AN IMPROVEMENT OF A TRANSCENDENCE MEASURE OF GALOCHKIN AND MAHLER'S S-NUMBERS

MASAAKI AMOU

(Received 26 February 1990; revised 28 August 1990)

Communicated by J. H. Loxton

Abstract

We give a transcendence measure of special values of functions satisfying certain functional equations. This improves an earlier result of Galochkin, and gives a better upper bound of the type for such a number as an S-number in the classification of transcendental numbers by Mahler.

1991 Mathematics subject classification (Amer. Math. Soc.) 11 J 82.

1. Introduction

Let K be an algebraic number field of finite degree. Let $f(z)$ be a function which is transcendental over $\mathbb{C}(z)$ and holomorphic in some neighborhood U of the origin, and satisfies the functional equation

$$
\begin{equation*}
f(T z)=\frac{A_{1}(z, f(z))}{A_{2}(z, f(z))}, T z=z^{r}(r \in \mathbb{N}, r \geq 2), \tag{1.1}
\end{equation*}
$$

where $A_{i}(z, y)=a_{i 1}(z) y+a_{i 2}(z) \in K[z, y](i=1,2)$. Suppose that the coefficients of $f(z)$ in its Taylor series expansion at the origin all lie in the field K.

Let $\alpha \in U$ be an algebraic number with $0<|\alpha|<1$ satisfying

$$
\begin{equation*}
\operatorname{det}\left(a_{i j}\left(T^{k} \alpha\right)\right)_{i, j=1,2} \neq 0 \tag{1.2}
\end{equation*}
$$

[^0]for any $k(k=0,1,2, \ldots)$. This condition allows us that $A_{2}\left(T^{k}{ }_{\alpha}, f\left(T^{k} \alpha\right)\right)$ $\neq 0$ for any $k(k=0,1,2, \ldots)$.

In the notation as above, Mahler proved in [4] that the number $f(\alpha)$ is transcendental. In [2], Galochkin considered a quantitative version of this result and gave the following transcendence measure of $f(\alpha)$:

Theorem (Galochkin [2]). In the notation as above, further, let $P(x) \in$ $\mathbb{Z}[z]$ be any nonzero polynomial whose degree is at most d and whose height is at most H. Put

$$
b=\chi_{1}^{-1} \log L(\alpha), c=\log |\alpha|^{-1} \text { and } \chi_{0}=[K(\alpha): \mathbb{Q}],
$$

where χ_{1} is the degree of α and $L(\alpha)$ is the length of α. Then we have

$$
|P(f(\alpha))|>H^{-(2 r+1)^{2} b c^{-1} x_{0}^{2} d}
$$

for all sufficiently large H.
Our main purpose is to sharpen this estimate. To state our results, we recall usual notation and the definition of Mahler's S-numbers (cf. Schneider [6]).

For any algebraic number α with minimal defining polynomial $Q(x)=$ $a_{0}(x-\alpha)\left(x-\alpha^{\prime}\right) \cdots\left(x-\alpha^{(x-1)}\right) \in \mathbb{Z}[x]\left(a_{0}>0\right)$, we denote by $\operatorname{den}(\alpha)$ the denominator of α, that is, the least positive integer d such that $d \alpha$ is an algebraic integer, by $\overline{|\alpha|}$ the house of α, that is, the maximum of the absolute values of the roots of $Q(x)$, and by $M(\alpha)$ the Mahler measure of α, that is the number which is defined by

$$
M(\alpha)=a_{0} \prod_{i=0}^{x-1} \operatorname{Max}\left(1,\left|\alpha^{(i)}\right|\right), \alpha^{(0)}=\alpha .
$$

For any polynomial P (in any number of variables) whose coefficients are algebraic numbers, we denote by $\operatorname{deg}_{x} P$ the degree of P in the variable x, by $H(P)$ the height of P, that is, the maximum of the houses of the coefficients of P, and by $L(P)$ the length of P, that is, the sum of the houses of the coefficients of P. For any algebraic number α with minimal defining polynomial Q, we put $\operatorname{deg} \alpha=\operatorname{deg} Q, H(\alpha)=H(Q)$ and $L(\alpha)=L(Q)$.

