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Abstract

We find the potential function whose gradient best approximates an observed square integrable function
on a bounded open set subject to prescribed weight factors. With an appropriate choice of topology, we
show that the gradient operator is a bounded linear operator and that the desired potential function is
obtained by solving a second-order, self-adjoint, linear, elliptic partial differential equation. The main
result makes a precise analogy with a standard procedure for the best approximate solution of a system of
linear algebraic equations. The use of bounded operators means that the definitive equation is expressed
in terms of well-defined functions and that the error in a numerical solution can be calculated by direct
substitution into this equation. The proposed method is illustrated with a hypothetical example.
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1. Introduction

Let x denote the general position vector in R3 and let Ω be a nonempty bounded open
set in R3 with piecewise-smooth boundary ∂Ω. Suppose that an observed square
integrable function f : Ω→ C3 is given. We wish to find the potential function
u : Ω→ C with u(x) = 0 when x ∈ ∂Ω, which minimises the total weighted residual
error ∫

Ω

‖R(x)(∇u(x) − f (x))‖2 dV(x),

where R : Ω→ C3×3 is an infinitely differentiable, nonsingular weight function and
dV(x) is the differential volume element in Ω.

1.1. Main contribution. We make an analogy between the solution of linear
algebraic equations and the solution of linear differential equations.

In linear algebra it is well known that the matrix equation Ax = b, where A ∈ Cm×n

and b ∈ Cm, may have no solution x ∈ Cn. In such circumstances it is routine to seek
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the best approximate solution. Thus, one seeks a vector x0 ∈ C
n which minimises the

mean-square error ‖Ax − b‖ over all x ∈ Cn. The vector x0 can be found by solving the
equation

A∗Ax = A∗b. (1.1)

Equation (1.1) is guaranteed to have a solution and the solution is unique if the self-
adjoint matrix A∗A ∈ Cn×n is strictly positive. It is standard practice to represent the
best approximate solution x0 as a series using the orthogonal eigenvectors of A∗A as a
basis for Cn.

It is not so well known generally that a similar approach can be followed with linear
differential equations. Thus, the prime purpose of this paper is to show—albeit on the
basis of some well-established and fundamental analysis—that the complex-valued
first-order differential equation ∇u = f , where f : Ω→ C3 for some bounded open set
Ω ⊂ R3 with u(x) = 0 when x ∈ ∂Ω, can be treated in an exactly analogous way. It
is certainly true that the gradient equation may not have an exact solution. Consider,
for instance, the case where ∇ × f , 0. However, if the problem is formulated for a
function u : Ω→ C in an appropriate Sobolev space—the Hilbert space H0 = H1

0(Ω)
of complex-valued functions with a square integrable generalised gradient—then the
gradient operator T ∈ L(H0,K) defined by Tu = ∇u for all u ∈ H0 is a bounded linear
map from H0 into the space K = L2(Ω)3 of square integrable complex vector-valued
functions. The best approximate solution to the gradient equation Tu = f , where
f ∈ K, can be found by using the projection theorem to find the function u0 ∈ H0
that minimises the mean-square error ‖Tu − f‖K . Furthermore, we can find the unique
solution u0 by solving the self-adjoint elliptic differential equation

T ∗Tu = T ∗ f .

An implicit observation—our subliminal message—is that the iconic second-order
elliptic differential equations of mathematical physics arise as a simple consequence
of our desire to solve a basic gradient approximation problem. We will relate our
proposed methodology to the classical analysis of elliptic differential equations where
the gradient operator S : H0 ⊂ G → K defined by Su = ∇u for u ∈ H0 is regarded as
a densely defined unbounded operator on the space G = L2(Ω) of square integrable
complex-valued functions. This has important implications because the compactness
of (S∗S )−1 ∈ L(G) can be used to show that the spectrum of (T ∗T )−1 = (S∗S )−1

(I + S∗S ) ∈ L(H0) is discrete. Thus, we find an explicit series form for our solution
u0 ∈ H0 using the orthogonal eigenvectors of (T ∗T )−1 as a basis for H0.

1.2. Previous work. The technique of finding a best approximate solution to an
inconsistent system of linear algebraic equations is well known. The same principles
apply to the solution of inconsistent linear differential equations but the analogy with
linear algebraic equations is seldom drawn. It is certainly true that the relevant
mathematical techniques are known and well used in the solution of self-adjoint, linear,
elliptic differential equations. However, the idea that elliptic differential equations
arise as a consequence of gradient approximation—the best approximate solution
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to an inconsistent first-order partial differential equation—has apparently not been
widely canvassed. For this reason the works we cite are primarily expositions of the
underlying classical analysis developed during the first half of the twentieth century.
A general background to this analysis can be found in Aubin [1], Kinderlehrer and
Stampacchia [3], Luenberger [4], Naylor and Sell [5], Treves [6], Yosida [7] and
Ziedler [8]. We refer specifically to the relevant fundamental theory in these texts.
We have used spaces of complex-valued functions throughout for two reasons. In
the first instance much of the classical work on self-adjoint differential operators in
our main references [5, 7, 8] is formulated in this way. In the second instance the
Fourier transform—a popular tool in computational work—is often expressed in terms
of complex-valued functions. The results in this paper extend those given in [2] in
the following ways. In the original paper the region of interest was the unit cube and
there were no weight functions used in the various inner products. Consequently, the
relevant second-order self-adjoint differential equation is the basic Poisson equation
on the unit cube. This equation has an explicit solution in closed form. In this
paper the region of interest is a general bounded open set with piecewise-smooth
boundary and the inner products involve arbitrary smooth weight functions. The
necessary existence and uniqueness theory—which we outline in some detail—for the
corresponding second-order self-adjoint differential equation is mathematically more
general and more challenging.

