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Low Frequency Estimates for Long Range
Perturbations in Divergence Form

Jean-Marc Bouclet

Abstract. We prove a uniform control as z → 0 for the resolvent (P−z)−1 of long range perturbations

P of the Euclidean Laplacian in divergence form by combining positive commutator estimates and

properties of Riesz transforms. These estimates hold in dimension d ≥ 3 when P is defined on R
d and

in dimension d ≥ 2 when P is defined outside a compact obstacle with Dirichlet boundary conditions.

1 Introduction and Main Results

Consider an elliptic self-adjoint operator in divergence form on L2(R
d), d ≥ 2,

(1.1) P = −div (G(x)∇) ,

where G(x) is a d × d matrix with real entries satisfying, for some Λ+ ≥ Λ− > 0,

(1.2) G(x)T
= G(x), Λ+ ≥ G(x) ≥ Λ−, x ∈ R

d.

Throughout the paper, we shall assume that G belongs to C∞
b (R

d) i.e., that ∂αG has

bounded entries for all multiindices α, but this is mostly for convenience, and much

weaker assumptions on the regularity of G could actually be considered. For instance,

in polar coordinates x = |x|ω, Theorem 1.1 will not use any regularity in the angular

variable ω.

We mainly have in mind long range perturbations of the Euclidean Laplacian,

namely the situation where, for some µ > 0,

(1.3)
∣∣∂α

(
G(x) − Id

) ∣∣ ≤ Cα〈x〉−µ−|α|, x ∈ R
d,

Id being the identity matrix and 〈x〉 = (1 + |x|2)1/2 the usual Japanese bracket. In

this case, it is well known that the resolvent (P−z)−1 satisfies the limiting absorption

principle, i.e., that the limits

(P − λ ∓ i0)−1 := lim
δ→0+

(P − λ ∓ iδ)−1

exist at all positive energies λ > 0 (the frequencies being λ1/2) in weighted L2 spaces

(see the historical papers [1, 27], the references therein and the references below on
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quantitative bounds). Typically, for all λ2 > λ1 > 0 and all s > 1/2, we have bounds

of the form

(1.4)
∥∥ 〈x〉−s(P − λ − i0)−1〈x〉−s

∥∥
L2→L2 ≤ C(s, λ1, λ2), λ ∈ [λ1, λ2],

and the same holds for (P − λ + i0)−1 by taking the adjoint. The behaviour of the

constant C(s, λ1, λ2) is very well known as long as λ1 does not go to 0. For a fixed

energy window, the results follow essentially from the Mourre theory ([27]), since

one knows that there are no embedded eigenvalues for such operators ([24]). At

large energies, λ1 ∼ λ2 → ∞, C(s, λ1, λ2) is at worst of order eCλ
1/2
2 (see [9]) but can

be taken of order λ
−1/2
1 if there are no trapped geodesics (i.e., all geodesics escape to

infinity); see [8, 18, 30, 32, 33].

Weights of the form 〈x〉−s are of interest since they give a quantitative notion

of spatial localization. They are also more general and more robust than compactly

supported localizations. However, we point out that the limiting absorption principle

can be justified for other kinds of weights. In particular, we can use the following well

known generator of dilations,

(1.5) A =
x · ∇ + ∇ · x

2i
=

x · ∇
i

+
d

2i
,

so called because it is the self-adjoint generator of the unitary group on L2(R
d) given

by

(1.6)
(
eitAϕ

)
(x) = e

td
2 ϕ(et x).

We know indeed, from the Mourre theory, that the limiting absorption principle can

be justified for

(1.7) 〈A〉−s(P − λ ∓ i0)−1〈A〉−s,

for any s > 1/2 (s = 1 in [27] and s > 1/2 in [29] using an idea of Mourre or, by

a different method, in [17]). We note that estimates on operators of the form (1.7)

are more general, to the extent that they imply those on 〈x〉−s(P −λ∓ i0)−1〈x〉−s by

fairly classical and simple arguments. Furthermore, the weights 〈A〉−s commute with

scalings (i.e., with eitA), which is not the case for 〈x〉−s and which can be interesting

in situations where the coefficients of P behave nicely under scaling.

In this paper, we address the problem of the behaviour of such estimates as the

spectral parameter goes to 0, typically when λ1 ↓ 0 in (1.4). Let us recall that a quick

look at the kernel of the resolvent in the flat case (P = −∆), whose kernel is given

for d = 3 (for simplicity) by

Kflat(x, y, z) =
eiz1/2|x−y|

4π|x − y| , Im(z1/2) ≥ 0,

suggests that, if one has no oscillation, i.e., if z = 0, choosing s > 1/2 in (1.4) is not

sufficient. One sees easily that s > 2 will be enough by the Schur lemma and, more
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sharply, that s > 1 will work too, using the Hardy–Littlewood–Sobolev inequality.

This (natural) restriction is however essentially irrelevant for us: our point in this

paper is not to get the sharpest weights (e.g., work in optimal Besov spaces) but only

to get a control on w(A)(P−λ− i0)−1w(A)∗ and 〈x〉−s(P−λ− i0)−1〈x〉−s as λ → 0,

for some s > 0 or some function w.

The very natural question of low frequency asymptotics for the resolvent of Schrö-

dinger type operators has been considered in many papers. However, the situation

is not as clear as for the positive energies. For perturbations of the flat Laplacian by

potentials, we refer to [16, 22, 23, 25, 28, 34, 36], to the references therein, and also to

the recent very detailed study [14]. In a sense, perturbations by potentials are harder

to study due to the possible resonances or (accumulation of) eigenvalues at 0.