Now we recall the definition of Mahler's S-numbers. Let ω be any complex number. Then we define a function $w_{d}(\omega, h)$ by

$$
\begin{aligned}
& w_{d}(\omega, h)=\operatorname{Min}\{|P(\omega)| ; P(x) \in \mathbb{Z}[x], \operatorname{deg} P \leq d, \\
& H(P) \leq h \text { and } P(\omega) \neq 0\} .
\end{aligned}
$$

Further, we define $w_{d}(\omega)$ and $w(\omega)$ by

$$
w_{d}(\omega)=\underset{h \rightarrow \infty}{\lim \sup } \frac{-\log w_{d}(\omega, h)}{\log h} \text { and } w(\omega)=\underset{d \rightarrow \infty}{\lim \sup } \frac{w_{d}(\omega)}{d}
$$

Then a number ω is transcendental if and only if $w(\omega)$ is positive. Then, according to the classification of Mahler, a transcendental number ω is called an S-number if $w(\omega)$ is finite (that is, $w_{d}(\omega) / d$ is bounded as a function of d). For any S-number ω, we define the type of ω by the supremum of the sequence $\left\{w_{d}(\omega) / d\right\}_{d \in \mathbb{N}}$. In this terminology, Galochkin's theorem states that the number $f(\alpha)$ is an S-number of type at most $(2 r+1)^{2} b c^{-1} \chi_{0}^{2}$.

In the present paper, we shall prove the following theorems.
Theorem 1. Let K be an algebraic number field of finite degree. Let $f(z)$ be a function which is transcendental over $\mathbb{C}(z)$ and holomorphic in some neighborhood U of the origin, and satisfies the functional equation (1.1) with $a_{i j}(z) \in K[z]$. Suppose that the coefficients of $f(z)$ in its Taylor series expansion at the origin all lie in the field K. Let $\alpha \in U$ be an algebraic number with $0<|\alpha|<1$ such that (1.2) holds for any $k(k=0,1,2, \ldots)$. Put

$$
\begin{equation*}
b=\chi_{1}^{-1} \log M(\alpha), c=\log |\alpha|^{-1} \text { and } \chi_{0}=[K(\alpha): \mathbb{Q}], \tag{1.3}
\end{equation*}
$$

where χ_{1} is the degree of α and $M(\alpha)$ is the Mahler measure of α. Then, for any positive integer d, we have

$$
\begin{equation*}
w_{d}(f(\alpha)) \leq\left\{r(1+1 / \sqrt{r})^{2} b c^{-1} \chi_{0}^{2}+1\right\} d-1 \tag{1.4}
\end{equation*}
$$

In particular, the number $f(\alpha)$ is an S-number of type at most

$$
r(1+1 / \sqrt{r})^{2} b c^{-1} \chi_{0}^{2}+1
$$

Corollary. In the above theorem, suppose $K=\mathbb{Q}$ and $\alpha=1 / a \quad(a \in$ $\mathbb{Z},|a| \geq 2)$. Then, for any positive integer d, we have

$$
w_{d}(f(\alpha)) \leq\left\{r(1+1 / \sqrt{r})^{2}+1\right\} d-1
$$

In particular, the number $f(\alpha)$ is an S-number of type at most $r(1+1 / \sqrt{r})^{2}+$ 1.

By specializing our situation, we can also give good lower bounds of the values $w_{d}(f(\alpha))$ for small d. Namely, we can prove the following theorem.

Theorem 2. Let $F_{r}(z)$ be the function defined by

$$
F_{r}(z)=\sum_{v=0}^{\infty} z^{r^{v}} \quad(r \in \mathbb{Z}, r \geq 2)
$$

and a be an integer with $|a| \geq 2$. Put

$$
d_{0}=\left\{\begin{array}{l}
(r-2) / 2 \text { if } r \text { is even }, \tag{1.5}\\
(r-1) / 2 \text { if } r \text { is odd } .
\end{array}\right.
$$

Then we have

$$
\begin{align*}
w_{d}\left(F_{r}(1 / a)\right) & =r-1 \text { for } d=1, \ldots, d_{0} \tag{1.6}\\
r-1 \leq w_{d}\left(F_{r}(1 / a)\right) & \leq \frac{r d}{r-d} \text { for } d=d_{0}+1, \ldots, r-1 \tag{1.7}
\end{align*}
$$

and

$$
\begin{equation*}
w_{d}\left(F_{r}(1 / a)\right) \leq\left\{r(1+1 / \sqrt{r})^{2}+1\right\} d-1 \text { for } d \geq r . \tag{1.8}
\end{equation*}
$$

In particular, the number $F_{r}(1 / a)$ is an S-number of type at least $r-1$ and at most $r(1+1 / \sqrt{r})^{2}+1$.

