2]); then, by cutting the ellipsoid into roughly round pieces, he could
use a certain singular value function to give an upper bound of Nr(fi1...in (B)), and
then apply the subadditive thermodynamic formalism to estimate the growth rate of∑
i1...in

Nr(fi1...in (B)). However, in the general C1 non-conformal case, this approach is
no longer feasible, since it seems hopeless to analyze the geometric shape of fi1...in (B)
when n is large.

The strategy of our approach is quite different. We use an observation going back to
Douady and Oesterlé [12] (see also [40]) that, for a given C1 map f, when B0 is a small
enough ball in a fixed bounded region, f (B0) is close to being an ellipsoid and so can be
covered by a certain number of balls controlled by the singular values of the differentials
of f (see Lemma 4.1). Since the maps fi in the IFS are contracting, we may apply this
fact to the maps fin , fin−1 , . . ., fi1 recursively. Roughly speaking, suppose that B0 is a
ball of small radius r0. Then fin(B0) can be covered by N1 balls of radius r1, and the
image of each of them under fin−1 can be covered by N2 balls of radius of r2, and so
on, where Nj , rj /rj−1 (j = 1, . . . , n) can be controlled by the singular values of the
differentials of fin−j+1 . In this way we get an estimate that Nrn(fi1...in (B0)) ≤ N1 . . . Nn

(see Proposition 4.2 for a more precise statement), which is in spirit analogous to the
corresponding estimate for the Hausdorff measure by Zhang [40]. In this process, we do
not need to consider the differentials of fi1...in and so no distortion property is required. By
developing a key technique from the thermodynamic formalism (see Proposition 3.4), we
can get an upper bound for dimBK , say s1. Replacing the IFS {fi}�i=1 by its nth iteration
{fi1...in}, we get other upper bounds sn. Again using a technique in the thermodynamic
formalism (see Proposition 3.1), we manage to show that lim inf sn is bounded above by
the singularity dimension.

The proof of Theorem 1.2 is also based on the above strategy. For an ergodic measure m
on �, we are able, using the above covering arguments and ergodic theorems, to provide
sharp estimates on the growth rates of N(uk)n(fi|n(K)) for m-a.e. (almost every) i ∈ �,
where uk = exp(λk), k = 1, . . . , d , with λk being the kth Lyapunov exponent of the
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matrix cocycle A(i, n) := Dπσnifi|n with respect to m. More precisely, we have the
following inequality (see Lemma 5.1):

lim
n→∞

1
n

log(N(uk)n(fi|n(K))) ≤ (λ1 + · · · + λk−1)− (k − 1)λk

for m-a.e. i ∈ �, with the convention that λ1 + · · · + λk−1 = 0 if k = 1. The proof of
Lemma 5.1 is delicate. In particular, we need to apply a special version of Kingman’s
subadditive ergodic theorem which is stated and proved in Lemma 2.8. Theorem 1.2 is
then derived from Lemma 5.1 by using an idea employed in [25, 36].

This paper is organized as follows. In §2 we give some preliminaries about the
subadditive thermodynamic formalism and give the definitions of the singularity and
Lyapunov dimensions with respect to a C1 IFS. In §3 we prove two auxiliary results
(Propositions 3.1 and 3.4) which play a key role in the proof of Theorem 1.1 (and of
Theorem 1.3). The proofs of Theorems 1.1–1.2 are given in §§4–5, respectively. In §6 we
give the definitions of the singularity and Lyapunov dimensions in the repeller case and
prove Theorems 1.3–1.4. For the convenience of the reader, in the Appendix we summarize
the main notation and typographical conventions used in this paper.

2. Preliminaries
2.1. Variational principle for subadditive pressure. In order to define the singularity
and Lyapunov dimensions and prove our main results, we require some elements from the
subadditive thermodynamic formalism.

Let (X, d) be a compact metric space and T : X → X a continuous mapping. We call
(X, T ) a topological dynamical system. For x, y ∈ X and n ∈ N, we define

dn(x, y) := max
0≤i≤n−1

d(T i(x), T i(y)). (2.1)

A setE ⊂ X is called (n, ε)-separated if for every distinct x, y ∈ E we have dn(x, y) > ε.
Let C(X) denote the set of real-valued continuous functions on X. Let G = {gn}∞n=1 be

a subadditive potential on X, that is, gn ∈ C(X) for all n ≥ 1 such that

gm+n(x) ≤ gn(x)+ gm(T
nx) for all x ∈ X and n, m ∈ N. (2.2)

Following [10], below we define the topological pressure of G.

Definition 2.1. For given n ∈ N and ε > 0, we define

Pn(X, T , G, ε) := sup
{ ∑
x∈E

exp(gn(x)) : E is an (n, ε)-separated set
}

. (2.3)

Then the topological pressure of G with respect to T is defined by

P(X, T , G) := lim
ε→0

lim sup
n→∞

1
n

log Pn(X, T , G, ε). (2.4)

If the potential G is additive, that is, gn = Sng := ∑n−1
k=0 g ◦ T k for some g ∈ C(X),

then P(X, T , G) recovers the classical topological pressure P(X, T , g) of g (see, for
example, [39]).
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Let M(X) denote the set of Borel probability measures on X, and M(X, T ) the set
of T-invariant Borel probability measures on X. For μ ∈M(X, T ), let hμ(T ) denote the
measure-theoretic entropy of μ with respect to T (cf. [39]). Moreover, for μ ∈M(X, T ),
by subadditivity we have

G∗(μ) := lim
n→∞

1
n

∫
gn dμ = inf

n

1
n

∫
gn dμ ∈ [−∞, ∞). (2.5)

See, for example, [39, Theorem 10.1]. We call G∗(μ) the Lyapunov exponent of G with
respect to μ.

The proofs of our main results rely on the following general variational principle for the
topological pressure of subadditive potentials.

THEOREM 2.2. [10, Theorem 1.1] Let G = {gn}∞n=1 be a subadditive potential on a
topological dynamical system (X, T ). Suppose that the topological entropy of T is finite.
Then

P(X, T , G) = sup{hμ(T )+ G∗(μ) : μ ∈M(X, T )}. (2.6)

Particular cases of the above result, under stronger assumptions on the dynamical systems
and the potentials, were previously obtained by many authors; see, for example, [5, 14, 18,
21, 28, 33] and references therein.

Measures that achieve the supremum in (2.6) are called equilibrium measures for the
potential G. There exists at least one ergodic equilibrium measure when the entropy map
μ �→ hμ(T ) is upper semi-continuous; this is the case when (X, T ) is a subshift (see, for
example, [19, Proposition 3.5] and the remark there).

The following well-known result is also needed in our proofs.

LEMMA 2.3. Let Xi , i = 1, 2, be compact metric spaces and let Ti : Xi → Xi be
continuous. Suppose π : X1 → X2 is a continuous surjection such that the following
diagram commutes:

X1
T1 ��

π

��

X1

π

��
X2

T2

�� X2

Then π∗ :M(X1, T1) →M(X2, T2) (defined by μ �→ μ ◦ π−1) is surjective.
If, furthermore, there is an integer q > 0 so that π−1(y) has at most q elements for each

y ∈ X2, then

hμ(T1) = hμ◦π−1(T2)

for each μ ∈M(X1, T1).

Proof. The first part of the result is the same as [31, Ch. IV, Lemma 8.3]. The second part
follows from the Abramov–Rokhlin formula (see [6]).
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2.2. Subshifts. In this subsection we introduce some basic notation and definitions about
subshifts.

Let (�, σ) be the one-sided full shift over the alphabet A = {1, . . . , �}. That is,
� = AN endowed with the product topology, and σ : � → � is the left shift defined
by (xi)

∞
i=1 �→ (xi+1)

∞
i=1. The topology of � is compatible with the following metric

on �:

d(x, y) = 2− inf{k:xk+1 
=yk+1} for x = (xi)
∞
i=1, y = (yi)

∞
i=1.

For x = (xi)
∞
i=1 ∈ � and n ∈ N, write x|n = x1 . . . xn.

Let X be a non-empty compact subset of � satisfying σX ⊂ X. We call (X, σ) a
one-sided subshift or simply a subshift over A. We denote the collection of finite words
allowed in X by X∗, and the subset of X∗ of words of length n by X∗

n. In particular, define,
for n ∈ N,

X(n) := {(xi)∞i=1 ∈ AN : xkn+1xkn+2 . . . x(k+1)n ∈ X∗
n for all k ≥ 0}. (2.7)

It is clear that X ⊂ X(n) for every n ∈ N.
Let G = {gn}∞n=1 be a subadditive potential on a subshift (X, σ). It is known that in

such a case, the topological pressure of G can alternatively be defined by

P(X, σ , G) = lim
n→∞

1
n

log
( ∑

i∈X∗
n

sup
x∈[i]∩X

exp(gn(x))
)

, (2.8)

where [i] := {x ∈ � : x|n = i} for i ∈ An; see [10, p. 649]. The limit can be seen to exist
by using a standard subadditivity argument. We remark that (2.8) was first introduced by
Falconer in [14] for the definition of the topological pressure of subadditive potentials on
a mixing repeller.

Below we provide a useful lemma.

LEMMA 2.4. Let (AN, σ) be the one-sided full shift space over a finite alphabet A. Let
ν ∈M(AN, σm) for some m ∈ N. Set μ = (1/m)

∑m−1
k=0 ν ◦ σ−k . Then μ ∈M(AN, σ)

and hμ(σ) = (1/m)hν(σm).