1.3. Organisation of the paper. The remainder of the paper is organised as follows.
In Section 2 we outline the underlying functional analysis. This section also contains
specific definitions that are needed to explain the main result. We pay particular
attention to formulation of the gradient operator as a bounded linear operator T ∈
L(H1

0(Ω), L2(Ω)) and to derivation of a formula for the corresponding adjoint operator
T ∗ ∈ L(L2(Ω),H1

0(Ω)). In Section 3 we review the theoretical basis for solution of
second-order elliptic partial differential equations by considering a weighted Poisson
equation. Our motivation here is to relate the classical formulation using unbounded
differential operators to an equivalent formulation using bounded operators. The main
result concerning gradient approximation is stated precisely and proved in Section 4.
We conclude our discussion in Section 5 by considering a hypothetical example.

2. Preliminary notes

We need to establish our terminology and some basic functional analysis.

2.1. The basic function spaces. Let Ω ⊂ R3 be a bounded open set with piecewise-
smooth boundary ∂Ω. The linear space C∞(Ω) is the space of all complex-valued
functions ϕ : Ω→ Cwith continuous partial derivatives of all orders. The space C∞0 (Ω)
is the subspace of all such functions ϕ with compact support spt(ϕ) ⊂ Ω.

Let p ∈ C∞(Ω) be an infinitely differentiable, real-valued weight function which
satisfies the inequalities δ ≤ p(x) ≤ D for some real numbers 0 < δ ≤ D and all x ∈ Ω.
The space G = L2(Ω) is the set of all complex-valued measurable functions u : Ω→ C
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such that ∫
Ω

|u(x)|2 dV(x) <∞

with inner product

〈u, v〉G =

∫
Ω

u(x)v(x)p(x) dV(x). (2.1)

The inner product (2.1) is topologically equivalent to the usual inner product
[7, page 40] because of the bounds on p. The elements of C∞0 (Ω) form a dense subset
in G. That is, for each u ∈ G, we can find {ϕm}m∈N ∈ C

∞
0 (Ω) with ‖ϕm − u‖G → 0 as

m→∞.
There are two related function spaces that will be used throughout our discussion.

We will assume that the known, infinitely differentiable, complex-valued matrix
weight function R ∈ C∞(Ω)3×3 satisfies the property

ε‖b‖2 ≤ ‖R(x)b‖2 ≤ E‖b‖2 (2.2)

for some given real numbers 0 < ε ≤ E and for any b ∈ C3 and all x ∈ Ω. Define the
Hilbert space H = H1(Ω) of complex-valued measurable functions u : Ω 7→ C with
measurable generalised gradients such that∫

Ω

[|u(x)|2 + ‖∇u(x)‖2] dV(x) <∞

and with inner product

〈u, v〉H =

∫
Ω

[u(x)v(x)p(x) + 〈R(x)∇u(x),R(x)∇v(x)〉] dV(x) (2.3)

for each u, v ∈ H. We use the notation 〈b, c〉 = b1c1 + b2c2 + b3c3 to denote the inner
product in the complex Euclidean space C3 with ‖b‖ = 〈b, b〉1/2 for the associated
norm. Since R is bounded by (2.2), the inner product (2.3) is topologically equivalent
to the usual inner product [7, pages 57–59]. We write H0 = H1

0(Ω) for the subspace of
H with u(x) = 0 when x ∈ ∂Ω. The space C∞0 (Ω) forms a dense subspace of H0. That
is, for each u ∈ H0, we can find {ϕm}m∈N ∈ C

∞
0 (Ω) with ‖ϕm − u‖H → 0 as m→∞. Note

also that H0 can be regarded as a subspace of G. Let K = L2(Ω)3 denote the Hilbert
space of square integrable functions k : Ω 7→ C3 such that∫

Ω

‖k(x)‖2 dV(x) <∞

with inner product

〈k, `〉K =

∫
Ω

〈R(x)k(x),R(x)`(x)〉 dV(x) (2.4)

for each k, ` ∈ K. The space C∞(Ω)3 forms a dense subspace of K. That is, for each
f ∈ K, we can find {ψm}m∈N ∈ C