Remark. In the above theorem, we have the equality $w_{1}\left(F_{r}(1 / a)\right)=r-1$ for any $r \geq 3$. But according to a theorem of Shallit [7], the number $F_{r}(1 / a)$ has the continued fraction expansion with bounded partial quotients, and hence we have also the equality $w_{1}\left(F_{2}(1 / a)\right)=1$. We note that the above mentioned equality $w_{1}\left(F_{r}(1 / a)\right)=r-1$ for any $r \geq 3$ is also deduced from a theorem of Shallit [7].

The author would like to express his thanks to Professor Y. Morita for his encouragement. He is also indebted to the referee for his valuable comments.

2. Preliminaries

In this section, we give two estimates for $w_{d}(\omega)$ (Lemmas 2 and 3 below). The following lemma is Lemma 5 of Galochkin [2] (cf. also Güting [3, Theorem 6]).

Lemma 1. Let $\alpha_{1}, \ldots, \alpha_{s}$ be algebraic numbers of degrees $\chi_{1}, \ldots, \chi_{s}$. Let K be an algebraic number field, and I_{K} be its integer ring. Put $\chi_{0}=$ $\left[K\left(\alpha_{1}, \ldots, \alpha_{s}\right): \mathbb{Q}\right]$. Let $A\left(x_{1}, \ldots, x_{s}\right) \in I_{K}\left[x_{1}, \ldots, x_{s}\right]$ be a polynomial of $\operatorname{deg}_{x_{i}} A \leq d_{i}$ for each i. If $A\left(\alpha_{1}, \ldots, \alpha_{s}\right) \neq 0$, then we have

$$
\left|A\left(\alpha_{1}, \ldots, \alpha_{s}\right)\right| \geq L(A)^{1-x_{0}} \prod_{i=1}^{s} M\left(\alpha_{i}\right)^{-\left(x_{0} / x_{i}\right) d_{i}} .
$$

Remark. Checking the proof of Theorem 6 of Güting [3], it is found that we may use $M\left(\alpha_{i}\right)$ in the above inequality instead of $L\left(\alpha_{i}\right)$ which is used by Galochkin [2, Lemma 5] (and also used by Güting [3, Theorem 6]). Note that we have the inequality $M\left(\alpha_{i}\right) \leq L\left(\alpha_{i}\right)$ because of an inequality of Mahler [5].

The following lemma follows from the arguments of Galochkin [2].

Lemma 2. Let ω be a complex number, and α be an algebraic number of $\operatorname{deg} \alpha=\chi_{1}$ with $0<|\alpha|<1$. Let $\varphi(k)$ be a function on \mathbb{N} such that, for sufficinntly large $k \in \mathbb{N}, \varphi(k)$ is a strictly increasing positive valued function tending to infinity, and such that there exists a positive number δ satisfying

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{\varphi(k+1)}{\varphi(k)}=\delta<\infty . \tag{2.1}
\end{equation*}
$$

Let K be an algebraic number field, and denote by I_{K} its integer ring. Put $\chi_{0}=[K(\alpha): \mathbb{Q}]$. Let d be a positive integer, and $E>1$ be a real number satisfying

$$
\begin{equation*}
\log E>b \chi_{0} d \quad\left(b=\chi_{1}^{-1} \log M(\alpha)\right) \tag{2.2}
\end{equation*}
$$