Proof. The lemma might be well known. However, we are not able to find a reference, so
for the convenience of the reader we provide a self-contained proof. The σ -invariance
of μ follows directly from its definition, and we only need to prove that hμ(σ) =
(1/m)hν(σm).

Clearly, ν ◦ σ−k ∈M(AN, σm) for k = 0, . . . , m− 1. We claim that hν◦σ−k (σm) =
hν(σ

m) for k = 1, . . . , m− 1. Without loss of generality we prove this in the case when
k = 1. For n ∈ N, let Pn denote the partition of AN consisting of the nth cylinders of
AN, that is, Pn = {[I ] : I ∈ An}, and set σ−1Pn = {σ−1([I ]) : I ∈ An}. Then it is direct
to see that any element in Pn intersects at most #A elements in σ−1Pn, and vice versa.
Hence,

|Hν(Pn)−Hν(σ
−1Pn)| ≤ log #A;
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see, for example, [20, Lemma 4.6]. It follows that

hν◦σ−1(σ
m) = lim

n→∞
1
n
Hν◦σ−1(Pnm) = lim

n→∞
1
n
Hν(σ

−1Pnm)

= lim
n→∞

1
n
Hν(Pnm) = hν(σ

m).

This proves the claim.
By the affinity of the measure-theoretic entropy h(·)(σm) (see [39, Theorem 8.1]), we

have

hμ(σ
m) = 1

m

m−1∑
k=0

hν◦σ−k (σm) = hν(σ
m),

where the second equality follows from the above claim. Hence, hμ(σ) = (1/m)hμ(σm) =
(1/m)hν(σm).

2.3. Singularity dimension and Lyapunov dimension with respect to C1 IFSs. In this
subsection, we define the singularity and Lyapunov dimensions with respect to C1 IFSs.
The corresponding definitions with respect to C1 repellers will be given in §5.

Let {fi}�i=1 be a C1 IFS on R
d with attractor K. Let (�, σ) be the one-sided full shift

over the alphabet {1, . . . , �} and let � : � → K denote the corresponding coding map
defined as in (1.3). For a differentiable function f : U ⊂ R

d → R
d , let Dzf denote the

differential of f at z ∈ U .
For T ∈ R

d×d , let α1(T ) ≥ · · · ≥ αd(T ) denote the singular values of T. Following
[13], for s ≥ 0 we define the singular value function φs : Rd×d → [0, ∞) as

φs(T ) =
{
α1(T ) · · · αk(T )αs−kk+1(T ) if 0 ≤ s ≤ d ,

det(T )s/d if s > d,
(2.9)

where k = [s] is the integral part of s.

Definition 2.5. For a compact subset X of� with σ(X) ⊂ X, the singularity dimension of
X with respect to {fi}�i=1, written as dimS X, is the unique non-negative value s for which

P(X, σ , Gs) = 0,

where Gs = {gsn}∞n=1 is the subadditive potential on � defined by

gsn(x) = log φs(D�σnxfx|n), x ∈ �, (2.10)

with fx|n := fx1 ◦ · · · ◦ fxn for x = (xn)
∞
n=1.

Definition 2.6. Let m be an ergodic σ -invariant Borel probability measure on �. For any
i ∈ {1, . . . , d}, the ith Lyapunov exponent of m is

λi (m) := lim
n→∞

1
n

∫
log(αi(D�σnxfx|n)) dm(x). (2.11)
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−Gs∗(m)

s
1 2

s
G−→�
s∗(m

)

hm(σ)

dimL m

slope= −λ1(m)+λ2(m)
2

slope= −λ2(m)

slope= −λ1(m)

FIGURE 1. The connection between Lyapunov dimension, entropy and the function s �→ −Gs∗(m) when d = 2.

The Lyapunov dimension of m with respect to {fi}�i=1, written as dimL m, is the unique
non-negative value s for which

hm(σ)+ Gs∗(m) = 0,

where Gs = {gsn}∞n=1 is defined as in (2.10) and Gs∗(m) := limn→∞(1/n)
∫
gsn dm. See

Figure 1 for the mapping s �→ −Gs∗(m) in the case when d = 2.

It follows from the definition of the singular value function φs that, for an ergodic
measure m, we have

Gs∗(m) =
{

λ1(m)+ · · · + λ[s](m)+ (s − [s])λ[s]+1(m) if s < d,
s
d
(λ1(m)+ · · · + λd(m)) if s ≥ d .

Observe that, in the special case when all the Lyapunov exponents are equal to the same
λ, we have dimL m = hm(σ)/−λ.

Remark 2.7
(i) The concept of singularity dimension was first introduced by Falconer [13, 15]; see

also [29]. It is also called affinity dimension when the IFS {fi}�i=1 is affine, that is,
each map fi is affine.

(ii) The definition of Lyapunov dimension of ergodic measures with respect to an IFS
presented above was taken from [26]. It is a generalization of that given in [27] for
affine IFSs.

2.4. A special consequence of Kingman’s subadditive ergodic theorem. Here we state a
special consequence of Kingman’s subadditive ergodic theorem which will be needed in
the proof of Lemma 5.1.

LEMMA 2.8. Let T be a measure-preserving transformation of the probability space
(X, B, m), and let {gn}n∈N be a sequence of L1 functions satisfying the following
subadditivity relation:

gn+m(x) ≤ gn(x)+ gm(T
nx) for all x ∈ X.

Suppose that there exists C > 0 such that

|gn(x)| ≤ Cn for all x ∈ X and n ∈ N. (2.12)

https://doi.org/10.1017/etds.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.41


Dimension estimates for C1 iterated function systems 2683

Then

lim
n→∞ E

(
gn

n

∣∣∣∣Cn)(x) = g(x) := lim
n→∞

gn(x)

n

for m-a.e. x, where

Cn := {B ∈ B : T −nB = B a.e.},
E(·|·) denotes the conditional expectation and g(x) is T-invariant.

Proof. By Kingman’s subadditive ergodic theorem, gn/n converges pointwise to a
T-invariant function g-almost everywhere. Meanwhile, by Birkhoff’s ergodic theorem, for
each n ∈ N,

E(gn|Cn)(x) = lim
k→∞

1
k

k−1∑
j=0

gn(T
jnx) almost everywhere.

Since
∑k−1
j=0 gn(T

jnx) ≥ gkn(x) by subadditivity, it follows that

E

(
gn

n

∣∣∣∣Cn)(x) ≥ lim
k→∞

gnk(x)

nk
= g(x) almost everywhere. (2.13)

Since the sequence {gn} is subadditive and satisfies (2.12), by [28, Lemma 2.2], for any
0 < k < n,

gn(x)

n
≤ 1
kn

n−1∑
j=0

gk(T
jx)+ 3kC

n
, x ∈ X.

As a consequence,

E

(
gn

n

∣∣∣∣Cn)(x) ≤ 1
kn
E

( n−1∑
j=0

gk ◦ T j
∣∣∣∣Cn)(x)+ 3kC

n
. (2.14)

Notice that, for each f ∈ L1 and n ∈ N,

E

( n−1∑
j=0

f ◦ T j
∣∣∣∣Cn) = nE(f |C1) almost everywhere. (2.15)

To see the above identity, one simply applies Birkhoff’s ergodic theorem (with respect to
the transformations T n and T, respectively) to the following limits:

lim
k→∞

1
k

k−1∑
j=0

(f + f ◦ T + · · · + f ◦ T n−1)(T nj x) = lim
k→∞

1
k

nk−1∑
j=0

f (T jx).

Now applying the identity (2.15) (with f = gk) to (2.14) yields

E

(
gn

n

∣∣∣∣Cn) ≤ E

(
gk

k

∣∣∣∣C1

)
+ 3kC

n
almost everywhere for 0 < k < n.
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It follows that

lim sup
n→∞

E

(
gn

n

∣∣∣∣Cn) ≤ E

(
gk

k

∣∣∣∣C1

)
almost everywhere for each k,

so by the dominated convergence theorem,

lim sup
n→∞

E

(
gn

n

∣∣∣∣Cn) ≤ lim
k→∞ E

(
gk

k

∣∣∣∣C1

)
= E(g|C1) = g almost everywhere.

Combining it with (2.13) yields the desired result limn→∞ E((gn/n)|Cn) = g almost
everywhere.

3. Some auxiliary results
In this section we give two auxiliary results (Propositions 3.1 and 3.4) which are needed in
the proof of Theorem 1.1.

PROPOSITION 3.1. Let (X, σ) be a one-sided subshift over a finite alphabet A and G =
{gn}∞n=1 a subadditive potential onAN. Then

P(X, σ , G) = lim
n→∞

1
n
P (X(n), σn, gn) = inf

n≥1

1
n
P (X(n), σn, gn), (3.1)

where X(n) is defined as in (2.7), and P(X(n), σn, gn) denotes the classical topological
pressure of gn over the full shift space (X(n), σn).

Remark 3.2. Instead of (3.1), it was proved in [2, Proposition 2.2] that

P(X, σ , G) = lim
n→∞

1
n
P (X, σn, gn)

under a more general setting. We remark that the proof of (3.1) is more subtle.

To prove Proposition 3.1, we need the following lemma.

LEMMA 3.3. [10, Lemma 2.3] Under the assumptions of Proposition 3.1, suppose that
{νn}∞n=1 is a sequence inM(AN), whereM(AN) denotes the space of all Borel probability
measures on AN with the weak* topology. We form the new sequence {μn}∞n=1 by μn =
(1/n)

∑n−1
i=0 νn ◦ σ−i . Assume that μni converges to μ inM(AN) for some subsequence

{ni} of natural numbers. Then μ ∈M(AN, σ) and, moreover,

lim sup
i→∞

1
ni

∫
gni (x) dνni (x) ≤ G∗(μ) := lim

n→∞
1
n

∫
gn dμ.