For compactly supported perturbations of the flat Laplacian by metrics and obsta-

cles, the behaviour of the resolvent at 0 is obtained fairly quickly in [7,26] but making

strong use of the compact support assumption.

In the more general case of asymptotically conical manifolds, low frequency esti-

mates have been obtained by Christiansen [12] and Carron [10], with motivations in

the study of the scattering phase near 0. Recently, Guillarmou and Hassell have inves-

tigated carefully the low energy asymptotics of Schrödinger operators on asymptoti-

cally conical manifolds ([20, 21]). Using the sophisticated pseudo-differential calcu-

lus of Melrose, they were able to describe accurately the kernel of the Green function

at low energies. In particular, they derive optimal Lp bounds for the Riesz transform.

This technology is also used in [11], again for the study of the range of p for which

the Riez transform is Lp bounded. In a close geometric context, for very short range

perturbations of exact conical metrics, Wang [35] also proves asymptotic expansion

of the resolvent at low energies.

All the above papers dealing with metrics use a relatively strong decay of the per-

turbation at infinity or assume at least certain asymptotic expansions that, in any

case, exclude most long-range perturbations.

The first message of this paper is that nothing nasty can happen for long range

perturbations of the metric. More precisely, we will show that, if the perturbation

is uniformly small on R
d (but arbitrarily long range at infinity), we have uniform

bounds on the resolvent at low frequency. The second message is that, for arbitrary

long range perturbations, we can use certain properties of the Riesz transform to

handle the non-small compact part of the perturbation and get low energy estimates.

In a sense, this is the opposite point of view to [11, 20, 21], to the extent that we

use the Riesz transform to analyze the resolvent instead of using information on the

resolvent to study the Riesz transform.

We think that the method described in this paper is quite simple (at least on R
d).

More importantly, we hope that it is rather flexible. For instance the analysis of the

present paper could be extended to more general operators, for instance by allowing

potentials decaying like 〈x〉−2−ǫ at infinity, since the latter can be put under diver-

gence form if we allow non-local G. We focus on the case (1.1) to avoid such techni-

calities. Furthermore, our method can be adapted to other geometries. To illustrate

this fact, we have devoted Section 6 to the situation where P is defined on the exterior

of a bounded obstacle with Dirichlet boundary conditions. In particular, for weights

of the form 〈x〉−s, we obtain uniform estimates on the resolvent at low energies in
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dimension ≥ 2, whereas in R
d we need to consider d ≥ 3.

Before stating our results, we recall that, basically, the spirit of resolvent estimates

(like many other results in scattering theory) is to consider that we are close to the flat

Laplacian. This is true near infinity, and also to a certain extent in bounded sets, by

using certain compactness arguments. We therefore start by giving our results in the

case of small perturbations on R
d. The proofs in this situation are simpler and thus

more pedagogic. Furthermore, a large part of the proofs in the general case follow

exactly the same scheme, and we feel that it is worth considering first globally small

perturbations and then arbitrary ones.

To state the results on small perturbations, we introduce the space Sdil(R
d) defined

by

a ∈ Sdil(R
d) ⇐⇒ a ∈ C∞

b (R
d) and (x · ∇)na ∈ L∞(R

d) for all n,

and the related (semi-)norms

‖a‖N,dil := max
n≤N

‖(x · ∇)na‖L∞ .

For matrices H = (b jk) with entries in Sdil(R
d), we shall denote ‖H‖N,dil for

max1≤ j,k≤d ‖b jk‖N,dil.

As mentioned above, the condition a ∈ C∞
b (R

d) is mainly for convenience, to

simplify certain algebraic manipulations. For instance, it ensures that the resolvent

(P − z)−1 maps the Schwartz space S(R
d) into itself if z /∈ R, which is useful to

compute commutators.

This space is obviously closely related to the generator of dilations (1.5).

Theorem 1.1 Assume that d ≥ 2. Let G be of the form G(x) = Id + H(x), with H

symmetric and with real entries in Sdil(R
d). Then for all ε > 0, there exists Cε > 0 such

that for all H satisfying

(1.8) 2G(x) − (x · ∇)H(x) ≥ ε, x ∈ R
d,

and all h such that 0 < h ≤ C−1
ε (1 + ‖H‖4,dil)

−1, we have

(1.9)
∥∥ |D|(hA + i)−1(P − z)−1(hA − i)−1|D|

∥∥
L2→L2 ≤

Cε

h
, z ∈ C \ R.

Here |D| is the usual Fourier multiplier by |ξ|.

The main point in this theorem is the uniform control in z of the resolvent under

condition (1.8), which is essentially a smallness condition because it clearly holds

if ‖H‖1,dil is small enough. We note in passing that the role of (1.8) is to ensure

that i[P, A] is globally elliptic and thus to get positive commutator estimates without

compact remainder.

The main novelty is that we get bounds for small z, say |z| < 1. We also obtain

bounds for large z, but these are essentially well known since the condition (1.8)
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implies that the metric G (or rather G−1) is non trapping (x · ξ is a global escape

function - see for instance [18, 30]).

We also point out that the regularity ‖H‖4,dil is probably not sharp. We have not

tried to get the optimal regularity in order to avoid technicalities in the proofs and to

focus on the main simple algebraic ideas; we thus might have made some relatively

crude estimates at certain steps (in particular in Proposition 4.2). One may however

hope to improve the regularity condition by changing ‖H‖4,dil into ‖H‖2,dil.

We finally mention that we consider weights of the form w(hA) = (hA − i)−1

since, in the calculation of the relevant commutator (see Section 3), one needs to

consider the Fourier transform of |w(a)|2, that is of (a2 + 1)−1 which leads to very ex-

plicit formulas. However, in principle, the present methods would allow to consider

ws(hA) = (1 + h2A2)s/2 with s > 1/2 and h small enough.