Suppose that there exists a sequence of polynomials $\left\{R_{k}(z, y)\right\}_{k \in \mathbb{N}}$ such that $R_{k}(z, y) \in I_{K}[z, y]$ and $\operatorname{deg}_{y} R_{k} \leq m$ for any k with a certain positive integer m, and such that $R_{k}(z, y)$ satisfies

$$
\begin{align*}
\log L\left(R_{k}\right)= & o(\varphi(k)), \operatorname{deg}_{z}\left(R_{k}\right) \leq \varphi(k)(1+o(1)), \tag{2.3}\\
& \left|R_{k}(\alpha, \omega)\right|=E^{-\varphi(k)(1+o(1))}
\end{align*}
$$

as $k \rightarrow \infty$. Then we have

$$
\begin{equation*}
w_{d}(\omega) \leq \frac{\delta m \chi_{0} \log E}{\log \left(E / M(\alpha)^{x_{0} d / x_{1}}\right)}+d-1 . \tag{2.4}
\end{equation*}
$$

Proof. It is convenient for our purpose to work with Koksma's function w_{d}^{*} instead of Mahler's function w_{d}. Here we recall the definition (cf. Schneider [6]). For a complex number ω, we define a function $w_{d}^{*}(\omega, h)$ by

$$
w_{d}^{*}(\omega, h)=\operatorname{Min}\{|\omega-\beta| ; \beta \in \overline{\mathbb{Q}}, \operatorname{deg} \beta \leq d, H(\beta) \leq h \text { and } \omega \neq \beta\}
$$

where $\overline{\mathbb{Q}}$ is the field of all algebraic numbers. Then we define $w_{d}^{*}(\omega)$ by

$$
w_{d}^{*}(\omega)=\limsup _{h \rightarrow \infty} \frac{-\log \left(h w_{d}^{*}(\omega, h)\right)}{\log h}
$$

In what follows, we shall prove

$$
\begin{equation*}
w_{d}^{*}(\omega) \leq \frac{\delta m \chi_{0} \log E}{\log \left(E / M(\alpha)^{\chi_{0} d / x_{1}}\right)}, \tag{2.5}
\end{equation*}
$$

where ω is a complex number which satisfies all the conditions in the lemma. Since we have $w_{d}(\omega) \leq w_{d}^{*}(\omega)+d-1$ (cf. Schneider [6, Hilfssatz 19]), this proves the lemma.

Let β be any algebraic number with $\operatorname{deg} \beta \leq d$ and $H(\beta) \leq h$. Put $\Delta=|\omega-\beta|$. We must give a good lower bound for Δ which leads to (2.5).

We may assume $\Delta \leq 1$ without loss of generality. Let ε be any (small) positive number. Put

$$
R=E^{1-2 \epsilon} M(\alpha)^{-\left(x_{0} d / x_{1}\right)(1+\varepsilon)} .
$$

We may assume that $R>1$ because of (2.2). Choose a positive integer k such that

$$
\begin{equation*}
R^{\varphi(k-1) / x_{0} m} \leq h<R^{\varphi(k) / x_{0} m} . \tag{2.6}
\end{equation*}
$$

By taking a sufficiently large h as an upper bound for $H(\beta)$, we may assume that k is also sufficiently large. We claim that

$$
\begin{equation*}
\Delta \geq E^{-\varphi(k)(1+2 \varepsilon)} . \tag{2.7}
\end{equation*}
$$

Indeed, if (2.7) is false, then by (2.3), we have

$$
\begin{aligned}
\left|R_{k}(\alpha, \beta)\right| & \geq\left|R_{k}(\alpha, \omega)\right|-\left|R_{k}(\alpha, \omega)-R_{k}(\alpha, \beta)\right| \\
& \geq E^{-\varphi(k)(1+\varepsilon)}-L\left(R_{k}\right) m(|\omega|+1)^{m} \Delta \\
& \geq E^{-\varphi(k)(1+\varepsilon)}-E^{-\varphi(k)(1+3 \varepsilon / 2)}>0 .
\end{aligned}
$$