Proof of Proposition 3.1. We first prove that, for each n ∈ N,

P(X, σ , G) ≤ 1
n
P (X(n), σn, gn). (3.2)

To see this, fix n ∈ N and let μ be an equilibrium measure for the potential G. Then

P(X, σ , G) = hμ(σ)+ G∗(μ)

≤ hμ(σ)+ 1
n

∫
gn dμ (by (2.5))
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= 1
n

(
hμ(σ

n)+
∫
gn dμ

)
≤ 1
n
P (X(n), σn, gn),

where in the last inequality, we use the fact that μ ∈M(X(n), σn) and the classical
variational principle for the topological pressure of additive potentials. This proves (3.2).

In what follows we prove that

P(X, σ , G) ≥ lim sup
n→∞

1
n
P (X(n), σn, gn). (3.3)

Clearly (3.2) and (3.3) imply (3.1). To prove (3.3), by the classical variational principle we
can take a subsequence {ni} of natural numbers and νni ∈M(X(ni), σni ) such that

lim sup
n→∞

1
n
P (X(n), σn, gn) = lim

i→∞
1
ni

(
hνni (σ

ni )+
∫
gni dνni

)
. (3.4)

Set μ(i) = (1/ni)
∑ni−1
k=0 νni ◦ σ−k for each i. Taking a subsequence if necessary, we

may assume that μ(i) converges to an element μ ∈M(AN) in the weak* topology. By
Lemma 3.3, μ ∈M(AN, σ) and, moreover,

lim sup
i→∞

1
ni

∫
gni (x) dνni (x) ≤ G∗(μ). (3.5)

Next, we show that μ is supported on X. For this we adopt some arguments from the proof
of [30, Theorem 1.1]. Notice that, for each i, μ(i) is σ -invariant supported on

ni−1⋃
k=0

σkX(ni) =
ni⋃
k=1

σni−kX(ni).

Hence, μ is supported on

∞⋂
N=1

∞⋃
i=N

ni⋃
k=1

σni−kX(ni).

If x is in this set, then, for each N ≥ 1, there exist integers i(N) ≥ N and k(N) ∈
[1, ni(N)] for which d(x, σni(N)−k(N)X(ni(N))) < 1/N (i.e., d(x, z) < 1/N for some z ∈
σni(N)−k(N)X(ni(N))), hence

d(x, X) ≤ d(x, z)+ d(z, X) <
1
N

+ sup
y∈σni(N)−k(N)X(ni(N))

d(y, X) ≤ 1
N

+ 2−k(N) (3.6)

and

d(σ k(N)x, X) ≤ d(σ k(N)x, σk(N)z)+ d(σ k(N)z, X)

≤ 2k(N)d(x, z)+ d(σ k(N)z, X)
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<
2k(N)

N
+ sup
y∈σni(N)−k(N)X(ni(N))

d(σ k(N)y, X)

≤ 2k(N)

N
+ 2−ni(N) (since σk(N)y ∈ σni(N)X(ni(N)) = X(ni(N))). (3.7)

If the values k(N) are unbounded as N → ∞, then (3.6) yields x ∈ X, while if they are
bounded then some value of k recurs infinitely often as k(N), which implies that σkx ∈ X
by (3.7). Thus μ is supported on

∞⋃
k=0

σ−kX.

Since σX ⊂ X, the set (σ−1X)\X is wandering under σ−1 (i.e., its preimages under
powers of σ are disjoint), so it must have zero μ-measure. Consequently, μ ∈M(X, σ).

Notice that hμ(i) (σ ) = (1/ni)hνni (σ
ni ) (see Lemma 2.4). By the upper semi-continuity

of the entropy map,

hμ(σ) ≥ lim sup
i→∞

hμ(i) (σ ) = lim sup
i→∞

1
ni
hνni (σ

ni ),

which, together with (3.5), yields that

hμ(σ)+ G∗(μ) ≥ lim sup
i→∞

1
ni

(
hνni (σ

ni )+
∫
gni dνni

)
= lim sup

n→∞
1
n
P (X(n), σn, gn).

Applying Theorem 2.2, we obtain (3.3). This completes the proof of the proposition.

Next, we present another auxiliary result.

PROPOSITION 3.4. Let (X, σ) be a one-sided subshift over a finite alphabetA and g, h ∈
C(X). Assume, in addition, that h(x) < 0 for all x ∈ X. Let

r0 = sup
x∈X

exp(h(x)).

Set, for 0 < r < r0,

Ar := {
i1 . . . in ∈ X∗ : sup

x∈[i1...in]∩X
exp(Snh(x)) < r ≤ sup

y∈[i1...in−1]∩X
exp(Sn−1h(y))

}
,

where X∗ is the collection of finite words allowed in X and Snh(x) := ∑n−1
k=0 h(σ

kx).
Then

lim
r→0

log(
∑
I∈Ar supx∈[I ]∩X exp(S|I |g(x)))

log r
= −t , (3.8)

where t is the unique real number such that P(X, σ , g + th) = 0, and |I | stands for the
length of I.

To prove the above result, we need the following lemma.
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LEMMA 3.5. Let (X, σ) be a one-sided subshift over a finite alphabet A and f ∈ C(X).
Then

lim
n→∞

1
n

sup{|Snf (x)− Snf (y)| : xi = yi for all 1 ≤ i ≤ n} = 0.

Proof. The result is well known. For the reader’s convenience, we include a proof.
Define, for n ∈ N,

varnf = sup{|f (x)− f (y)| : xi = yi for all 1 ≤ i ≤ n}.
Since f is uniformly continuous, varnf → 0 as n → ∞. It follows that

lim
n→∞

1
n

n∑
i=1

varif = 0.

This concludes the result of the lemma since

sup{|Snf (x)− Snf (y)| : xi = yi for all 1 ≤ i ≤ n}
is bounded above by

∑n
i=1 varif .

Proof of Proposition 3.4. Set

�r =
∑
I∈Ar

sup
x∈[I ]∩X

exp(S|I |g(x)), r ∈ (0, r0).

Let ε > 0. It is enough to show that

r−t+ε ≤ �r ≤ r−t−ε (3.9)

for sufficiently small r.
To this end, set, for 0 < r < r0,

m(r) = min{|I | : I ∈ Ar}, M(r) = max{|I | : I ∈ Ar }.
From the definition of Ar and the negativity of h, it follows that there exist two positive
constants a, b such that

a log(1/r) ≤ m(r) ≤ M(r) ≤ b log(1/r) for all r ∈ (0, r0). (3.10)

Define

�r =
∑
I∈Ar

sup
x∈[I ]∩X

exp(S|I |(g + th)(x)), r ∈ (0, r0).

By Lemma 3.5 and (3.10), it is readily checked that

rt+ε/2�r ≤ �r ≤ rt−ε/2�r for sufficiently small r , (3.11)

Hence, to prove (3.9), it suffices to prove that rε/2 ≤ �r ≤ r−ε/2 for small r.
We first prove �r > rε/2 when r is small. Suppose to the contrary that this is not true.

Then by (3.10) we can find some r ∈ (0, r0) and λ > 0 such that Z(r , λ) < 1, where

Z(r , λ) :=
∑
I∈Ar

exp(λ|I |) sup
x∈[I ]∩X

exp(S|I |(g + th)(x)). (3.12)
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Observe that {[I ] : I ∈ Ar} is a cover of X. From [7] it follows that P(X, σ ,
g + th) ≤ −λ, contradicting the fact that P(X, σ , g + th) = 0. Hence, we have �r > rε/2

when r is sufficiently small.
Next, we prove the inequality �r ≤ r−ε/2 for small r. To do this, fix λ ∈ (0, ε/(2b)),

where b is the constant in (3.10). We claim that there exists 0 < r1 < r0 such that

Z(r , −λ) < 1 for all r ∈ (0, r1), (3.13)

where Z is defined as in (3.12). Since λ ∈ (0, ε/(2b)), it follows from (3.10) that, for any
I ∈ Ar ,

exp(−λ|I |) ≥ exp(−λb log(1/r)) = rbλ ≥ rε/2.

Hence, (3.13) implies that �r ≤ r−ε/2 for 0 < r < r1.
Now it remains to prove (3.13). Since P(X, σ , g + th) = 0, by definition we have

lim
n→∞

1
n

log
( ∑
I∈X∗: |I |=n

sup
x∈[I ]∩X

exp(S|I |(g + th)(x))

)
= 0.

Hence, there exists a large N such that e−λN/2 < 1 − e−λ/2 and, for any n > N ,

γn :=
∑

I∈X∗: |I |=n
exp(−λ|I |) sup

x∈[I ]∩X
exp(S|I |(g + th)(x)) ≤ exp(−λn/2).

Take a small r1 ∈ (0, r0) so that m(r) ≥ N for any 0 < r < r1. By the definition of m(r),
for any 0 < r < r1 we haveAr ⊂ {I ∈ X∗ : |I | ≥ N} and so

Z(r , −λ) ≤
∞∑
n=N

γn ≤
∞∑
n=N

exp(−λn/2) = e−λN/2

1 − e−λ/2 < 1.

This proves (3.13).

4. The proof of Theorem 1.1
Recall that, for T ∈ R

d×d , α1(T ) ≥ · · · ≥ αd(T ) are the singular values of T, and φs(T )
(s ≥ 0) is defined as in (2.9). We begin with an elementary but important lemma.