We now derive weighted estimates of the same form as (1.4). For d ≥ 3, recall the

standard notation for the usual conjugate Sobolev exponents

2∗ =
2d

d + 2
, 2∗ =

2d

d − 2
.

Corollary 1.2 If d ≥ 3, under the same assumptions as in Theorem 1.1, we have

∥∥ (hA + i)−1(P − z)−1(hA − i)−1
∥∥

L2∗→L2∗ ≤ C
h
, z ∈ C \ R.

This in turn leads to weighted estimates for long range perturbations of the Eu-

clidean metric.

Corollary 1.3 Let d ≥ 3. If G = Id + H satisfies (1.2), (1.3) and (1.8), then for all

ǫ > 0, (1.10) holds for all z ∈ C \ R.

Note that the difference between this corollary and Theorem 1.4 below is that the

estimates hold for z ∈ C \ R. The latter is natural since the assumption (1.8) implies

the non-trapping condition, which gives the uniform control at high energies.

It is also worth noticing that the assumptions of Theorem 1.1 and the scale in-

variant space Sdil(R
d) are very close to the context of [31] where the time dependent

Schrödinger equation is studied. Among other dispersive estimates, Tataru proves in

[31] L2-space-time bounds, usually referred to as global smoothing effect, for small

long range perturbations of the Euclidean metric, possibly time dependent, by using

also positive commutator techniques. In the time independent case, our (weighted)

resolvent estimates (1.10) combined with the usual ones at high energy also imply this

smoothing effect. From the point of view of space-time bounds, the results of [31]

are stronger, since they allow time dependent metrics. But on the other hand, in the

time independent case, our resolvent estimates (which are L∞
loc in term of the spectral

parameter z) are stronger than L2-space-time bounds on the evolution group.

We next state the results on R
d for general long range perturbations of the metric.

Theorem 1.4 Let d ≥ 3. Assume that G satisfies (1.2) and (1.3). Then for some h > 0

small enough and λ0 > 0 small enough we have

∥∥ |D|(hA + i)−1(P − z)−1(hA − i)−1|D|
∥∥

L2→L2 . 1, |Re(z)| < λ0, z /∈ R.

https://doi.org/10.4153/CJM-2011-022-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-022-9


966 J.-M. Bouclet

Furthermore, for all ǫ > 0,

(1.10) ‖〈x〉−2−ǫ(P − z)−1〈x〉−2−ǫ‖L2→L2 ≤ Cǫ,G, |z| < 1, z /∈ R.

In Section 6, a similar theorem is obtained in the exterior of a compact obstacle.

One may notice that, since we use Dirichlet boundary conditions, it holds in dimen-

sion d ≥ 2.

Very recently, after a first version of this paper was posted, Bony-Häfner obtained

results similar to (1.10) for P1/2, which can be adapted to derive low frequency esti-

mates for P as well [4, 5]. Their results give estimates with weights of the form 〈x〉−s,

s > 1. However their method does not clearly allow uniform bounds with weights of

the form w(A) nor the treatment of obstacles. Furthermore, it holds only in dimen-

sion ≥ 3.

Our estimates rely on a very simple observation. To state it and for further use in

this paper, we give the following definition.

Definition 1.5 A differential operator B is of div-grad type if it is of the form

B =

d∑

j,k=1

D j

(
b jk(x)Dk

)
,

with coefficients such that b jk ∈ Sdil(R
d). As usual, we have set D j =

1
i

∂
∂x j

.

The first ingredient of the proof of Theorem 1.1 is the following trivial remark.

Lemma 1.6 If B is of div-grad type then [A, B] is of div-grad type. More precisely, if

B =

∑
D j(b jk(x)Dk),

then

i[B, A] =

∑

jk

D j

(
2b jk(x) − (x · ∇b jk)(x)

)
Dk.

We omit the proof, which follows from an elementary computation (see also (2.5)

below). Note that the formal computations are justified by the assumption that the

coefficients b jk are smooth.

The second ingredient is the Mourre theory (see for instance [27]). Basically, the

Mourre theory allows us to derive a priori bounds on the solutions to (P − z)u =

f , (or more general Schrödinger operators), by exploiting a positive commutator

estimate of the form χ(P)i[P, A]χ(P) ≥ cχ2(P), with c > 0 and χ ∈ C∞
0 (R) real

valued and equal to 1 in a neighborhood of Re(z). For operators of div-grad type as

in this paper, such estimates hold only if χ is supported in R
+, i.e., away from the

0 threshold. This is due to the fact that i[P, A] is close to 2P (at least for globally

small perturbations or near infinity), so one can essentially bound from below the

(spectrally localized) commutator by 2χ(P)Pχ(P). The latter is only positive definite

(on the range of χ(P)) if χ is supported in R
+, and one then has ‖P1/2χ(P)v‖L2 ≈
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‖χ(P)v‖L2 by the spectral theorem. If 0 belongs to the support of χ, we lose this

equivalence. Rather than getting lower bounds by L2 norms, we shall use the weaker

observation that (in the simple case of small perturbations)

(
i[P, A]v, v

)
≥ ‖∇v‖2

L2 & ‖v‖2
L2∗

by the homogeneous Sobolev embedding

(1.11) ‖v‖L2∗ ≤ C
∥∥ |D|v

∥∥
L2 .

In other words, we keep the P1/2 factor to bound 2(χ(P)Pχ(P)v, v) from below by

‖P1/2χ(P)v‖2. By combining this remark with techniques due basically to Mourre,

we shall derive (weighted) L2∗ → L2∗ bounds for the resolvent of P.