Then, by Lemma 1 and (2.3), we have

$$
\begin{aligned}
\left|R_{k}(\alpha, \omega)\right| & \geq\left|R_{k}(\alpha, \beta)\right|-\left|R_{k}(\alpha, \omega)-R_{k}(\alpha, \beta)\right| \\
& \geq L\left(R_{k}\right)^{1-x_{0} d} M(\alpha)^{-\left(x_{0} d / x_{1}\right) \varphi(k)(1+\varepsilon / 2)} M(\beta)^{-x_{0} m}-E^{-\varphi(k)(1+3 \varepsilon / 2)} \\
& \geq M(\alpha)^{-\left(x_{0} d / x_{1}\right) \varphi(k)(1+\varepsilon)} h^{-x_{0} m}-E^{-\varphi(k)(1+3 \varepsilon / 2)} .
\end{aligned}
$$

Comparing this lower bound with an upper bound

$$
\left|R_{k}(\alpha, \omega)\right| \leq E^{-\varphi(k)(1-\varepsilon)}
$$

we conclude

$$
h \geq\left(E^{1-2 \varepsilon} M(\alpha)^{-\left(x_{0} d / x_{1}\right)(1+\varepsilon)}\right)^{\varphi(k) / x_{0} m}=R^{\varphi(k) / x_{0} m} .
$$

Since this inequality contradicts (2.6), our claim is proved.
Now, by (2.1) and (2.6), we have

$$
\varphi(k) \leq \delta(1+\varepsilon) \varphi(k-1) \leq \frac{(1+\varepsilon) \delta \chi_{0} m \log h}{\log R} .
$$

Hence, by (2.7), we obtain

$$
\Delta \geq h^{-(1+4 \varepsilon) \delta x_{0} m(\log E) / \log \left(E^{1-2 t} M(\alpha)^{-\left(x_{0} d / x_{1}\right)(1+\varepsilon)}\right)} .
$$

Since we can take ε arbitrarily small, this leads (2.5). The lemma is proved.
We need the following lemma to prove Theorem 2.

Lemma 3. Let ω be a real number, $Q>1$ be a real number, and $r \geq 2$ be an integer. Put $E=Q^{r-1}$. Suppose that there exists a sequence of rational numbers $\left\{p_{k} / q_{k}\right\}_{k \in \mathbb{N}}$ such that p_{k} and $q_{k}>0$ are relatively prime integers, and satisfy

$$
q_{k}=Q^{r^{k}(1+o(1))} \quad \text { and } \quad\left|q_{k} \omega-p_{k}\right|=E^{-r^{k}(1+o(1))}
$$

as $k \rightarrow \infty$. Let d_{0} be the number defined by (1.5) in Theorem 2. Then we have

$$
\begin{equation*}
w_{d}(\omega)=r-1 \text { for } d=1, \ldots, d_{0} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
r-1 \leq w_{d}(\omega) \leq \frac{r d}{r-d} \text { for } d=d_{0}+1, \ldots, r-1 \tag{2.9}
\end{equation*}
$$

This is a special case of Lemma 1 of Amou [1].

3. Proof of the theorems

Proof of Theorem 1. Put $\omega=f(\alpha)$. Note that we may assume without loss of generality that $A_{i}(z, y) \in I_{K}[z, y](i=1,2)$. Let m and n be any positive integers. By the theory of homogeneous linear equations, we can construct an auxiliary polynomial $R_{0}(z, y) \in I_{K}[z, y], R_{0}(z, y) \neq 0$, such that

$$
\begin{equation*}
\operatorname{deg}_{z} R_{0} \leq n, \operatorname{deg}_{y} R_{0} \leq m \quad \text { and } \quad \text { ord } R_{0}(z, f(z))>(m+1) n \tag{3.1}
\end{equation*}
$$

where ord $R_{0}(z, f(z))$ is the order of zeros of the function $R_{0}(z, f(z))$ at $z=0$. Since $f(z)$ is transcendental over $\mathbb{C}(z)$, we have $R_{0}(z, f(z)) \neq 0$, and hence we can write ord $R_{0}(z, f(z))=\lambda n(m+1)$ for some $\lambda>1$. Then, because of the functional equation (1.1) for $f(z)$, for any positive integer k, we can construct $R_{k}(z, y) \in I_{K}[z, y]$ inductively by taking