∞(Ω)3 such that ‖ψm − f‖K → 0 as m→∞.
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2.2. The bounded gradient operator. The mapping T : H0 7→ K defined by
Tu = ∇u, where

∇u =



∂u
∂x1
∂u
∂x2
∂u
∂x3


=

∂1u
∂2u
∂3u

 ,

is a bounded linear map. We call T the bounded gradient operator. The adjoint map
T ∗ ∈ L(K,H0) is also a bounded linear map given by T ∗ f = v f , where v f ∈ H0 is the
uniquely defined function with

〈u, v f 〉H = 〈Tu, f 〉K

for all u ∈ H0. It is useful to outline the general argument. Let f ∈ K. The operator
L f ∈ L(H0,C) defined by L f (u) = 〈Tu, f 〉K is a bounded linear operator. Define the
subspace N f = {u ∈ H0 | 〈Tu, f 〉K = 0} ⊂ H0. If N f = H0, then we set T ∗ f = v f = 0
and we have 〈u, v f 〉H = 〈Tu, f 〉K = 0 for all u ∈ H0. If N f , H0, then we choose
w f ∈ N⊥f with w f , 0. We must have 〈Tw f , f 〉K = c f , 0. Define a bounded linear
map A ∈ L(H0) by the formula

A(u) = u − (1/c f )〈Tu, f 〉Kw f .

Since 〈T A(u), f 〉K = 0, it follows that A(u) ∈ N f . Hence,

〈A(u),w f 〉H = 0 ⇐⇒ 〈u, c f w f/‖w f ‖
2
H〉H = 〈Tu, f 〉K

for all u ∈ H0. Thus, we set T ∗ f = v f = c f w f/‖w f ‖
2
H and we have 〈u, v f 〉H = 〈Tu, f 〉K

for all u ∈ H0. For more information, see Luenberger [4, pages 109–110 and 150–157].

2.3. The bounded adjoint gradient operator. Our next task is to establish the
important formula

T ∗ f = (I − (1/p)〈∇,W∇〉)−1(−1)(1/p)〈∇,W f 〉,

where W = R∗R, for all f ∈ K. To do this, we must digress for a moment to define the
generalised weighted divergence operator, which we write in the form 〈∇,W f 〉.

2.3.1. The generalised weighted divergence. Since Ω is bounded, it follows that
C∞0 (Ω) ⊂ H0. For each θ ∈ C∞(Ω), we define a corresponding linear functional
Lθ : C∞0 (Ω)→ C by the formula

Lθ(ϕ) = 〈ϕ, (1/p)θ〉G =

∫
Ω

ϕ(x)θ(x) dV(x).

We shall use this definition as the basis for a number of key ideas. Let W ∈ C∞(Ω)3

be the continuously differentiable, self-adjoint, strictly positive matrix-valued function
defined by W(x) = R∗(x)R(x) for all x ∈ Ω.
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Lemma 2.1. Let ψ ∈ C∞(Ω)3. For all ϕ ∈ C∞0 (Ω),

〈ϕ, (1/p)〈∇,Wψ〉〉G = (−1)〈∇ϕ,ψ〉K .

Proof. For convenience, let ω = Wψ. Write

〈∇,ω〉 =
∂ω1

∂x1
+
∂ω2

∂x2
+
∂ω3

∂x3
= ∂1ω1 + ∂2ω2 + ∂3ω3

to denote the divergence of ω ∈ C∞(Ω)3. It is conventional to write the divergence of
the vector-valued functionω = ω(x) ∈ R3 in the form∇ ·ω in deference to a superficial
resemblance to the scalar product p · q for p, q ∈ R3. Here, however, we write 〈b, c〉
for the scalar product of b, c ∈ C3 and so for ω = ω(x) ∈ C3 we prefer to write the
divergence as 〈∇,ω〉 despite some deficiencies in the analogy. By the product rule of
differentiation,

〈∇, ϕ(x)ω(x)〉 = 〈∇ϕ(x),ω(x)〉 + ϕ(x)〈∇,ω(x)〉

for each x ∈ Ω and so∫
Ω

〈∇, ϕ(x)ω(x)〉 dV(x) =

∫
Ω

[〈∇ϕ(x),ω(x)〉 + ϕ(x)〈∇,ω(x)〉] dV(x)

=

∫
Ω

[〈∇ϕ(x),W(x)ψ(x)〉 + ϕ(x)〈∇,W(x)ψ(x)〉] dV(x)

= 〈∇ϕ,ψ〉K + 〈ϕ, (1/p)〈∇,Wψ〉〉G.