LEMMA 4.1. Let E ⊂ U ⊂ R
d , where E is compact and U is open. Let k ∈ {0, 1, . . . ,

d − 1}. Then, for any non-degenerate C1 map f : U → R
d , there exists r0 > 0 such that,

for any y ∈ E, z ∈ B(y, r0) and 0 < r < r0, the set f (B(z, r)) can be covered by

(4d)d · φk(Dyf )

(αk+1(Dyf ))k

balls of radius αk+1(Dyf )r .

Proof. The result was implicitly proved in [40, Lemma 3] by using an idea of [12]. For the
convenience of the reader, we provide a detailed proof.

Set

γ = min
y∈E αd(Dyf ).
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Then

B(0, γ ) ⊂ Dyf (B(0, 1)) for all y ∈ E. (4.1)

Since f is C1, non-degenerate on U and E is compact, it follows that γ > 0. Take ε =
(2

√
d − 1)/2. Then there exists a small r0 > 0 such that, for u, v, w ∈ V2r0(E) := {x :

d(x, E) < 2r0},
|f (u)− f (v)−Dvf (u− v)| ≤ εγ |u− v| if |u− v| ≤ r0, (4.2)

and

Dvf (B(0, 1)) ⊂ ((1 + ε)Dwf )(B(0, 1)) if |v − w| ≤ r0. (4.3)

Now let y ∈ E and z ∈ B(y, r0). For any 0 < r < r0 and x ∈ B(z, r), taking u = x and
v = z in (4.2) gives

f (x)− f (z)−Dzf (x − z) ∈ B(0, εγ r),

so by (4.3) and (4.1),

f (x)− f (z) ∈ Dzf (B(0, r))+ B(0, εγ r)

⊂ ((1 + ε)Dyf )(B(0, r))+ B(0, εγ r) (by (4.3))

⊂ Dyf (B(0, (1 + ε)r)+ B(0, εr)) (by (4.1))

⊂ Dyf (B(0, (1 + 2ε)r))

= Dyf (B(0, 2
√
dr)),

where A+ A′ := {u+ v : u ∈ A, v ∈ A′}. Therefore,

f (B(z, r)) ⊂ f (z)+Dyf (B(0, 2
√
dr)).

That is, f (B(z, r)) is contained in an ellipsoid which has principle axes of lengths
4
√
dαi(Dyf )r , i = 1, . . . , d . Hence, f (B(z, r)) is contained in a rectangular paral-

lelepiped of side lengths 2
√
dαi(Dyf )r , i = 1, . . . , d . Now we can divide such a

parallelepiped into at most( k+1∏
i=1

4dαi(Dyf )
αk+1(Dyf )

)
· (4d)d−k−1 ≤ (4d)d · φk(Dyf )

(αk+1(Dyf ))k

cubes of side (2/
√
d) · αk+1(Dyf )r . Therefore, this parallelepiped (and f (B(z, r)) as

well) can be covered by

(4d)d · φk(Dyf )

(αk+1(Dyf ))k

balls of radius αk+1(Dyf )r .

In the remainder of this section let {fi}�i=1 be a C1 IFS on R
d with attractor K.

Let (�, σ) be the one-sided full shift over the alphabet {1, . . . , �} and � : � → K the
canonical coding map associated with the IFS (cf. (1.3)). As a consequence of Lemma 4.1,
we obtain the following proposition.
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PROPOSITION 4.2. Let k ∈ {0, 1, . . . , d − 1}. Set C = (4d)d . Then there exists
C1 > 0 such that, for i = (ip)

∞
p=1 ∈ � and n ∈ N, the set fi|n(K) can be covered by

C1
∏n−1
p=0 G(σ

pi) balls of radius
∏n−1
p=0 H(σ

pi), where

G(i) := Cφk(D�σ ifi1)

αk+1(D�σ ifi1)
k

, H(i) := αk+1(D�σ ifi1). (4.4)

Proof. Since {fi}�i=1 is a C1 IFS, there exists an open setU ⊃ K such that each fi extends
to a C1 diffeomorphism fi : U → fi(U). Applying Lemma 4.1 to the mappings fi , we
see that there exists r0 > 0 such that, for any y ∈ K , z ∈ B(y, r0), 0 < r < r0 and i ∈
{1, . . . , �}, the set fi(B(z, r)) can be covered by

θ(y, i) := Cφk(Dyfi)

αk+1(Dyfi)k

balls of radius αk+1(Dyfi)r .
Since f1, . . . , f� are contracting on U, there exists γ ∈ (0, 1) such that

|fi(x)− fi(y)| ≤ γ |x − y| for all x, y ∈ U , i ∈ {1, . . . , �}.
This implies that α1(Dyfi) ≤ γ for any y ∈ K and i ∈ {1, . . . , �}. Take a large integer n0

such that

γ n0 max{1, diam(K)} < r0/2.

Clearly there exists a large number C1 so that the conclusion of the proposition holds
for any positive integer n ≤ n0 and i ∈ �, that is, the set fi|n(K) can be covered by
C1

∏n−1
p=0 G(σ

pi) balls of radius
∏n−1
p=0 H(σ

pi). Below we show by induction that this
holds for all n ∈ N and i ∈ �.

Suppose, for some m ≥ n0, that the conclusion of the proposition holds for any
positive integer n ≤ m and i ∈ �. Then, for i ∈ �, f |(σ i)|m(K) can be covered by
C1

∏m−1
p=0 G(σ

p+1i) balls of radius
∏m−1
p=0 H(σ

p+1i). Let B1, . . . BN denote these balls.
We may assume that Bj ∩ f |(σ i)|m(K) 
= ∅ for each j. Since

m−1∏
p=0

H(σp+1i) ≤ γm ≤ γ n0 < r0/2

and

d(�σ i, Bj ∩ f(σ i)|m(K)) ≤ diam(f(σ i)|m(K)) ≤ γ n0diam(K) < r0/2,

the center of Bj is in B(�σ i, r0). Therefore, fi1(Bj ) can be covered by θ(�σ i, i1) = G(i)
balls of radius

H(i) ·
m−1∏
p=0

H(σp+1i) =
m∏
p=0

H(σpi).
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Since fi|(m+1)(K) ⊂ ⋃N
j=1 fi1(Bj ), it follows that fi|(m+1)(K) can be covered by

G(i)N ≤ G(i) · C1

m−1∏
p=0

G(σp+1i) = C1

m∏
p=0

G(σpi)

balls of radius
∏m
p=0 H(σ

pi). Thus the proposition also holds for n = m+ 1 and all i ∈ �,
as desired.

Next, we provide an upper bound on the upper box-counting dimension of the attractor
K of the IFS {fi}�i=1.

PROPOSITION 4.3. Let k ∈ {0, 1, . . . , d − 1}. Let G, H : � → R be defined as in (4.4).
Let t be the unique real number so that

P(�, σ , (log G)+ t (log H)) = 0.

Then dimBK ≤ t .

Proof. Write g = log G and h = log H for short. Define

rmin = min
x∈� αk+1(D�σxfx1), rmax = max

x∈� αk+1(D�σxfx1).

Then 0 < rmin ≤ rmax < 1. For 0 < r < rmin, define

Ar = {
i1 . . . in ∈ �∗ : sup

x∈[i1...in]
Snh(x) < log r ≤ sup

y∈[i1...in−1]
Sn−1h(y)

}
; (4.5)

clearly {[I ] : I ∈ Ar } is a partition of�. By Proposition 4.2, there exists a constantC1 > 0
such that, for each 0 < r < rmin, every I ∈ Ar and x ∈ [I ], fI (K) can be covered by

C1 exp(S|I |g(x)) ≤ C1 exp
(

sup
y∈[I ]

S|I |g(y)
)

balls of radius

exp(S|I |h(x)) ≤ exp
(

sup
y∈[I ]

S|I |h(y)
)
< r .

It follows that K can be covered by

C1
∑
I∈Ar

exp
(

sup
y∈[I ]

S|I |g(y)
)

balls of radius r. Hence, by Proposition 3.4,

dimBK ≤ lim sup
r→0

log
( ∑

I∈Ar exp
(

supy∈[I ] S|I |g(y)
))

log(1/r)
= t .

This completes the proof of the proposition.

As an application of Proposition 4.3, we may estimate the upper box-counting dimen-
sion of the projections of a class of σ -invariant sets under the coding map.
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PROPOSITION 4.4. Let X be a compact subset of � satisfying σX ⊂ X, and k ∈
{0, . . . , d − 1}. Then, for each n ∈ N,

dimB�(X
(n)) ≤ tn,

where X(n) is defined as in (2.7), tn is the unique number for which

P(X(n), σn, (log Gn)+ tn(log Hn)) = 0,

and Gn, Hn are continuous functions on � defined by

Gn(y) := Cφk(D�σnyfy|n)
αk+1(D�σnyfy|n)k

, Hn(y) := αk+1(D�σnyfy|n), (4.6)

with C = (4d)d .

Proof. The result is obtained by applying Proposition 4.3 to the IFS {fI : I ∈ X∗
n} instead

of {fi}�i=1, where X∗
n stands for the collection of words of length n allowed in X.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Write s = dimS X. We may assume that s < d; otherwise we have
nothing left to prove. Set k = [s], that is, k is the largest integer less than or equal to s. Let
U = {un}∞n=1 be the subadditive potential on � defined by

un(x) = log φs(D�σnxfx|n).