$$
R_{k}(z, f(z))=A_{2}(z, f(z))^{m} R_{k-1}(T z, f(T z))
$$

We can easily show that

$$
\begin{equation*}
\operatorname{deg}_{z} R_{k} \leq e(k):=\left[n r^{k}(1+\varepsilon(m, n)] \text { and } \operatorname{deg}_{y} R_{k} \leq m\right. \tag{3.2}
\end{equation*}
$$

where $\varepsilon(m, n)$ is a positive valued function of $m, n \in \mathbb{N}$ satisfying $\varepsilon(m, n)$ $\rightarrow 0$ as $m / n \rightarrow 0$. Further, by Lemma 3 of Galochkin [2], we have

$$
\begin{equation*}
L\left(R_{k}\right) \leq(2 L)^{m k} L\left(R_{0}\right) \quad \text { and } \quad\left|R_{k}(\alpha, \omega)\right|=e^{-c \lambda n(m+1) r^{k}(1+o(1))} \tag{3.3}
\end{equation*}
$$

as $k \rightarrow \infty$, where $L=\operatorname{Max}\left\{L\left(a_{i j}(z)\right) ; i, j=1,2\right\}$ and $c=\log |\alpha|^{-1}$.

We fix the following notation. Let $S(m, n)$ be the set of all polynomials $R_{0}(z, y) \in I_{K}[z, y], R_{0}(z, y) \neq 0$, satisfying (3.1). Put

$$
\lambda(m, n)=\sup \left\{\frac{1}{(m+1) n} \operatorname{ord} R_{0}(z, f(z)) ; R_{0}(z, y) \in S(m, n)\right\} .
$$

Let $\lambda(m)$ be the number defined by

$$
\lambda(m)=\limsup _{n \rightarrow \infty} \lambda(m, n) .
$$

This number plays an essential role in our proof.
Put

$$
m=\left[b c^{-1} \chi_{0} d(1+\tau)\right], \quad \tau=1 / \sqrt{r},
$$

where b, c and χ_{0} are the numbers defined by (1.3). In the following argument, we consider two cases.

CASE I. $\lambda(m)>\sqrt{r}=\tau^{-1}$. Let ε be any (small) positive number. In this case, there are infinitely many n satisfying $\lambda(m, n)>\tau^{-1}$. We take and fix such an n with $1+\varepsilon(m, n) \leq\left\{\tau\left(\tau^{-1}-\varepsilon\right)\right\}^{-1}$, where $\varepsilon(m, n)$ is the quantity in (3.2). Then we have a sequence of polynomials $R_{k}(z, y) \in I_{K}[z, y]$ for $k \in \mathbb{N}$ satisfying (3.1), (3.2) and (3.3) with $\lambda>\tau^{-1}$. Put

$$
E=e^{c\left(\tau^{-1}-\varepsilon\right)(m+1)} \text { and } \varphi(k)=\lambda\left(\tau^{-1}-\varepsilon\right)^{-1} n r^{k}
$$

for $k \in \mathbb{N}$. Because of our choice of m, we may assume that $\log E>b \chi_{0} d$ by taking ε small enough. Then, all of the conditions in Lemma 2 are satisfied. Put $\gamma=b c^{-1} \chi_{0}$. Since we can take ε arbitrarily small, applying Lemma 2 to this situation and letting $\varepsilon \rightarrow 0$, we obtain from (2.4) and from our choice of m that

$$
\begin{aligned}
w_{d}(\omega)-d+1 & \leq \frac{r m \chi_{0} c \tau^{-1}(m+1)}{\left\{c \tau^{-1}(m+1)-b \chi_{0} d\right\}} \leq \frac{r(1+\tau) \gamma \chi_{0} d}{1-\frac{\gamma d}{\tau^{-1}(m+1)}} \\
& \leq \frac{r(1+\tau) \gamma \chi_{0} d}{1-\frac{\gamma d}{\tau^{-1} y d(1+\tau)}}=r(1+\tau)^{2} \gamma \chi_{0} d=r(1+1 / \sqrt{r})^{2} b c^{-1} \chi_{0}^{2} d .
\end{aligned}
$$