Let n(x) denote the unit outward normal to the surface ∂Ω at the point x. Since
ϕ(x) = 0 for x ∈ ∂Ω, it follows from the Gauss–Ostrogradsky divergence theorem that∫

Ω

〈∇, ϕ(x)ω(x)〉 dV(x) =

∫
∂Ω

〈ϕ(x)ω(x), n(x)〉 dS (x) = 0,

where dS (x) denotes the differential element of surface area. This establishes the
desired result. �

Definition 2.2. For each f ∈ K, we define the generalised weighted divergence
operator L(1/p)〈∇,W f〉 : C∞0 (Ω) 7→ C by the formula

L(1/p)〈∇,W f〉(ϕ) = 〈ϕ, (1/p)〈∇,W f 〉〉G = (−1)〈∇ϕ, f 〉K . (2.5)

Remark 2.3. Equation (2.5) shows that L(1/p)〈∇,W f〉 is a linear functional on C∞0 (Ω). If
{ψm}m∈N ∈ C

∞(Ω)3 with ‖ψm − f‖K → 0 as m→∞, then

〈ϕ, (1/p)〈∇,Wψm〉〉G = (−1)〈∇ϕ,ψm〉K → (−1)〈∇ϕ, f 〉K

as m→∞ for all ϕ ∈ C∞0 (Ω).

Definition 2.4. For each f ∈ K, the generalised weighted divergence operator can be
extended to a bounded linear functional L(1/p)〈∇,W f〉 ∈ L(H0,C) using the formula

L(1/p)〈∇,W f〉(u) = 〈u, (1/p)〈∇,W f 〉〉G = (−1)〈∇u, f 〉K

for all u ∈ H0.
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Remark 2.5. Choose {ϕm}m∈N ∈ C
∞
0 (Ω) so that ‖ϕm − u‖H → 0 as m→∞. Now it can

be seen that

|〈ϕm − ϕn, (1/p)〈∇,W f 〉〉G | = |〈∇(ϕm − ϕn), f 〉K |
≤ ‖∇(ϕm − ϕn)‖K‖ f‖K → 0

as m, n → ∞ because ‖∇(ϕm − ϕn)‖K ≤ ‖ϕm − ϕn‖H → 0. Therefore, there exists
L(1/p)〈∇,W f〉(u) ∈ C such that L(1/p)〈∇,W f〉(ϕm)→ L(1/p)〈∇,W f〉(u) as m→∞. Clearly,

|L(1/p)〈∇,W f〉(u)| = |(−1)〈∇u, f 〉K | ≤ ‖∇u‖K‖ f‖K ≤ ‖ f‖K‖u‖H

and so L(1/p)〈∇,W f〉 ∈ L(H0,C) with ‖L(1/p)〈∇,W f〉‖ ≤ ‖ f‖K .

When θ ∈ C∞0 (Ω), we write 〈∇,W∇〉θ = 〈∇,W∇θ〉 =
∑3

i, j=1 ∂i[wi j∂ jθ] to emphasise
the linear dependence on θ. Let u, v ∈ H0 and choose a sequence {ϕm}m∈N ∈ C

∞
0 (Ω)

with ‖ϕm − u‖H → 0 as m→∞ and a sequence {θn}n∈N ∈ C
∞
0 (Ω) with ‖θn − v‖H → 0 as

n→∞. Since
〈ϕm, (1/p)〈∇,W∇〉θn〉G = (−1)〈∇ϕm,∇θn〉K

for all m, n ∈ N, we may take the limit as m, n→∞ to obtain

〈u, (1/p)〈∇,W∇〉v〉G = (−1)〈∇u,∇v〉K . (2.6)

By interchanging the roles of u, v in Equation (2.6) and taking the complex conjugate,

〈u, (1/p)〈∇,W∇〉v〉G = 〈(1/p)〈∇,W∇〉u, v〉G

for all u, v ∈ H0. Since H0 is dense in G, it follows that the unbounded linear mapping
L(1/p)〈∇,W∇〉 : H0 ⊂ G→ G is self adjoint on G. Finally

〈(1/p)〈∇,W∇〉u, u〉G = (−1)‖∇u‖2K < 0

for all u ∈ H0 and so the mapping L(1/p)〈∇,W∇〉 is dissipative. See [7, page 208].

2.3.2. Derivation of the key adjoint formula. Now suppose f ∈ K and let T ∗ f =

v ∈ H0 be the uniquely defined element such that

〈u, v〉H = 〈Tu, f 〉K (2.7)

for all u ∈ H0. Equation (2.7) can be expressed in integral form as∫
Ω

[u(x)v(x)p(x) + 〈R(x)∇u(x),R(x)∇v(x)〉] dV(x)

= (−1)
∫

Ω

u(x)〈∇,W(x) f (x)〉 dV(x)

and then rewritten in terms of the generalised weighted divergence as

〈u, (I − (1/p)〈∇,W∇〉)v〉G = 〈u, (−1)(1/p)〈∇,W f 〉〉G
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for all u ∈ H0. Since v = T ∗ f , we have established that

(I − (1/p)〈∇,W∇〉)T ∗ f = (−1)(1/p)〈∇,W f 〉 (2.8)

for all f ∈ K. Now we note that

〈u, (I − (1/p)〈∇,W∇〉)v〉G = 〈u, v〉G + 〈∇u,∇v〉K = 〈u, v〉H

for all u, v ∈ H0 and hence

〈u, (I − (1/p)〈∇,W∇〉)u〉G = ‖u‖2H > 0

for all u ∈ H0. Therefore, the strictly positive, unbounded linear operator (I − (1/p)
〈∇,W∇〉) : H0 ⊂ G→ G satisfies a standard Gårding inequality