Then P(X, σ ,U) = 0 by the definition of dimS X. Hence, by Proposition 3.1,

lim
n→∞

1
n
P (X(n), σn, un) = inf

n≥1

1
n
P (X(n), σn, un) = 0.

It follows that, for each ε > 0, there exists Nε > 0 such that

0 ≤ P(X(n), σn, un) ≤ nε for n > Nε . (4.7)

For n ∈ N, let sn be the unique real number such that P(X(n), σn, vn) = 0, where vn is
a continuous function on � defined by

vn(x) = log Gn(x)+ sn log Hn(x)

= log(Cφk(D�σnxfx|n)αk+1(D�σnxfx|n)sn−k),

where Gn, Hn are defined in (4.6) and C = (4d)d . By Proposition 4.4,

dimB�(X) ≤ dimB�(X
(n)) ≤ sn.

If s ≥ sn for some n, then dimB�(X) ≤ sn ≤ s and we are done. In what follows, we
assume that s < sn for each n. Then, for each x ∈ �,

un(x)− vn(x) = − log C + (s − sn) log αk+1(D�σnxfx|n)
≥ − log C + (s − sn) log α1(D�σnxfx|n)
≥ − log C + n(s − sn) log θ ,
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where

θ := max
y∈� α1(D�σyfy1) < 1.

Hence,

P(X(n), σn, un) = P(X(n), σn, un)− P(X(n), σn, vn)

≥ inf
x∈�(un(x)− vn(x))

≥ − log C + n(s − sn) log θ ,

where in the second inequality, we used [39, Theorem 9.7(iv)]. Combining this with (4.7)
yields that, for n ≥ Nε ,

nε ≥ − log C + n(s − sn) log θ ,

so

s ≥ sn + ε + n−1 log C
log θ

≥ dimB�(X)+ ε + n−1 log C
log θ

.

Letting n → ∞ and then ε → 0, we obtain s ≥ dimB�(X), as desired.

5. The proof of Theorem 1.2
Let� : � → R

d be the coding map associated with aC1 IFS {fi}�i=1 on R
d (cf. (1.3)). For

E ⊂ R
d and δ > 0, let Nδ(E) denote the smallest integer N for which E can be covered by

N closed balls of radius δ. For T ∈ R
d×d , let α1(T ) ≥ · · · ≥ αd(T ) denote the singular

values of T, and let φs(T ) be the singular value function defined as in (2.9).
The following geometric counting lemma plays an important role in the proof of

Theorem 1.2. It is of independent interest as well.

LEMMA 5.1. Let m be an ergodic σ -invariant Borel probability measure on �. Set

λi := lim
n→∞

1
n

∫
log(αi(D�σnxfx|n)) dm(x), i = 1, . . . , d . (5.1)

Let k ∈ {0, . . . , d − 1}. Write u := exp(λk+1). Then, for m-a.e. x ∈ �,

lim sup
n→∞

1
n

log Nun(�([x|n])) ≤ (λ1 + · · · + λk)− kλk+1. (5.2)

Proof. It is known (see, for example, [1, Theorem 3.3.3]) that, for m-a.e. x,

lim
p→∞

1
p

log(αi(D�σpxfx|p)) = λi , i = 1, . . . , d ,

and

lim
p→∞

1
p

log(φi(D�σpxfx|p)) = λ1 + · · · + λi , i = 1, . . . , d .

https://doi.org/10.1017/etds.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.41


2694 D.-J. Feng and K. Simon

For i ∈ {1, . . . , d}, x ∈ � and p ∈ N, set

w(i)p (x) = log φi(D�σpxfx|p),
v(i)p (x) = log αi(D�σpxfx|p).

Then, by the definition of φi ,

w(i)p = v(1)p + · · · + v(i)p . (5.3)

Since φi is submultiplicative on R
d×d (cf. [13, Lemma 2.1]), {w(i)p }∞p=1 is a subadditive

potential satisfying

|w(i)p (x)| ≤ pC, p ∈ N, x ∈ �,

for some constant C > 0. Set Cp := {B ∈ B(�) : σ−pB = B almost everywhere}. Then,
by Lemma 2.8, for m-a.e. x,

lim
p→∞ E

(
w
(i)
p

p

∣∣∣∣Cp)(x) = lim
p→∞

1
p
w(i)p (x) = λ1 + · · · + λi , i = 1, . . . , d , (5.4)

and so by (5.3),

lim
p→∞ E

(
v
(i)
p

p

∣∣∣∣Cp)(x) = λi , i = 1, . . . , d . (5.5)

Let p ∈ N. Applying Proposition 4.2 to the IFS {fI : I ∈ Ap}, we see that there exists a
positive number C1(p) such that, for any x ∈ � and n ∈ N, the set�([x|np]) = fx|np(K)
can be covered by C1(p)

∏n−1
i=0 Gp(σ

pix) balls of radius
∏n−1
i=0 Hp(σ

ipx), where

Gp(x) := Cφk(D�σpxfx|p)
αk+1(D�σpxfx|p)k

, Hp(x) := αk+1(D�σpxfx|p), (5.6)

with C = (4d)d . By Birkhoff’s ergodic theorem, for m-a.e. x ∈ �,

lim
n→∞

1
np

log
(
C1(p)

n−1∏
i=0

Gp(σ
pix)

)
= log C

p
+ E

(
w
(k)
p

p

∣∣∣∣Cp)(x)− kE

(
v
(k+1)
p

p

∣∣∣∣Cp)(x)
(5.7)

and

lim
n→∞

1
np

log
( n−1∏
i=0

Hp(σ
ipx)

)
= E

(
v
(k+1)
p

p

∣∣∣∣Cp)(x). (5.8)
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Let ε > 0. By (5.4), (5.5), (5.7), (5.8), for m-a.e. x there exists a positive integer p0(x)

such that, for any p ≥ p0(x),

n−1∏
i=0

Hp(σ
ipx) ≤ (u+ ε)np for large enough n, (5.9)

and

1
np

log
(
C1(p)

n−1∏
i=0

Gp(σ
pix)

)
≤ λ1 + · · · + λk − kλk+1 + ε for large enough n.

(5.10)

Fix such an x and let p ≥ p0(x). By (5.9),

N(u+ε)np (�([x|pn])) ≤ C1(p)

n−1∏
i=0

Gp(σ
pix) for large enough n.

Notice that there exists a constant C2 = C2(d) > 0 such that a ball of radius (u+ ε)np

in R
d can be covered by C2(1 + ε/u)dnp balls of radius unp. It follows that, for large

enough n,

Nunp (�([x|pn])) ≤ C2(1 + ε/u)dnpN(u+ε)np (�([x|pn]))

≤ C1(p)C2(1 + ε/u)dnp
n−1∏
i=0

Gp(σ
pix).

Hence, by (5.10),

lim sup
n→∞

1
n

log Nun(�([x|n])) = lim sup
n→∞

1
np

log Nunp (�([x|pn]))

≤ d log(1 + ε/u)+ lim sup
n→∞

1
np

log
( n−1∏
i=0

Gp(σ
pix)

)
≤ d log(1 + ε/u)+ ε + λ1 + · · · + λk − kλk+1,

where the first equality follows from the fact that, for pn ≤ m < p(n+ 1),

Num(�([x|m])) ≤ Num(�([x|pn])) ≤ 4d(upn−m)dNunp (�([x|pn]))

≤ 4du−pdNunp (�([x|pn])),

using the fact that, for R > r > 0, a ball of radius R in R
d can be covered by (4R/r)d balls

of radius r. Letting ε → 0 yields the desired inequality (5.2).

The following result is also needed in the proof of Theorem 1.2.

LEMMA 5.2. Let m be a Borel probability measure on �. Let ρ, ε ∈ (0, 1). Then, for
m-a.e. x = (xn)

∞
n=1 ∈ �,

m ◦�−1(B(�x, 2ρn)) ≥ (1 − ε)n
m([x1 . . . xn])

Nρn(�([x1 . . . xn]))
for large enough n. (5.11)
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Proof. The formulation and the proof of the above lemma are adapted from an argument
given by Jordan [25]. A similar idea was also employed in the proof of [36, Theorem 2.2].

For n ∈ N, let �n denote the set of the points x = (xn)
∞
n=1 ∈ � such that

m ◦�−1(B(�x, 2ρn)) < (1 − ε)n
m([x1 . . . xn])

Nρn(�([x1 . . . xn]))
.

To prove that (5.11) holds almost everywhere, by the Borel–Cantelli lemma it suffices to
show that

∞∑
n=1

m(�n) < ∞. (5.12)

For this purpose, let us estimate m(�n). Fix n ∈ N and I ∈ An. Notice that �([I ])
can be covered by Nρn(�([I ])) balls of radius ρn. As a consequence, there exists
L ≤ Nρn(�([I ])) such that �(�n ∩ [I ]) can be covered by L balls of radius ρn, say,
B1, . . . , BL. We may assume that �(�n ∩ [I ]) ∩ Bi 
= ∅ for each 1 ≤ i ≤ L. Hence, for
each i, we may pick x(i) ∈ �n ∩ [I ] such that �x(i) ∈ Bi . Clearly Bi ⊂ B(�x(i), 2ρn).
Since x(i) ∈ �n ∩ [I ], by the definition of �n we obtain

m ◦�−1(B(�x(i), 2ρn)) < (1 − ε)n
m([I ])

Nρn(�([I ]))
.

It follows that

m(�n ∩ [I ]) ≤ m ◦�−1(�(�n ∩ [I ]))

≤ m ◦�−1
( L⋃
i=1

Bi

)

≤ m ◦�−1
( L⋃
i=1

B(�x(i), 2ρn)
)

≤ L(1 − ε)n
m([I ])

Nρn(�([I ]))

≤ (1 − ε)nm([I ]).