Case II. $\lambda(m) \leq \tau^{-1}$. Let ε be any (small) positive number. We shall construct a finite sequence of positive integers $\left\{n_{i}\right\}_{1 \leq i \leq t}$ which satisfies suitable conditions. First we take a positive integer n_{1} with $n_{1} \geq \tau / \varepsilon$ such that, for any $n \in \mathbb{N}$ with $n \geq n_{1}$, we have

$$
1+\varepsilon(m, n) \leq(1-\varepsilon)^{-1} \text { and } \lambda(m, n) \leq \tau^{-1}(1+2 \varepsilon) /(1+\varepsilon)
$$

Next we take the least positive integer satisfying $\lambda\left(m, n_{1}\right) n_{1}(1+\varepsilon) \leq n_{2}$. Then we have

$$
1+\varepsilon \leq \frac{\lambda\left(m, n_{2}\right) n_{2}}{\lambda\left(m, n_{1}\right) n_{1}} \leq \tau^{-1}(1+3 \varepsilon)
$$

Further we can take positive integers n_{3}, n_{4}, \ldots such that n_{i+1} is the least positive integer satisfying $\lambda\left(m, n_{i}\right) n_{i}(1+\varepsilon) \leq n_{i+1}(i=2,3, \ldots)$. Thus we obtain a sequence of positive integers $\left\{n_{i}\right\}_{i \in \mathrm{~N}}$ satisfying

$$
1+\varepsilon \leq \frac{\lambda\left(m, n_{i+1}\right) n_{i+1}}{\lambda\left(m, n_{i}\right) n_{i}} \leq \tau^{-1}(1+3 \varepsilon)
$$

for any $i \in \mathbb{N}$. Let t be the least positive integer satisfying

$$
\frac{\lambda\left(m, n_{1}\right) n_{1} r}{\lambda\left(m, n_{t}\right) n_{t}} \leq \tau^{-1}(1+3 \varepsilon) .
$$

Note that the left-hand side of the above inequality is greater than 1 . We now have a finite sequence $\left\{n_{i}\right\}_{1 \leq i \leq t}$ which can be used below to define a sequence of polynomials $R_{k}(z, y) \in I_{K}[z, y](k \in \mathbb{N})$ and a function $\varphi(k)$ of $k \in \mathbb{N}$.

For any $i \in \mathbb{N}$ with $1 \leq i \leq t$, we take a polynomial $R_{i, 0}(z, y) \in I_{K}[z, y]$ such that

$$
\operatorname{deg}_{z} R_{i, 0} \leq n_{i}, \operatorname{deg}_{y} R_{i, 0} \leq m
$$

and

$$
\operatorname{ord} R_{i, 0}(z, f(z))=\lambda\left(m, n_{i}\right) n_{i}(m+1)
$$

Then, for any positive integer j, we can construct $R_{i, j}(z, y) \in I_{K}[z, y]$ inductively by taking

$$
R_{i, j}(z, f(z))=A_{2}(z, f(z))^{m} R_{i, j-1}(T z, f(T z)) .
$$

Let us write any $k \in \mathbb{N}$ as $k=j(k) t+i(k)$ where $i(k), j(k)$ are integers with $0 \leq i(k)<t$. In this notation, for any $k \in \mathbb{N}$, we define $R_{k}(z, y)$ and $\varphi(k)$ by

$$
R_{k}(z, y)= \begin{cases}R_{i(k), j(k)}(z, y) & \text { if } i(k) \neq 0 \\ R_{t, j(k)-1}(z, y) & \text { if } i(k)=0\end{cases}
$$

and by

$$
\varphi(k)= \begin{cases}\lambda\left(m, n_{i(k)}\right) n_{i(k)} r^{j(k)}(1-\varepsilon)^{-1} & \text { if } i(k) \neq 0, \\ \lambda\left(m, n_{t}\right) n_{t} r^{j(k)-1}(1-\varepsilon)^{-1} & \text { if } i(k)=0 .\end{cases}
$$