2 Properties of the Generator of Dilations

In this section we collect some elementary formulas for the generator of dilations

(1.5) and its resolvent. For further purposes, it will be convenient to consider its

semiclassical version, i.e., hA with 0 < h < 1. All the properties will follow from the

usual formula

(2.1) (hA − z)−1
=

1

i

∫ ±∞

0

e−itzeithAdt, ±Im(z) < 0

combined with the explicit form of the unitary group (1.6).

Observe first that, since

‖eithAϕ‖Lp = eht
(

d
2
− d

p

)
‖ϕ‖Lp

for p ∈ [1,∞] and, for instance, ϕ ∈ S(R
d), the formula (2.1) implies that

‖(hA − z)−1ϕ‖Lp ≤ 1

|Im(z)| − h| d
2
− d

p
|
‖ϕ‖Lp ,

provided that |Im(z)| > h| d
2
− d

p
|. For the applications in this paper, this will always

be the case since z will be close to ±i, and h will be small.

Next, if ρ is a measurable function of polynomial growth, one readily checks that

(2.2) eithAρ(D)e−ithA
= ρ(e−thD), eithAρ(x)e−ithA

= ρ(eht x).

Also, if ρ is C1 with gradient of polynomial growth, we have

i
[
ρ(D), A

]
= (ξ · ∇ξρ)(D), i

[
ρ(x), A

]
= −(x · ∇xρ)(x).

In the special case where ρ = ρs is homogeneous of real degree s ≥ 0, we have

(2.3) eithAρs(D)e−ithA
= e−sthρs(D),
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from which one easily deduces that

(2.4) (hA − z)−1ρs(D) = ρs(D)(hA − z + ihs)−1, |Im(z)| > hs

using (2.1).

Finally, we consider the action on differential operators. If B =
∑

jk D j(b jk(x)Dk)

is of div-grad type, (2.2) and (2.3) readily imply that

(2.5) eithABe−ithA
= e−2ht

∑

jk

D j

(
b jk(eht x)Dk

)
.

Operators of this form will be of great importance in this paper. Let us record the

following simple property.

Proposition 2.1 Let b ∈ Sdil(R
d) and set b(τ )(x) = b(eτ x), i.e., b(τ ) = eiτAbe−iτA as

multiplication operators. Then for all k, n ∈ N,

∂k
τ (x · ∇)n

(
b(τ )

)
=

(
(x · ∇)k+nb

)
(τ )

.

In particular, for all N, ‖b‖N,dil = ‖b(τ )‖N,dil.

The proof is a straightforward calculation that we omit.

For further purposes, it will be convenient to use the following definition.

Definition 2.2 (Admissible operators) Let m ∈ N. We say that a family (bτ )τ∈R is

m-admissible in Sdil(R
d) if, for all integers k, n

‖∂k
τ (x · ∇)nbτ‖L∞ ≤ Cknem|τ |.

A family of differential operators (Bτ )τ∈R is m-admissible if

Bτ =

d∑

j,k=1

D j

(
b jk,τ (x)Dk

)
,

with (b jk,τ )τ∈R m-admissible families in Sdil(R
d).

Example With the notation of Proposition 2.1, b±τ := e±2τ b(τ ) are two 2-admissi-

ble families in Sdil(R
d).

Proposition 2.3 Let (Bτ )τ∈R be an m-admissible family of differential operators.

Then if w : [0, 1] → C is continuous, the operators

d

dτ
Bτ , eiτABτ e−iτA, and

∫ 1

0

w(s)Bsτ ds

are respectively m, m + 2, and m-admissible.

In this proposition, the derivative d
dτ (resp. integration) means that one considers

the operator with coefficients differentiated (resp. integrated) with respect to τ .

Proof The case of (d/dτ )Bτ is obvious. For the second operator, the result follows

from (2.5) (with th = τ ), and the fact that m-admissible coefficients are stable by

conjugation by eiτA (due to Proposition 2.1). The last case is simply a consequence of

the fact that
∫ 1

0
|w(s)|skem|sτ |ds . em|τ |, for all non negative integer k.
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3 A Representation Formula for the Commutator

As indicated in the introduction, we shall use the commutator techniques of Mourre

to get lower bounds. It will be convenient to use the recent energy estimates approach

proposed by Gérard [17]. The purpose of this section is to compute the relevant

commutator relatively explicitly.

In the sequel we denote by F the bounded function F(λ) = arctan(λ), λ ∈ R,
whose final interest will be that it is positive (or negative) up to an additive constant

and has a positive derivative.

We also introduce

(3.1) Pτ = e−iτAi[P, A]eiτA,

and standardly denote

(3.2)
(

i[P, F(hA)]u1, u2

)
=

(
iF(hA)u1, Pu2

)
−

(
iPu1, F(hA)u2

)
.

The purpose of this section is to prove a representation formula for this commutator.

Rather than using the Helffer–Sjöstrand formula as in [19], we use a functional cal-

culus based on Fourier transform that is more convenient, since we have an explicit

formula for the unitary group eitA.

Proposition 3.1 For all u1, u2 ∈ S(R
d) and all 0 < h < 1, we have

(3.3)
(

i[P, F(hA)]u1, u2

)
=

h

2

∫

R

e−|t|
( 1

t

∫ t

0

(eithAPshu1, u2)ds
)

dt.

In the spirit of [17], we use a semiclassical parameter h thanks to which the deriva-

tion of a positive estimate will be fairly transparent.