〈u, (I − (1/p)〈∇,W∇〉)u〉G ≥ ‖u‖2H . (2.9)

For an extended discussion of Gårding inequalities in this context, see Naylor and
Sell [5, pages 505–509]. See also Yosida [7, pages 175–182]. By Rellich’s theorem
[5, pages 506–508], we know that (H0, ‖ · ‖H) is compact in (G, ‖ · ‖G) and hence
by [5, Theorem 7.6.4, pages 508–509] it follows that (I − (1/p)〈∇,W∇〉)−1 ∈ L(G)
is a well-defined compact linear operator. Since ‖u‖H ≥ ‖u‖G, it is apparent from
Equation (2.9) that ‖(I − (1/p)〈∇,W∇〉)‖ ≥ 1. Thus, ‖(I − (1/p)〈∇,W∇〉)−1‖ ≤ 1. Now
we can express Equation (2.8) in the equivalent form

T ∗ f = (I − (1/p)〈∇,W∇〉)−1(−1)(1/p)〈∇,W f 〉 (2.10)

for all f ∈ K. If f = Tv for some v ∈ H0, then formula (2.10) becomes

T ∗Tv = (I − (1/p)〈∇,W∇〉)−1(−1)(1/p)〈∇,W∇〉v

for all v ∈ H0. We shall call (−1)T ∗T ∈ L(H0) the bounded weighted Laplacian
operator.

2.3.3. Calculating the bounded adjoint gradient operator. The operator (I − (1/p)
〈∇,W∇〉) : H0 ⊂ G→ G is an unbounded, self-adjoint operator on G with a compact
inverse (I − (1/p)〈∇,W∇〉)−1 ∈ L(G). Therefore, there exist a countable collection
of real, nonnegative eigenvalues {λm}m∈N for (I − (1/p)〈∇,W∇〉) and a corresponding
collection {um}m∈N ∈ G of orthogonal eigenfunctions which form a basis for G. Since

〈(I − (1/p)〈∇,W∇〉)um, un〉G = 〈um, un〉H =⇒ λm〈um, un〉G = 〈um, un〉H ,

we see that {um}m∈N is also orthogonal in H0 with λm = ‖um‖
2
H/‖um|

2
G > 1 for all m ∈ N.

Note that by [3, Corollary A.11, pages 57–58], there is some constant C = C(Ω) > 0
with ‖u‖G ≤ C‖∇u‖K for all u ∈ H0 and hence it is not possible to have ‖u‖H = ‖u‖G for
u , 0. We will write λm = σ2

m + 1 and order the eigenvalues so that 0 < σm ≤ σm+1
for all m ∈ N. Since the eigenvalues of (I − (1/p)〈∇,W∇〉)−1 are given by the
nonincreasing sequence {1/λm}m∈N and since the only possible limit point is 0, we
have 0 ≤ 1/λm ≤ 1/λ1 < 1. Therefore,

〈u, (I − (1/p)〈∇,W∇〉)u〉G ≥ λ1‖u‖2H . (2.11)
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We will normalise the eigenvectors to make {um}m∈N an orthonormal basis for H0. For
each u ∈ H0,

u =

∞∑
m=1

〈u, um〉Hum

and so we calculate T ∗Tu = (I − (1/p)〈∇,W∇〉)−1(−1)(1/p)〈∇,W∇〉u as

T ∗Tu =

∞∑
m=1

〈u, um〉Hσ
2
m

σ2
m + 1

um. (2.12)

Since
∞∑

m=1

|〈u, um〉H |
2σ4

m/(σ
2
m + 1)2 <

∞∑
n=1

|〈u, um〉H |
2 = ‖u‖2H <∞,

we see that the series (2.12) converges to a well-defined element of H0. Now suppose
f ∈ K. Since T ∈ L(H0) is a bounded linear operator, it follows that T (H0) is a
closed subspace of K. Hence, we can write f = Tu f + r = ∇u f + r, where u f ∈ H0
and 〈∇u, r〉K = 0 for all u ∈ H0. From 〈∇,W r〉(ϕ) = 〈∇ϕ, r〉K = 0 for all ϕ ∈ C∞0 (Ω),
we have 〈∇,W r〉 = 0. Therefore,

T ∗ f = (I − (1/p)〈∇,W∇〉)−1(−1)(1/p)〈∇,W(∇u f + r)〉
= (I − (1/p)〈∇,W∇〉)−1(−1)(1/p)〈∇,W∇〉u f

= T ∗Tu f .

We use the basis {um}m∈N for H0 to construct a corresponding orthonormal basis
{wm}m∈N for T (H0) by setting wm = (

√
σ2

m + 1/σm)∇um for all m ∈ N. It follows that

Tu f =

∞∑
m=1

〈∇u f ,wm〉Kwm

=

∞∑
m=1

〈 f ,wm〉K

(√
σ2

m + 1 /σm

)
Tum.