Put $E=e^{c(m+1)(1-\varepsilon)}$. As in Case I, we may assume that $\log E>b \chi_{0} d$ by taking ε small enough. Then $R_{k}(z, y)(k \in \mathbb{N}), \varphi(k)$ and E satisfy the conditions (2.1) with $\delta \leq \tau^{-1}(1+3 \varepsilon)$, (2.2) and (2.3) in Lemma 2. Since we can take ε arbitrarily small, applying Lemma 2 to this situation and letting
$\varepsilon \rightarrow 0$, we obtain from (2.4) and from our choice of m that

$$
\begin{aligned}
w_{d}(\omega)-d+1 & \leq \frac{\tau^{-1} m \chi_{0} c(m+1)}{c(m+1)-b \chi_{0} d} \leq \frac{\tau^{-1}(1+\tau) \gamma \chi_{0} d}{1-\frac{\gamma d}{m+1}} \\
& \leq \frac{\tau^{-1}(1+\tau) \gamma \chi_{0} d}{1-\frac{1}{1+\tau}} \\
& =\tau^{-2}(1+\tau)^{2} \gamma \chi_{0} d=r(1+1 / \sqrt{r})^{2} b c^{-1} \chi_{0}^{2} d .
\end{aligned}
$$

In any case, we obtain $w_{d}(\omega) \leq\left\{r(1+1 / \sqrt{r})^{2} b c^{-1} \chi_{0}^{2}+1\right\} d-1$. This is (1.4), and we have proved the theorem.

If $K=\mathbb{Q}$ and $\alpha=1 / a(a \in \mathbb{Z},|a| \geq 2)$, then we have $b=c$ and $\chi_{0}=1$, and hence the corollary follows.

Remark. We can easily show as a corollary of the above proof that, for any $\varepsilon>0$, the inequality

$$
w_{d}(f(\alpha)) \leq\left\{(4+\varepsilon) \sqrt{r} b c^{-1} \chi_{0}^{2}+1\right\} d-1
$$

holds for infinitely many d.
Proof of Theorem 2. Since the function $f_{r}(z)$ satisfies the functional equation $f_{r}\left(z^{r}\right)=f_{r}(z)-z$, by the corollary of Theorem 1, we have (1.8). Now, we show (1.6) and (1.7). Put $\omega=f_{r}(1 / a)$. For any $k \in \mathbb{N}$, we define a rational number p_{k} / q_{k} by

$$
\frac{p_{k}}{q_{k}}=\sum_{v=0}^{k} a^{-r^{v}}, q_{k}=a^{r^{k}} .
$$

Then p_{k} and $q_{k}>0$ are relatively prime integers, and satisfy

$$
\left|q_{k} \omega-p_{k}\right|=a^{-(r-1) r^{k}(1+o(1))}
$$

as $k \rightarrow \infty$. Put $Q=a$ and $E=a^{r-1}$. Then, by applying Lemma 3, we deduce (1.6) and (1.7) from (2.8) and (2.9) of Lemma 3 respectively. This completes the proof of the theorem.

About the number $F_{r}(1 / a)$, we conjecture that

$$
w_{d}\left(F_{r}(1 / a)\right)=r-1 \text { for } d=1, \ldots, r-1
$$

and

$$
w_{d}\left(F_{r}(1 / a)\right)=d \text { for } d \geq r
$$

References

[1] M. Amou, 'Approximation to certain transcendental decimal fractions by algebraic numbers', J. Number Theory, to appear.
[2] A. I. Galochkin, 'Transcendence measure of values of functions satisfying certain functional equations', Mat. Zametki 27 (1980); English transl. in Math. Notes 27 (1980), 83-88.
[3] R. Güting, 'Approximation of algebraic numbers by algebraic numbers', Michigan Math. J. 8 (1961), 149-159.
[4] K. Mahler, 'Arithmetische Eigenschafter der Lösungen einer Klasse von Funktionalgleichungen', Math. Ann. 101 (1929), 342-366.
[5] K. Mahler, 'An application of Jensen's formula to polynomials', Mathematika 7 (1960), 98-100.
[6] Th. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957.
[7] J. O. Shallit, 'Simple continued fractions for some irrational numbers, II', J. Number Theory 14 (1982), 228-231.

Department of Mathematics
Gumma University
Aramaki-cho 4, Maebashi 371
Japan

[^0]: This research was partly supported by the Grant-in-Aid for Encouragement of Young Scientists (No. 63790126), the Ministry of Education, Science and Culture, Japan.
 (C) 1992 Australian Mathematical Society 0263-6115/92 \$A2.00 +0.00