The rest of the section is devoted to the proof of this proposition. Recall first that

arctan(λ) =

∫ +∞

0

sin(tλ)

t
e−t dt,

which we are going to approximate by

Fν(λ) =

∫ +∞

0

sin(tλ)
t

t2 + ν2
e−t dt =

1

2i

∫

R

eitλ t

t2 + ν2
e−|t|dt,

with ν > 0. For future reference, we record the following lemma.

Lemma 3.2 There exists C > 0 such that |Fν(λ)| ≤ C|λ|, ν > 0, λ ∈ R. Further-

more, for all λ ∈ R, Fν(λ) → F(λ), ν → 0.

We omit the very simple proof.

Lemma 3.3 For all v, w ∈ L2(R
d), all ν > 0, and all h > 0, we have

(3.4)
(

Fν(hA)v, w
)

=
i

2

∫

R

te−|t|

t2 + ν2
(eithAv, w)dt.
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Proof If (EhA
λ )λ∈R denotes the spectral resolution of hA, we have by definition

(
Fν(hA)v, w

)
=

∫

R

Fν(λ)d(EhA
λ v, w),

and then by Parseval’s identity

(
Fν(hA)v, w

)
=

1

2π

∫

R

F̂ν(t)(e−ithAv, w)dt,=
i

2

∫

R

te−|t|

t2 + ν2
(eithAv, w)dt.

This identity can be justified by a standard density argument, assuming first that v

and w are spectrally localized (i.e., of the form χ(A)v, χ(A)w with χ ∈ C∞
0 ) and ap-

proximating (for fixed ν) Fν by Schwartz functions by adding a cutoff vanishing close

to t = 0 in the definition of Fν . These Schwartz functions converge pointwise to Fν

with uniform bound of order C|λ|, which is harmless if we consider spectrally local-

ized v and w. Their Fourier transforms converge dt almost everywhere (pointwise on

Rt \ 0) to F̂ν with uniform bound by C|t|e−|t|, and the result follows easily.

Since Fν is real valued, we have (Fν(hA)v, w) = (v, Fν(hA)w), and thus

(
v, Fν(hA)w

)
=

i

2

∫

R

te−|t|

t2 + ν2
(v, e−ithAw)dt.

From the latter identity and (3.4), we deduce that

(3.5)
(

i[P, Fν(hA)]u1, u2

)
=

1

2

∫
te−|t|

t2 + ν2

(
(eithAu1, Pu2) − (Pu1, e−ithAu2)

)
dt,

where the commutator in the left hand side is understood in the sense of (3.2) (i.e.,

the form sense).

Lemma 3.4 For all t ∈ R, h > 0 and u1, u2 ∈ S(R
d),

(3.6) (eithAu1, Pu2) − (Pu1, e−ithAu2) = h

∫ t

0

(
eithAPshu1, u2

)
ds.

In addition, for each pair u1, u2, there is a constant C such that

(3.7)
∣∣ (eithAu1, Pu2) − (Pu1, e−ithAu2)

∣∣ ≤ C|t|eh|t|, t ∈ R.

Proof The formula (3.6) is equivalent to the same one with u1 replaced by e−ithAu1,

and the corresponding identity is then a consequence of Duhamel’s formula, i.e., is

obtained by checking that the derivatives of both sides coincide using (2.5). To get

(3.7), we use (3.6) and observe that, since the coefficients of Psh are of order e2sh (see

(2.5) and (3.1)), we have

|(eithAPshu1, u2)| ≤ Ce2sh‖∇u1‖L2‖∇e−ithAu2‖L2

≤ e(2s−t)h‖∇u1‖L2‖∇u2‖L2 ,

where |2s − t| ≤ |t|, since s is between 0 and t . The conclusion follows easily.
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Proof of Proposition 3.1 By Lemma 3.2 and the Spectral Theorem, we have

Fν(hA)u j ⇀ F(hA)u j , ν → 0, j = 1, 2.

Thus the left-hand side of (3.3) is the limit as ν → 0 of the left-hand side of (3.5). To

compute the limit of the right-hand side of (3.5), we simply insert (3.6) therein and

let ν → 0 by dominated convergence using (3.7) and the fact that h < 1. The limit is

clearly the right-hand side of (3.3), and this completes the proof.

4 Semiclassical Expansion of the Commutator

In this section, we establish the first order asymptotic expansion in h of (3.3). To state

this result, we introduce the following notation. Write first

Psh = P0 + shQsh, with Qs =

∫ 1

0

d

dτ
Pτ |τ=σs

dσ.

Write next
1

t

∫ t

0

hsQshds = th

∫ 1

0

sQtshds,

and set Bτ := τ
∫ 1

0
sQsτ ds. Notice that (Pτ )τ∈R given by (3.1) is a 2-admissible family

of differential operators (see Definition 2.2), and hence so are (Qτ )τ∈R and (Bτ )τ∈R

by Proposition 2.3.

Observe that

h

2

∫
e−|t|(eithAP0u1, u2)dt = h

(
P0u1, (h2A2 + 1)−1u2

)
,

as follows easily from the spectral theorem and the Fourier transform

1

1 + λ2
=

1

2

∫

R

e−itλe−|t|dt.

It can also be seen as a consequence of (2.1). Define

Ah,H(u1, u2) :=
(

P0(hA + i)−1u1, (hA + i)−1u2

)
,

and

BH,h(u1, u2) =
1
h

{(
P0u1, (h2A2 + 1)−1u2

)
−

(
P0(hA + i)−1u1, (hA + i)−1u2

)}
,

so that

h
(

P0u1, (h2A2 + 1)−1u2

)
= hAh,H(u1, u2) + h2

Bh,H(u1, u2).