Therefore, T ∗ f = T ∗Tu f ∈ H0 is an ordinary function defined by

T ∗ f =

∞∑
m=1

〈 f ,wm〉K

(√
σ2

m + 1 /σm

)
T ∗Tum

=

∞∑
m=1

〈 f ,wm〉K σm√
σ2

m + 1
um. (2.13)

The operator T ∗T ∈ L(H0) is defined by the formula

T ∗Tu = (I − (1/p)〈∇,W∇〉)−1(−1)(1/p)〈∇,W∇〉u

for all u ∈ H0. We note that 〈∇,W∇〉u may be a generalised function. However, we
can rearrange the terms to obtain

T ∗Tu = (−1)(1/p)〈∇,W∇〉(I − (1/p)〈∇,W∇〉)−1u
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for all u ∈ H0. Thus, we can now calculate w = (I − (1/p)〈∇,W∇〉)−1u ∈ H0 and
then z = (−1)(1/p)〈∇,W∇〉w ∈ H0. The same rearrangement can be used to calculate
T ∗ f = T ∗Tu f .

3. Elliptic differential operators

The study of elliptic partial differential operators was initially motivated by
consideration of fundamental problems in the physical sciences. For instance, the
electrostatic potential ϕ(x) in some bounded domain Ω ⊂ R3 in free space due to a
known charge density distribution ρ(x) is determined as the solution to the Poisson
equation

(−1)∇2ϕ = (1/ε0)ρ,

where ε0 is the permittivity of free space. The operator ∇2 = 〈∇,∇〉 is called the
Laplacian differential operator. The Poisson equation is an archetypal form of the
famous Dirichlet problem—the historical origin for the theory of elliptic partial
differential equations. We will consider the unbounded elliptic differential operator
L : H0 ⊂ G→ G given by

Lu(x) = (−1)(1/p(x))〈∇,W(x)∇〉u(x)

= (−1)(1/p(x))
3∑

i=1

3∑
j=1

∂i[wi j(x)∂ j]u(x)

for each u ∈ H0 and the associated weighted Poisson equation

Lu = w, (3.1)

where w ∈ H0 is given. If there exists a real constant ε > 0 such that 〈b,W(x)b〉 =

‖R(x)b‖2 > ε‖b‖2 for all x ∈ Ω, then the operator L is strongly elliptic [7, page 176].
Now it follows by [5, Corollary 7.8.4 and subsequent discussion on page 520] that
L satisfies a Gårding inequality in the form 〈ϕ, Lϕ〉G ≥ c1‖ϕ‖

2
H for some real constant

c1 > 0. In fact, since I + L = I − (1/p)〈∇,W∇〉, the Gårding inequality follows from
Equation (2.11) with c1 = λ1 − 1 = σ2

1. Now Rellich’s theorem [5, pages 506–508]
shows that (H0, ‖ · ‖H) is compact in (G, ‖ · ‖G) and so we can see by [5, Theorem 7.6.4,
pages 508–509] that L−1 ∈ L(G) exists and is compact with L−1(G) ⊂ H0. Therefore,
Equation (3.1) has a solution u0 ∈ H0. This solution is essentially a classical solution.
For more information, see Yosida [7, pages 177–182] and Naylor and Sell [5, pages
516–520].

As we saw in the previous paragraph, the traditional approach to solution of
elliptic differential equations treats the operator L : H0 ⊂ G→ G as a densely defined,
unbounded operator. This approach is fundamental to our understanding of self-adjoint
elliptic differential operators because it implies that the inverse operator L−1 ∈ L(G)
is compact. Hence, L−1 has a countable collection of real, positive eigenvalues.
Therefore, we can represent the solution to Equation (3.1) as a series of orthogonal
functions.
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We will now relate the traditional unbounded elliptic differential operators to the
corresponding bounded operators used in the solution of our gradient approximation
problem. The unbounded linear operator S : H0 ⊂ G→ K is defined by the formula
Su = ∇u and, hence, by Lemma 2.1,

〈Sϕ,ψ〉K = (−1)〈ϕ, (−1)(1/p)〈∇,Wψ〉〉G

for all ϕ ∈ C∞0 (Ω) and ψ ∈ C∞(Ω)3. By taking appropriate limits, and arguing as we
did earlier in the paper,

S∗ f = (−1)(1/p)〈∇,W f 〉
for all f ∈ H3

0 ⊂ K. Now it is instructive to consider the relationship between the
bounded adjoint gradient mapping T ∗ : K → H0 and the unbounded adjoint gradient
mapping S∗ : H3

0 ⊂ K → G. We have

〈u,T ∗ f 〉H = 〈Tu, f 〉K = 〈Su, f 〉K = 〈u, S∗ f 〉G
and

〈u,T ∗ f 〉H = 〈u,T ∗ f 〉G + 〈Su, ST∗ f 〉K
= 〈u,T ∗ f 〉G + 〈u, S∗ST∗ f 〉G
= 〈u, (I + S∗S )T ∗ f 〉G.