Summing over I ∈ An yields that m(�n) ≤ (1 − ε)n, which implies (5.12).

Remark 5.3. Lemma 5.2 remains valid when the coding map � : � → R
d is replaced by

any Borel measurable map from � to R
d .

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We may assume that s := dimL m < d; otherwise there is nothing
left to prove. Set k = [s]. Let λi , i = 1, . . . , d , be defined as in (5.1). Then, by
Definition 2.6,

hm(σ)+ λ1 + · · · + λk + (s − k)λk+1 = 0.

https://doi.org/10.1017/etds.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.41


Dimension estimates for C1 iterated function systems 2697

Let u = exp(λk+1) and ε ∈ (0, 1). Applying Lemma 5.2 yields that, for m-a.e. x =
(xn)

∞
n=1 ∈ �,

m ◦�−1(B(�x, 2un)) ≥ (1 − ε)n
m([x1 . . . xn])

Nun(�([x1 . . . xn]))
for large enough n. (5.13)

It follows that, for m-a.e. x = (xn)
∞
n=1 ∈ �,

d(m ◦�−1, �x)

= lim sup
n→∞

log(m ◦�−1(B(�x, 2un)))
n log u

≤ log(1 − ε)

log u
+ lim sup

n→∞

(
log m([x1 . . . xn])

n log u
− log Nun(�([x1 . . . xn]))

n log u

)
≤ log(1 − ε)− hm(σ)− (λ1 + · · · + λk)+ kλk+1

log u

= log(1 − ε)+ sλk+1

λk+1
,

where in the third inequality, we used the Shannon–McMillan–Breiman theorem (cf. [39,
p. 93]) and Lemma 5.1 (keeping in mind that log u = λk+1 < 0). Letting ε → 0 yields the
desired result.

6. Upper bound for the box-counting dimension of C1-repellers and the Lyapunov
dimensions of ergodic invariant measures
Throughout this section let MMM be a smooth Riemannian manifold of dimension d and
ψ :MMM →MMM aC1-map. Let� be a compact subset ofMMM such thatψ(�) = �, and assume
that� is a repeller of ψ (cf. §1). Below we first introduce the definitions of singularity and
Lyapunov dimensions for the case of repellers, which are sightly different from that for the
case of IFSs.

Definition 6.1. The singularity dimension of � with respect to ψ , written as dimS∗ �, is
the unique real value s for which

P(�, ψ , Gs) = 0,

where Gs = {gsn}∞n=1 is the subadditive potential on � defined by

gsn(z) = log φs((Dzψn)−1), z ∈ �. (6.1)

Definition 6.2. For an ergodic ψ-invariant measure μ supported on �, the Lyapunov
dimension of μ with respect to ψ , written as dimL∗ μ, is the unique real value s for which

hμ(ψ)+ Gs∗(μ) = 0,

where Gs = {gsn}∞n=1 is defined as in (6.1) and Gs∗(μ) = limn→∞(1/n)
∫
gsn dμ.

Before proving Theorems 1.3–1.4, we recall some definitions and necessary facts about
C1 repellers.
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A finite closed cover {R1, . . . , R�} of � is called a Markov partition of � with respect
to ψ if:

(i) intRi = Ri for each i = 1, . . . , �;
(ii) intRi ∩ intRj = ∅ for i 
= j ; and

(iii) each ψ(Ri) is the union of a subfamily of {Rj }�j=1.
It is well known that any repeller of an expanding map has Markov partitions of arbitrary

small diameter (see [37, p. 146]). Let {R1, . . . , R�} be a Markov partition of � with
respect to ψ . It is known that this dynamical system induces a subshift space of finite
type (�A, σ) over the alphabet {1, . . . , �}, where A = (aij ) is the transfer matrix of the
Markov partition, namely, aij = 1 if intRi ∩ ψ−1(intRj ) 
= ∅ and aij = 0 otherwise [37],
and

�A = {(in)∞n=1 ∈ {1, . . . , �}N : ainin+1 = 1 for all n ≥ 1}.
This gives the coding map � : �A → � such that

�(i) =
⋂
n≥1

ψ−(n−1)(Rin) for all i = (in)
∞
n=1 ∈ �A, (6.2)

and the following diagram commutes:

�A
σ ��

�

��

�A

�

��
�

ψ
�� �

(6.3)

(Keep in mind that throughout this section, � denotes the coding map for the repeller �
and no longer for the coding map for an IFS as used in the previous sections.)

The coding map � is a Hölder continuous surjection. Moreover, there is a positive
integer q such that �−1(z) has at most q elements for each z ∈ � (see [37, p. 147]).

For n ≥ 1, define

�A,n := {i1 . . . in ∈ {1, . . . , �}n : aikik+1 = 1 for 1 ≤ k ≤ n− 1}.
For any word I = i1 . . . in ∈ �A,n, the set

⋂n
k=1 ψ

−(k−1)(Rik ) is called a basic set and is
denoted by RI .

The proof of Theorem 1.3 is similar to that of Theorem 1.1. We begin with the following
lemma, which is a slight variant of Lemma 4.1.

LEMMA 6.3. Let E ⊂ U ⊂MMM , where E is compact and U is open. Let k ∈ {0, 1, . . . ,
d − 1}. Then, for any non-degenerate C1 map f : U →MMM , there exists r0 > 0 so that, for
any y ∈ E, z ∈ B(y, r0) and 0 < r < r0, the set f (B(z, r)) can be covered by

CMMM · φk(Dyf )

(αk+1(Dyf ))k

balls of radius αk+1(Dyf )r , where CMMM is a positive constant depending onMMM .

Proof. This can be done by routinely modifying the proof of Lemma 4.1 and using similar
arguments to the proof of [40, Corollary 1].
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Let δ > 0 be small enough so that ψ : B(z, δ) → ψ(B(z, δ)) is a diffeomorphism for
each z in the δ-neighborhood of �. Suppose that {R1, . . . , R�} is a Markov partition of �
with diameter less than δ.

The following result is an analogue of Proposition 4.2.

PROPOSITION 6.4. Let k ∈ {0, 1, . . . , d − 1}. SetCMMM be the constant in Lemma 6.3. Then
there exists C1 > 0 such that, for all i = (ip)

∞
p=1 ∈ �A and n ∈ N, the basic set Ri|n can

be covered by C1
∏n−1
p=0 G(σ

pi) balls of radius
∏n−1
p=0 H(σ

pi), where

G(i) := CMMMφ
k((D�iψ)

−1)

αk+1((D�iψ)−1)k
, H(i) := αk+1((D�iψ)

−1). (6.4)

Remark 6.5. The definitions of the functions G and H in the above proposition are slightly
different from that in Proposition 4.2.

Proof of Proposition 6.4. The proof is adapted from that of Proposition 4.2. For the
reader’s convenience, we provide the full details.

First, we construct a local inverse fi,j of ψ for each pair (i, j) with ij ∈ �A,2. To do so,
notice that ψ(Rij ) = Rj for each ij ∈ �A,2. Since ψ is a diffeomorphism restricted on a
small neighborhood ofRi , we can find open sets R̃ij and R̃j such that R̃ij ⊃ Rij , R̃j ⊃ Rj ,
ψ(R̃ij ) = R̃j andψ : R̃ij → R̃j is diffeomorphic. Then we take fi,j : R̃j → R̃ij to be the
inverse of ψ : R̃ij → R̃j , and the construction is done.

For any i = (in)
∞
n=1 ∈ �A, we see that�σ i ∈ Ri2 ⊂ R̃i2 and (ψ ◦ fi1,i2)|R̃i2 is the iden-

tity restricted on R̃i2 . Sinceψ(�i) = �σ i, it follows that fi1,i2(�σ i) = �i. Differentiating
ψ ◦ fi1,i2 at �σ i and applying the chain rule, we get

(D�iψ)(D�σ ifi1,i2) = Identity,

so

D�σ ifi1,i2 = (D�iψ)
−1. (6.5)

According to Lemma 6.3, there exists r0 > 0 such that, for each ij ∈ �A,2, y ∈ Rj ,
z ∈ B(y, r0) and 0 < r < r0, the set fi,j (B(z, r)) can be covered by

CMMM · φk(Dyfi,j )

(αk+1(Dyfi,j ))k

balls of radius αk+1(Dyfi,j )r .
Since ψ is expanding on �, there exists γ ∈ (0, 1) such that supi∈�A α1

((D�iψ)
−1) < γ . Then supi∈�A H(i) < γ and

diam(Ri|(n+1)) ≤ γ diam(R(σ i)|n) (6.6)

for all i ∈ �A and n ∈ N. Take a large integer n0 such that

γ n0−1 max{1, diam(�)} < r0/2. (6.7)

By (6.6)–(6.7), diam(Ri|n) < r0/2 for all i ∈ �A and n ≥ n0.
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Clearly there exists a large number C1 so that the conclusion of the proposition holds
for any positive integer n ≤ n0 and i ∈ �A, that is, the set Ri|n can be covered by
C1

∏n−1
p=0 G(σ

pi) balls of radius
∏n−1
p=0 H(σ

pi). Below we show by induction that this
holds for all n ∈ N and i ∈ �A.