If we finally set

(Chu1, u2) :=
1

2

∫

R

e−|t|t(eithABthu1, u2)dt,

we have

(
i[P, F(hA)]u1, u2

)
= hAh,H(u1, u2) + h2

Bh,H(u1, u2) + h2
Ch,H(u1, u2).

The purpose of this section is thus to estimate Bh,H and Ch,H .
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Proposition 4.1 There exists C such that for all 0 < h < 1 and all H,

∣∣BH,h(u1, u2)
∣∣ ≤ C

(
1 + ‖H‖2,dil

)∥∥ |D|(hA + i)−1u1

∥∥
L2

∥∥ |D|(hA + i)−1u2

∥∥
L2 .

Proof By the resolvent identity

(hA + i + ih)−1
= (hA + i)−1 − ih(hA + i)−1(hA + i + ih)−1

and (2.4), we have

(4.1) (hA + i)−1D j = D j

(
1 − ih(hA + i + ih)−1

)
(hA + i)−1.

Next, we observe that

(4.2)
[

(hA + i)−1, G jk

]
= − h

i
(hA + i)−1(x · ∇H jk)(hA + i)−1,

and finally that we also have

(4.3) (hA + i)−1Dk =
(

1 − ih(hA + i)−1
)

Dk(hA + i)−1,

since

[
(hA + i)−1, Dk

]
= −h(hA + i)−1[A, Dk](hA + i)−1

= ih(hA + i)−1Dk(hA + i)−1.

From (4.1), (4.2), and (4.3), we see that

[
(hA + i)−1, P0

]
=

∑

jk

D jB jk(h)Dk(hA + i)−1,

with

‖B jk(h)‖L2→L2 . h
(

1 + ‖H‖2,dil

)
.

The result follows.

Proposition 4.2 For all 0 < h0 < 1/4, there exists C > 0 such that

|Ch,H(u1, u2)| ≤ C(1 + ‖H‖4,dil)
∥∥ |D|(hA + i)−1u1‖L2

∥∥ |D|(hA + i)−1u2

∥∥
L2

for all u1, u2 ∈ S(R
d), all 0 < h < h0, and all H.

Proof The proof simply relies on integrations by parts. Indeed, since

(4.4) e−ithAu2 = ie−ithA(hA + i)−1u2 + i d
dt

e−ithA(hA + i)−1u2

we can write

Ch,H(u1, u2) = iCh,H(u1, (hA+i)−1u2)+
i

2

∫
te−|t|

(
Bht u1,

d

dt
e−ithA(hA+i)−1u2

)
dt,
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where the second term in the right-hand side reads

− i

2

∫
e−|t|

({
thB ′

ht + (1 − |t|)Bht

}
u1, e−ithA(hA + i)−1u2

)
dt,

if B ′
τ = (d/dτ )Bτ . Recall that (B ′

τ )τ is still a 2-admissible family of operators, so that

B̃τ := eiτABτ e−iτA and B̂τ := eiτAB ′
τ e−iτA,

define 4-admissible families of operators by Proposition 2.3. Then, using again (4.4)

with u1 instead of u2 and integrating by parts (observe that the functions e−|t| and

(1− |t|) are not C1 at t = 0 but are continuous, and therefore there are no boundary

terms), we obtain a sum of integrals of the form

∫ ±∞

0

w±(t)e−|t|
(

eithAC±
ht (hA + i)−1u1, (hA + i)−1u2

)
dt

with w± polynomial and (C±
τ )τ∈R 4-admissible families of operators whose coeffi-

cients are bounded in L∞(R
d) by e4|τ |‖H‖4,dil. The result follows.

5 Proofs of the Results

5.1 Proof of Theorem 1.1

Assume that Im(z) > 0. The estimates for Im(z) < 0 are obtained by taking the

adjoint. We recall that F(λ) = arctan(λ). As in [17], we observe that

2Im
((

F(hA) − π
2

)
u, (P − z)u

)
= 2Im(F(hA)u, Pu) − 2

(
Im(z)

(
F(hA) − π

2

)
u, u

)

=
(

i[P, F(hA)]u, u
)
− 2

(
Im(z)

(
F(hA) − π

2

)
u, u

)

≥
(

i[P, F(hA)]u, u
)
.

By (1.8) and Propositions 3.1, 4.1, and 4.2, we have

(
i[P, F(hA)]u, u

)

≥ h
(

P0(hA + i)−1u, (hA + i)−1u
)
−Ch2‖|D|(hA + i)−1u‖2

L2

≥ ε
2
h
∥∥ |D|(hA + i)−1u

∥∥ 2

L2 ,

(5.1)

by taking h small enough so that Ch ≤ ε/2. Notice that the constant C in (5.1) is of

order 1 + ‖H‖4,dil, so that we may choose h−1 of order (1 + ‖H‖4,dil).

On the other hand, we may write

((
F(hA)− π

2

)
u, (P−z)u

)
=

(
|D|

(
F(hA)− π

2

)
(hA+ i)−1u, |D|−1(hA− i)(P−z)u

)
.

Thus, once we have proved Proposition 5.1, we shall get the estimate
∥∥ |D|(hA + i)−1u

∥∥
L2 ≤ C

h

∥∥ |D|−1(hA − i)(P − z)u
∥∥

L2

which gives (1.9).
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Proposition 5.1 For all 0 < h0 < 1, there exists C > 0 such that

∥∥ |D|F(hA)(hA + i)−1u
∥∥

L2 ≤ C
∥∥ |D|(hA + i)−1u

∥∥
L2 ,

for all u ∈ S(R
d) and 0 < h ≤ h0.