So, by combining the two previous equations,

〈u, S∗ f 〉G = 〈u, (I + S∗S )T ∗ f 〉G
for all u ∈ H0 and all f ∈ H3

0 . A mild extension of an important result due to von
Neumann [7, page 200] states that for a densely defined, closed unbounded linear
operator S : H0 ⊂G 7→ K there exist well-defined inverse operators (I + S∗S )−1 ∈ L(G)
and (I + SS∗)−1 ∈ L(K). Hence,

(I + S∗S )T ∗ψ = S∗ψ ⇐⇒ T ∗ψ = (I + S∗S )−1S∗ψ = S∗(I + SS∗)−1ψ

for all ψ ∈ C∞0 (Ω). Since ‖T ∗‖ ≤ 1, it follows that for f ∈ K and any sequence
{ψm}m∈N ∈ C

∞(Ω) with ‖ψm − f‖ → 0, we have ‖ψm − ψn‖K → 0 as m, n→ ∞ and
hence ‖T ∗ψm − T ∗ψn‖H → 0 as m, n→ ∞. Thus, we can find v f ∈ H0 such that
T ∗ψn → v f and so T ∗ f = v f can be rewritten as S∗(I + SS∗)−1 f = v f . Now P =

T ∗T = (I + S∗S )−1S∗S = S∗S (I + S∗S )−1 ∈ L(H0) and Q = TT ∗ = (I + SS∗)−1SS∗ =

SS∗(I + SS∗)−1 ∈ L(K) are both self adjoint. Note also that L = S∗S and that

T ∗T = (I + S∗S )−1S∗S = I − (I + S∗S )−1 ⇐⇒ (I + S∗S )−1 = I − T ∗T.

It follows that

Lu = w ⇐⇒ S∗Su = w ⇐⇒ T ∗Tu = (I − T ∗T )w

and hence

u = L−1w ⇐⇒ u = (S∗S )−1w ⇐⇒ u = (T ∗T )−1(I − T ∗T )w.

Thus, we can describe the weighted Poisson equation and the solution using either
unbounded or bounded linear differential operators.
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4. The best weighted gradient approximation

We state the solution to the general weighted gradient approximation as our main
theorem.

Theorem 4.1. Let f ∈ K be an observed function and let T ∈ L(H0,K) be the bounded
gradient operator. The solution to the weighted gradient approximation problem

inf
u∈H0
‖Tu − f‖K

is defined as the unique function u0 ∈ H0 satisfying the self-adjoint differential equation
T ∗Tu = T ∗ f . If the inner products on H0 and K are defined by (2.3) and (2.4),
respectively, then the equation T ∗Tu = T ∗ f can be written in the expanded form as

(−1)(I − (1/p)〈∇,W∇〉)−1(1/p)〈∇,W∇u〉

= (−1)(I − (1/p)〈∇,W∇〉)−1(1/p)〈∇,W f 〉. (4.1)

Let {um}m∈N be an orthonormal basis of eigenvectors for T ∗T in H0 with T ∗Tum =

σ2
m/(σ

2
m + 1)um and define a corresponding orthonormal set {wm}m∈N in K by the

formula wm = (
√
σ2

m + 1/σm)∇um. If we define the projection of f onto the subspace
spanned by {wm}m∈N using the formula w f =

∑∞
m=1〈 f ,wm〉Kwm, then the solution to the

best weighted gradient approximation problem is given by

u0 =

∞∑
m=1

〈 f ,wm〉K

(√
σ2

m + 1/σm

)
um (4.2)

for all f ∈ K.

Proof. Since T (H0) ⊂ K is a closed subspace, we can use the projection theorem
to find a point Tu0 ∈ T (H0) such that 〈Tu0 − f , Tu〉K = 0 for all u ∈ H0. Thus,
〈T ∗(Tu0 − f ), u〉H = 0 for all u ∈ H0. Hence, T ∗Tu0 − T ∗ f = 0. The expression for
the solution u0 ∈ H0 in Equation (4.2) follows from (2.12) and (2.13). �

Remark 4.2. Whereas the equation T ∗Tu = T ∗ f written in expanded form as (4.1) is an
equation between well-defined measurable functions, the equation S∗S u = S∗ f , which
we can write in the apparently simpler expanded form as

(−1)(1/p)〈∇,W∇u〉 = (−1)(1/p)〈∇,W f 〉,

is an equation between generalised functions. Despite this distinction, the two
equations are mathematically equivalent. For numerical mathematicians it may be
more useful to express the key equation in the form (4.1). This means the adequacy
of an approximate solution uε ≈ u0 could be checked by calculating the error ε =

T ∗Tuε − T ∗ f ≈ 0.
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5. A hypothetical example