Suppose, for somem ≥ n0, that the conclusion of the proposition holds for any positive
integer n ≤ m and i ∈ �A. Then, for given i = (in)

∞
n=1 ∈ �A, R(σ i)|m can be covered by

C1
∏m−1
p=0 G(σ

p+1i) balls of radius
∏m−1
p=0 H(σ

p+1i). Let B1, . . . , BN denote these balls.
We may assume that Bj ∩ R(σ i)|m 
= ∅ for each j. Since

m−1∏
p=0

H(σp+1i) ≤ γm ≤ γ n0 < r0/2

and

d(�σ i, Bj ∩ R(σ i)|m) ≤ diam(R(σ i)|m) < r0/2,

so the center of Bj is in B(�σ i, r0). Therefore, by Lemma 6.3 and (6.5), fi1,i2(Bj ) can be
covered by

CMMM · φk(D�σ ifi1,i2)

(αk+1(D�σ ifi1,i2))
k

= G(i)

balls of radius

αk+1(D�σ ifi1,i2) ·
m−1∏
p=0

H(σp+1i) = H(i) ·
m−1∏
p=0

H(σp+1i) =
m∏
p=0

H(σpi).

Since ψ(Ri|(m+1)) ⊂ R(σ i)|m, it follows that

Ri|(m+1) ⊂ fi1,i2(R(σ i)|m) ⊂
N⋃
j=1

fi1,i2(Bj ),

hence Ri|(m+1) can be covered by

G(i)N ≤ G(i) · C1

m−1∏
p=0

G(σp+1i) = C1

m∏
p=0

G(σpi)

balls of radius
∏m
p=0 H(σ

pi). Thus the proposition also holds for n = m+ 1 and all
i ∈ �A, as desired.

PROPOSITION 6.6. Let k ∈ {0, 1, . . . , d − 1}. LetG, H : �A → R be defined as in (6.4).
Let t be the unique real number so that

P(�A, σ , (log G)+ t (log H)) = 0.

Then dimB� ≤ t .
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Proof. Here we use similar arguments to that in the proof of Proposition 4.3. Write g =
log G and h = log H . Define

rmin = min
i∈�A

h(i), rmax = max
i∈�A

h(i).

Then 0 < rmin ≤ rmax < 1. For 0 < r < rmin, define

Ar = {
i1 . . . in ∈ �∗

A : sup
x∈[i1...in]∩�A

Snh(x) < log r ≤ sup
y∈[i1...in−1]∩�A

Sn−1h(y)
}
, (6.8)

where �∗
A denotes the set of all finite words allowed in �A. Clearly {[I ] : I ∈ Ar } is a

partition of �A. By Proposition 6.4, there exists a constant C1 > 0 such that, for each
0 < r < rmin, every I ∈ Ar and x ∈ [I ], RI can be covered by

C1 exp(S|I |g(x)) ≤ C1 exp
(

sup
y∈[I ]

S|I |g(y)
)

balls of radius

exp(S|I |h(x)) ≤ exp
(

sup
y∈[I ]

S|I |h(y)
)
< r .

It follows that � can be covered by

C1
∑
I∈Ar

exp
(

sup
y∈[I ]

S|I |g(y)
)

balls of radius r. Hence, by Proposition 3.4,

dimB� ≤ lim sup
r→0

∑
I∈Ar exp

(
supy∈[I ] S|I |g(y)

)
log(1/r)

= t .

This completes the proof of the proposition.

For n ∈ N, applying Proposition 6.6 to the mapping ψn instead of ψ , we obtain the
following result.

PROPOSITION 6.7. Let k ∈ {0, . . . , d − 1}. Then, for each n ∈ N,

dimB� ≤ tn,

where tn is the unique number for which P(�A, σn, (log Gn)+ tn(log Hn)) = 0, and
Gn, Hn are continuous functions on �A defined by

Gn(y) := Cφk((D�yψ
n)−1)

αk+1((D�yψn)−1))k
, Hn(y) := αk+1((D�yψ

n)−1)), (6.9)

with C = CMMM being the constant in Lemma 6.3.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We follow the proof of Theorem 1.1 with slight modifications.
Write s = dimS∗(�). We may assume that s < d; otherwise we have nothing left to prove.
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Set k = [s]. Let Gs = {gsn}∞n=1 be the subadditive potential on � defined by

gsn(z) = log φs((Dzψn)−1).

Then P(�, ψ , Gs) = 0 by the definition of dimS∗(�). Let Ĝs := {ĝsn}∞n=1, where ĝsn ∈
C(�A) is defined by

ĝsn(i) = gsn(�i) = log φs((D�iψ
n)−1), i ∈ �A.

Clearly, Ĝs is a subadditive potential on �A and

(Ĝs)∗(m) = (Gs)∗(m ◦�−1), m ∈M(�A, σ).

Since the factor map � : �A → � is onto and finite-to-one, by Lemma 2.3, m →
m ◦�−1 is a surjective map from M(�A, σ) to M(�, ψ) and, moreover, hm(σ) =
hm◦�−1(ψ) for m ∈M(�A, σ). By the variational principle for the subadditive pressure
(see Theorem 2.2),

P(�, ψ , Gs) = sup{hμ(ψ)+ (Gs)∗(μ) : μ ∈M(�, ψ)}
= sup{hm◦�−1(ψ)+ (Gs)∗(m ◦�−1) : m ∈M(�A, σ)}
= sup{hm(σ)+ (Ĝs)∗(m) : m ∈M(�A, σ)}
= P(�A, σ , Ĝs).

It follows that P(�A, σ , Ĝs) = 0.
By [2],

lim
n→∞

1
n
P (�A, σn, ĝsn) = inf

n≥1

1
n
P (�A, σn, ĝsn) = P(�A, σ , Ĝs).

Since P(�A, σ , Ĝs) = 0, the above equalities imply that, for each ε > 0, there exists
Nε > 0 such that

0 ≤ P(�A, σn, ĝsn) ≤ nε for n > Nε . (6.10)

For n ∈ N, let sn be the unique real number such that P(�A, σn, vsnn ) = 0, where vsnn is
a continuous function on �A defined by

vsnn (x) = log Gn(x)+ sn log Hn(x)

= log(Cφk((D�xψn)−1)αk+1((D�xψ
n)−1)sn−k),

where Gn, Hn are defined in (6.9) and C = CMMM . By Proposition 6.7,

dimB� ≤ sn.

If s ≥ sn for some n, then dimB� ≤ sn ≤ s and we are done. In what follows, we assume
that s < sn for each n. Then, for each x ∈ �A,

ĝsn(x)− vsnn (x) = − log C + (s − sn) log αk+1((D�xψ
n)−1)

≥ − log C + (s − sn) log α1((D�xψ
n)−1)

≥ − log C + n(s − sn) log θ ,
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where

θ := max
x∈�A

α1((D�xφ)
−1) < 1.

Hence,

P(�A, σn, ĝsn) = P(�A, σn, ĝsn)− P(�A, σn, vsnn )

≥ inf
x∈�A

(ĝsn(x)− vsnn (x))

≥ − log C + n(s − sn) log θ .

where in the second inequality, we used [39, Theorem 9.7(iv)]. Combining this with (6.10)
yields that, for n ≥ Nε ,

nε ≥ − log C + n(s − sn) log θ ,

so

s ≥ sn + ε + n−1 log C
log θ

≥ dimB�+ ε + n−1 log C
log θ

.

Letting n → ∞ and then ε → 0, we obtain s ≥ dimB�, as desired.

In the remainder of this section we prove Theorem 1.4. To this end, we need the
following two lemmas, which are the analogues of Lemmas 5.1–5.2 for C1 repellers.

LEMMA 6.8. Let m be an ergodic σ -invariant Borel probability measure on �A. Set

λi := lim
n→∞

1
n

∫
log(αi((D�xψn)−1)) dm(x), i = 1, . . . , d . (6.11)

Let k ∈ {0, . . . , d − 1}. Write u := exp(λk+1). Then, for m-a.e. x ∈ �A,

lim sup
n→∞

1
n

log Nun(Rx|n) ≤ (λ1 + · · · + λk)− kλk+1, (6.12)

where Nδ(E) is the smallest integer N for which E can be covered by N closed balls of
radius δ.

LEMMA 6.9. Let m be a Borel probability measure on �A. Let ρ, ε ∈ (0, 1). Then, for
m-a.e. x = (xn)

∞
n=1 ∈ �A,

m ◦�−1(B(�x, 2ρn)) ≥ (1 − ε)n
m([x1 . . . xn])
Nρn(Rx1...xn)

for large enough n. (6.13)

The proofs of these two lemmas are essentially identical to those of Lemmas 5.1–5.2,
so we omit them.

Proof of Theorem 1.4. Here we adapt the proof of Theorem 1.2. We may assume that s :=
dimL∗ μ < d; otherwise there is nothing left to prove. Since � : �A → � is surjective
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and finite-to-one, by Lemma 2.3, there exists a σ -invariant ergodic measure m on �A so
that m ◦�−1 = μ and hm(σ) = hμ(ψ).

Set k = [s]. Let λi , i = 1, . . . , d , be defined as in (6.11). Then, by Definition 6.2,

hm(σ)+ λ1 + · · · + λk + (s − k)λk+1 = 0.