Proof Since we have

∥∥F(hA)|D|(hA + i)−1u
∥∥

L2 ≤ ‖F‖∞
∥∥ |D|(hA + i)−1u

∥∥
L2 ,

the result is clearly equivalent to an estimate on the commutator [|D|, F(hA)]. The

latter can be computed explicitly using the same argument as in Proposition 3.1. We

obtain

(5.2)
(

i
[
|D|, F(hA)

]
u1, u2

)
=

h

2

∫

R

e−|t|

(
1

t

∫ t

0

esh(eithA|D|u1, u2)ds

)
dt, u1, u2 ∈ S(R

d),

since e−ishAi[|D|, A]eishA
= esh|D|. This implies that

∣∣ ([|D|, F(hA)]u1, u2)
∣∣ ≤ h

2

∫
e−(1−h)|t|dt

∥∥ |D|u1

∥∥
L2‖u2‖L2 ,

i.e., that ‖[|D|, F(hA)]u1‖L2 . (1 − h)−1
∥∥ |D|u1

∥∥
L2 . The result then follows clearly.

5.2 Proof of Corollary 1.2

Using the homogeneous Sobolev imbedding (1.11), we have, for any f ∈ L2

(5.3)
∥∥ (hA + i)−1(P − z)−1 f

∥∥
L2∗ ≤ C

∥∥ |D|(hA + i)−1(P − z)−1 f
∥∥

L2 .

Then, by choosing f = (hA − i)−1g with g ∈ L2 ∩ L2∗ , we have

∥∥ |D|(hA + i)−1(P − z)−1 f
∥∥

L2

= sup
‖u‖L2 =1

∣∣ ( |D|(hA + i)−1(P − z)−1 f , u
) ∣∣

= sup
‖u‖L2 =1

∣∣ (g, (hA + i)−1(P − z̄)−1(hA − i)−1|D|u
) ∣∣

≤ sup
‖u‖L2 =1

‖g‖L2∗

∥∥ (hA + i)−1(P − z̄)−1(hA − i)−1|D|u
∥∥

L2∗

≤ C
∥∥ |D|(hA + i)−1(P − z̄)−1(hA − i)−1|D|

∥∥
L2→L2‖g‖L2∗ ,

which combined with (5.3) completes the proof.
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5.3 Proof of Corollary 1.3

By Hölder’s inequality,

(5.4) ‖〈x〉−1−ǫu‖L2 . ‖u‖L2∗ , ‖〈x〉−1−ǫv‖L2∗ . ‖v‖L2 .

Next choose χ ∈ C∞
0 (R), which is equal to 1 near [0, 1]. It is classical that

(1 − χ2)(P)(P − z)−1 : L2∗ → L2∗

by Sobolev embeddings, with norm uniformly bounded for |z| ≤ 1. This follows

for instance from the fact that the L2 bounded operator (1 − χ2)(P)(P − z)−1 is a

pseudo-differential operator of order −2. It is therefore sufficient to show that

〈x〉−1χ(P)(P − z)−1χ(P)〈x〉−1 : L2∗ → L2∗

is bounded uniformly with respect to |z| < 1, z /∈ R. To get the latter, we simply

write

χ(P)〈x〉−1
= (hA − i)−1(hA − i)χ(P)〈x〉−1

and use the fact that χ(P)〈x〉−1 and Aχ(P)〈x〉−1 are bounded on Lp for all p, which

follows from the fact that these operators are pseudo-differential operators of order

−∞ (see, for instance, [6] for more details on such properties).

5.4 Local Compactness of the Riesz Transform

In this subsection we prove a property of the Riesz transform that we shall use in the

proof of Theorem 1.4. We first recall the definition of the Riesz transform. Since

P ≥ 0 is self-adjoint, the Spectral Theorem and (1.2) give

(5.5) (Pu, u) = ‖P1/2u‖2
L2 ≈ ‖∇u‖2

L2 ≈
∥∥ |D|u

∥∥ 2

L2 ,

where ≈ stands for the equivalence of norms. Formally replacing u by P−1/2v, this

implies that the operators

(5.6) R( j) = ∂x j
P−1/2

are bounded on L2(R
d) for all j. They are the components of the well-known Riesz

transform ∇P−1/2. To define R( j) more explicitly, we can use the following integral

representation (see, for instance, [3]). For each n ≥ 1, we consider

Rn( j) := π−1/2∂x j

∫ n

1/n

e−tP dt√
t
,

where the integral converges in the strong sense. It is not hard to check that Rn( j)

is bounded using that e−tP maps L2 in ∩sH
s for all t > 0. Let us briefly recall why

Rn( j) converges strongly as n → ∞ (for this purpose we could actually consider
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lower and upper bounds in the integral defining Rn( j) going independently to 0 and

∞ respectively, but this is irrelevant for our purpose). Using (5.5), we see that

(5.7) ‖Rn( j)u‖L2 ≤ C
∥∥√P

∫ n

1/n

e−tP dt√
t

u
∥∥

L2 = C‖ fn(P)u‖L2 ,

with

fn(λ) =

∫ n

1/n

λ1/2e−tλ dt√
t

=

∫ λn

λ/n

e−τ dτ√
τ

.