In this section we will illustrate our general remarks by considering a special
case. Since much of the familiar Sturm–Liouville theory arises in the context of
a transformation to orthogonal curvilinear coordinates, we begin by reviewing the
basic formulæ. Let y = (y1, y2, y3) ∈ R3 be the usual rectangular coordinates and
let z = (z1, z2, z3) be an alternative system of orthogonal curvilinear coordinates. If
we consider the functional dependence y = y(z), then the curvilinear coordinates are
defined by the unit vectors

f i(z) = (1/hi)∂iy,

where hi = hi(z) = ‖∂iy(z)‖ = ‖∂iy‖ for each i = 1, 2, 3. We have 〈 f i, f j〉 = δi j and the
gradient vector is given by

∇u =

3∑
i=1

(1/hi)∂iu f i,

while the divergence can be calculated from

〈∇,ψ〉 = 1/(h1h2h3)
3∑

i=1

∂i(h j(i)hk(i)ψi),

where j(i) < k(i) and j(i), k(i) , i. Thus,

(−1)〈∇,∇u〉 = (−1)(1/(h1h2h3))
3∑

i=1

∂i((1/hi)h j(i)hk(i)∂iu),

where j(i) < k(i) and j(i), k(i) , i. We can reproduce these formulæ using the operator
L = (−1)(1/p)〈∇,W∇〉 by choosing p(x) = h1(x)h2(x)h3(x) and

W(x) =

h2(x)h3(x)/h1(x) 0 0
0 h1(x)h3(x)/h2(x) 0
0 0 h1(x)h2(x)/h3(x)

 .
Example 5.1. Let Ω = {x | x ∈ (−1, 1) × (0, 1)2} and define the weight functions p(x) =

π/(x2

√
1 − x2

1) and

W(x) =


π
√

1 − x2
1/x2 0 0

0 πx2

/√
1 − x2

1 0

0 0 1
/(
πx2

√
1 − x2

1

)


for all x ∈ Ω. In order to solve the equation (−1)(1/p)〈∇,W∇u〉 = σ2u by separation
of variables, we set u(x) = u1(x1)u2(x2)u3(x3) and obtain

(−1)
[ √

1 − x2
1

u1
∂1

(√
1 − x2

1 · u
′
1

)
+

x2

u2
∂2(x2u′2) +

1
πu3

∂3

(u′3
π

)]
= σ2.
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For the first variable, we have a Chebyshev equation

−(1 − x2
1)

u′′1,`
u1,`

+ x1
u′1,`
u1,`

= (` + 1)2

with u1,`(−1) = 0 and u1,`(1) = 0 for each ` ∈ N. The solution is given by

u1,`(x1) = sin(` arccos x1) =

√
1 − x2

1 · U`(x1),

where U` is the Chebyshev polynomial of the second kind of degree `. For the second
variable, the separation leads to a Bessel equation

−
u′′2,m
u2,m
−

1
x2

u′2,m
u2,m

= µ2
m

with u2,m(0) = 0 and u2,m(1) = 0 for each m ∈ N. The solution is given by

u2,m = J0(µmx2),

where J0 is the Bessel function of the first kind of order 0 and where {µm}m∈N with
0 < µm < µm+1 are all the solutions to the equation J0(x) = 0 in the region x > 0. The
equation for the third variable is a standard trigonometric equation

−
1
π2

u′′3,n
u3,n

= n2

with u3,n(0) = 0 and u3,n(1) = 0 for each n ∈ N. The solution is given by

u3,n(x3) = sin nπx3.

Hence, the complete set of orthogonal eigenfunctions for S∗S is given by

u`,m,n(x) =

√
1 − x2

1 · U`(x1)J0(µmx2) sin nπx3

with corresponding eigenvalues

σ2
`,m,n = (` + 1)2 + µ2

m + n2

for (`,m, n) ∈ N3. Thus, we seek a solution u0 ∈ H0 to the equation T ∗Tu = T ∗ f in the
form

u =
∑

(`,m,n)∈N3

c`,m,nu`,m,n,

where c`,m,n ∈ C. It follows from Equations (2.12) and (2.13), using the notation
established earlier in the paper, that the solution is

u0 =
∑

(`,m,n)∈N3

〈 f ,w`,m,n〉K

(√
σ2
`,m,n + 1/σ`,m,n

)
u`,m,n ∈ H0.
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6. Conclusions

We have shown that the potential function that generates the best gradient
approximation to an observed square integrable function on a bounded measurable
set subject to a condition that the boundary potential is zero satisfies a classical self-
adjoint linear elliptic differential equation. The method relies on formulation of the
gradient operator as a bounded linear operator on an appropriate Sobolev space. We
have also shown how our analysis is closely linked to the traditional solution of self-
adjoint linear elliptic differential equations where an unbounded gradient operator
is normally used. In practical applications the proposed gradient approximation
procedure could be used to eliminate measurement errors when constructing a
legitimate potential function to match an observed gradient. It should also enable
numerical mathematicians to check an approximate numerical solution uε(x) ≈ u0(x)
by calculating the error function ε(x) = T ∗Tuε(x) − T ∗ f (x) ≈ 0.
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