Let u = exp(λk+1) and ε ∈ (0, 1). Applying Lemma 6.9 (in which we take ρ = u) yields
that, for m-a.e. x = (xn)

∞
n=1 ∈ �A,

μ(B(�x, 2un)) ≥ (1 − ε)n
m([x1 . . . xn])
Nun(Rx1...xn)

for large enough n. (6.14)

It follows that, for m-a.e. x = (xn)
∞
n=1 ∈ �A,

d(μ, �x) = lim sup
n→∞

log(μ(B(�x, 2un)))
n log u

≤ log(1 − ε)

log u
+ lim sup

n→∞

(
log m([x1 . . . xn])

n log u
− log Nun(�([x1 . . . xn]))

n log u

)

≤ log(1 − ε)− hm(σ)− (λ1 + · · · + λk)+ kλk+1

log u

= log(1 − ε)+ sλk+1

λk+1
,

where in the third inequality we used the Shannon–McMillan–Breiman theorem (cf. [39,
p. 93]) and Lemma 6.8 (keeping in mind that log u = λk+1 < 0). Letting ε → 0 yields the
desired result.

Remark 6.10. There is an alternative way to prove Theorem 1.3 in the case when MMM is
an open set of Rd . We can construct a C1 IFS {fi}�i=1 on R

d so that � is the projection
of a shift-invariant set under the coding map associated with the IFS. Then we can use
Theorem 1.1 to get an upper bound for dimB�. An additional effort is then required to
justify that this upper bound is indeed equal to dimS∗ �. The details of this approach will
be given in a forthcoming survey paper.
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A. Appendix. Main notation and conventions
For the reader’s convenience, we summarize in Table A1 the main notation and typograph-
ical conventions used in this paper.
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TABLE A1. Main notation and conventions.

dimB Upper box-counting dimension
dimP Packing dimension
{fi}�i=1 A C1 IFS (§1)
(�, σ) One-sided full shift over the alphabet {1, . . . , �}
� : � → K Coding map associated with {fi}�i=1 (§1)
Dxf Differential of f at x
dimS X Singular dimension of X with respect to {fi}�i=1 (cf. Definition 2.5)
dimL m Lyapunov dimension of m with respect to {fi}�i=1 (cf. Definition 2.6)
P(X, T , {gn}∞n=1) Topological pressure of a subadditive potential {gn}∞n=1 on a topological

dynamical system (X, T ) (cf. Definition 2.1)
hμ(T ) Measure-theoretic entropy of μ with respect to T
G∗(μ) Lyapunov exponent of a subadditive potential G with respect to μ (cf. (2.5))
αi(T ), i = 1, . . . , d The ith singular value of T ∈ R

d×d (§2)
φs Singular value function (cf. (2.9))
Sng g + g ◦ T + · · · + g ◦ T n−1 for g ∈ C(X)
Gs = {gsn}∞n=1 (cf. (2.10))
Gs∗(m) limn→∞(1/n)

∫
gsn dm

λi (m), i = 1, . . . , d The ith Lyapunov exponent of m with respect to {fi}�i=1 (cf. (2.11))
Nδ(E) Smallest number of closed balls of radius δ required to cover E
dimS∗ � Singularity dimension of � with respect to ψ (cf. Definition 6.1)
dimL∗ μ Lyapunov dimension of μ with respect to ψ (cf. Definition 6.2)

REFERENCES

[1] L. Arnold. Random Dynamical Systems (Springer Monographs in Mathematics). Springer-Verlag, Berlin,
1998.

[2] J. Ban, Y. Cao and H. Hu. The dimensions of a non-conformal repeller and an average conformal repeller.
Trans. Amer. Math. Soc. 362(2) (2010), 727–751.

[3] B. Bárány, M. Hochman and A. Rapaport. Hausdorff dimension of planar self-affine sets and measures.
Invent. Math. 216(3) (2019), 601–659.

[4] L. Barreira. Dimension estimates in non-conformal hyperbolic dynamics. Nonlinearity 16(5) (2003),
1657–1672.

[5] L. Barreira. Almost additive thermodynamic formalism: some recent developments. Rev. Math. Phys. 22(10)
(2010), 1147–1179.

[6] T. Bogenschütz and H. Crauel. The Abramov–Rokhlin formula. Ergodic Theory and Related Topics, III
(Güstrow, 1990) (Lecture Notes in Mathematics, 1514). Eds. U. Krengel, K. Richter and V. Warstat. Springer,
Berlin, 1992, pp. 32–35.

[7] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in
Mathematics, 470). Springer-Verlag, Berlin, 1975.

[8] R. Bowen. Hausdorff dimension of quasicircles. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 11–25.
[9] Y. Cao, Y. Pesin and Y. Zhao. Dimension estimates for non-conformal repellers and continuity of

sub-additive topological pressure. Geom. Funct. Anal. 29(5) (2019), 1325–1368.
[10] Y.-L. Cao, D.-J. Feng and W. Huang. The thermodynamic formalism for sub-additive potentials. Discrete

Contin. Dyn. Syst. 20(3) (2008), 639–657.
[11] J. Chen and Y. Pesin. Dimension of non-conformal repellers: a survey. Nonlinearity 23(4) (2010),

R93–R114.
[12] A. Douady and J. Oesterlé. Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris Sér. A-B 290(24)

(1980), A1135–A1138.
[13] K. J. Falconer. The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103(2)

(1988), 339–350.
[14] K. J. Falconer. A subadditive thermodynamic formalism for mixing repellers. J. Phys. A 21(14) (1988),

L737–L742.

https://doi.org/10.1017/etds.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.41


2706 D.-J. Feng and K. Simon

[15] K. J. Falconer. Bounded distortion and dimension for nonconformal repellers. Math. Proc. Cambridge
Philos. Soc. 115(2) (1994), 315–334.

[16] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. John Wiley &
Sons, Hoboken, NJ, 2003.

[17] A.-H. Fan, K.-S. Lau and H. Rao. Relationships between different dimensions of a measure. Monatsh. Math.
135(3) (2002), 191–201.

[18] D.-J. Feng. The variational principle for products of non-negative matrices. Nonlinearity 17(2) (2004),
447–457.

[19] D.-J. Feng. Equilibrium states for factor maps between subshifts. Adv. Math. 226(3) (2011), 2470–2502.
[20] D.-J. Feng and H. Hu. Dimension theory of iterated function systems. Comm. Pure Appl. Math. 62(11)

(2009), 1435–1500.
[21] D.-J. Feng and K.-S. Lau. The pressure function for products of non-negative matrices. Math. Res. Lett.

9(2–3) (2002), 363–378.
[22] D.-J. Feng and K. Simon. Dimension estimates forC1 iterated function systems and repellers. Part II. Ergod.

Th. & Dynam. Sys. doi:10.1017/etds.2021.92. Published online 8 September 2021.
[23] D. Gatzouras and Y. Peres. Invariant measures of full dimension for some expanding maps. Ergod. Th. &

Dynam. Sys. 17(1) (1997), 147–167.
[24] M. Hochman and A. Rapaport. Hausdorff dimension of planar self-affine sets and measures with overlaps.

J. Eur. Math. Soc. (JEMS) 24 (2022), 2361–2441.
[25] T. Jordan. Private communication, 2011.
[26] T. Jordan and M. Pollicott. The Hausdorff dimension of measures for iterated function systems which

contract on average. Discrete Contin. Dyn. Syst. 22(1–2) (2008), 235–246.
[27] T. Jordan, M. Pollicott and K. Simon. Hausdorff dimension for randomly perturbed self affine attractors.

Comm. Math. Phys. 270(2) (2007), 519–544.
[28] A. Käenmäki. On natural invariant measures on generalised iterated function systems. Ann. Acad. Sci. Fenn.

Math. 29(2) (2004), 419–458.
[29] A. Käenmäki and M. Vilppolainen. Dimension and measures on sub-self-affine sets. Monatsh. Math. 161(3)

(2010), 271–293.
[30] R. Kenyon and Y. Peres. Measures of full dimension on affine-invariant sets. Ergod. Th. & Dynam. Sys.16(2)

(1996), 307–323.
[31] R. Mañé. Ergodic Theory and Differentiable Dynamics. Springer-Verlag, Berlin, 1987.
[32] A. Manning and K. Simon. Subadditive pressure for triangular maps. Nonlinearity 20(1) (2007), 133–149.
[33] A. Mummert. The thermodynamic formalism for almost-additive sequences. Discrete Contin. Dyn. Syst.

16(2) (2006), 435–454.
[34] N. Patzschke. Self-conformal multifractal measures. Adv. in Appl. Math. 19(4) (1997), 486–513.
[35] Y. B. Pesin. Dimension Theory in Dynamical Systems: Contemporary Views and Applications (Chicago

Lectures in Mathematics). University of Chicago Press, Chicago, 1997.
[36] E. Rossi. Local dimensions of measures on infinitely generated self-affine sets. J. Math. Anal. Appl. 413(2)

(2014), 1030–1039.
[37] D. Ruelle. Thermodynamic Formalism (Encyclopedia of Mathematics and Its Applications, 5).

Addison-Wesley, Reading, MA, 1978.
[38] D. Ruelle. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2(1) (1982), 99–107.
[39] P. Walters. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer-Verlag,

New York, 1982.
[40] Y. Zhang. Dynamical upper bounds for Hausdorff dimension of invariant sets. Ergod. Th. & Dynam. Sys.

17(3) (1997), 739–756.

https://doi.org/10.1017/etds.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.41

	1 Introduction
	2 Preliminaries
	2.1 Variational principle for subadditive pressure
	2.2 Subshifts
	2.3 Singularity dimension and Lyapunov dimension with respect to C1 IFSs
	2.4 A special consequence of Kingman's subadditive ergodic theorem

	3 Some auxiliary results
	4 The proof of Theorem theorem11.1
	5 The proof of Theorem theorem21.2
	6 Upper bound for the box-counting dimension of C1-repellers and the Lyapunov dimensions of ergodic invariant measures
	Acknowledgements
	A Appendix. Main notation and conventions
	References