Since fn is uniformly bounded with respect to n ≥ 1 and λ ≥ 0, (5.7) and the Spectral

Theorem show that ‖Rn( j)‖L2→L2 ≤ C for all n. Therefore, it is sufficient to prove

the strong convergence of Rn( j) on a dense subset. For the latter, we observe that,

since 0 is not an eigenvalue of P, the spectral theorem shows that for all u ∈ L2,

(5.8) χ[ǫ,ǫ−1](P)u → u, ǫ → 0,

χ[ǫ,ǫ−1] denoting the characteristic function of [ǫ, ǫ−1]. It is then easy to check that

Rn( j)χ[ǫ,ǫ−1](P) converges in the strong sense as n → ∞ for each ǫ > 0, since the

spectral projection on [ǫ, ǫ−1] guarantees the exponential decay of e−tP as well as the

boundedness of ∂x j
χ[ǫ,ǫ−1](P). By (5.8), functions of the form χ[ǫ,ǫ−1](P)u are dense

in L2, so this completes the proof of the strong convergence of Rn( j). We may thus

define

R( j) = π−1/2∂x j

∫ ∞

0

e−tP dt√
t

:= s− lim
n→∞

Rn( j),

which is a reasonable definition for ∂x j
P−1/2, since one checks that

(5.9) R( j)P1/2u = ∂x j
u

for all u ∈ D(P). This is an elementary consequence of the Spectral Theorem and the

Lebesgue theorem since, for all λ > 0

π−1/2 fn(λ) → 1, n → ∞,

and since {λ = 0} is negligible with respect to the spectral measure, because 0 is not

an eigenvalue of P. This completes our definition of R( j).

The main purpose of this subsection is to prove the following result.

Proposition 5.2 Assume that d ≥ 3. Then for all χ ∈ C∞
0 (R

d) and all ϕ ∈ C∞
0 (R),

χ(x)R( j)ϕ(P) is a compact operator on L2(R
d), for all j = 1, . . . , d.

Proof We split π1/2R( j) into ∂x j

∫ 2

0
e−tPdt/t1/2 + ∂x j

∫ ∞

2
e−tPdt/t1/2. It is clear that

χ(x)∂x j

∫ 2

0

e−tP dt√
t
χ(P) =

(
χ(x)∂x j

χ(P)
) ∫ 2

0

e−tP dt√
t
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is compact since the bracket is compact and the integral defines a bounded operator

on L2. We then write the contribution of the second term as

(
χ(x)∂x j

e−P〈x〉N
) ∫ ∞

2

〈x〉−N e−(t−1)P dt√
t
,

with N > 0 to be chosen below. Again the bracket is a compact operator (since e−P

is a smoothing operator that preserves polynomial decay). To see that the integral is

bounded on L2, we use the classical Gaussian upper bounds for the kernel K(t, x, y)

of e−tP (see, for instance, [2, 13]). For some C, c > 0 we have,

|K(t, x, y)| ≤ C

td/2
exp

( −c|x − y|2
t

)
, x, y ∈ R

d, t > 0,

and thus ‖e−tP‖L2→L∞ . t−d/4. Therefore, if N > d/2,

‖t−1/2〈x〉−N e−(t−1)Pu‖L2 . t−
1
2
− d

4 ‖u‖L2 ,

which is integrable on [2,∞), since 1
2

+ d
4

> 1. This completes the proof.

5.5 Proof of Theorem 1.4

We start by observing that it is sufficient to show that, for some λ > 0 and h > 0

small enough, we have the bound

(5.10)
∥∥ |D|(hA + i)−1(P − z)−1(hA − i)−1|D|

∥∥
L2→L2 ≤ C, |Re(z)| < λ.

We will then obtain (1.10) exactly as in Corollary 1.3. We may even replace (P− z)−1

in this estimate by (P − z)−1ϕ0(P/λ), with ϕ0 ∈ C∞
0 (R) such that ϕ0 ≡ 1 near

[−1, 1], since the operator

|D|(hA + i)−1(P − z)−1(1 − ϕ0)(P/λ)(hA − i)−1|D|

is easily seen to be bounded on L2, uniformly with respect to z such that |Re(z)| < λ.

It is therefore enough to consider u of the form u = (P − z)−1ϕ0(P/λ) f with f ∈
S(R

d) so that

(5.11) u = ϕ(P/λ)u,

for some ϕ ≡ 1 near supp(ϕ0).

Independently, observe that, as in the proof of Theorem 1.1, we have, for all u ∈
S(R

d),

(5.12)(
i[P, F(hA)]u, u

)
≥ h

2

(
P0(hA + i)−1u, (hA + i)−1u

)
−Ch2

∥∥ |D|(hA + i)−1u
∥∥ 2

L2 ,
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but the difference is now that P0 is not necessarily elliptic in a compact set. It is how-

ever elliptic outside a large enough compact set, since P0 is close to P, or equivalently

to −∆, at infinity and we may thus write P0 = P̃0 + Pc with a uniformly elliptic part

P̃0 =

∑

jk

D jG̃0(x)Dk

for some matrix G̃0 satisfying (1.2), and a compactly supported part

Pc =

d∑

j,k=1

D j

(
b jk(x)Dk

)
, b jk ∈ C∞

0 (R
d).

We shall absorb the contribution of (Pc(hA + i)−1u, (hA + i)−1u) as in the original

proof of Mourre [27] by considering u that are spectrally localized very close to 0.

Using (5.12) and the uniform ellipticity of P̃0 there exists c > 0 such that, for all u

satisfying (5.11), we have

(
i[P, F(hA)]u, u

)
≥ ch

∥∥∇(hA + i)−1u
∥∥ 2

L2 −Ch2
∥∥ |D|(hA + i)−1u

∥∥ 2

L2

+ h
2

(
Pc(hA + i)−1ϕ(P/λ)u, (hA + i)−1u

)
.

(5.13)

Using (5.6), we now introduce

Rc = −
∑

jk

R( j)∗b jk(x)R(k),

i.e., Rc = P−1/2PcP−1/2 formally. Actually, by (5.9), we have P1/2RcP1/2
= Pc at least

in the form sense, and this allows us to rewrite the last term of (5.13) as h/2 times the

sum of the following two terms
(

Rcϕ(P/λ)P1/2(hA + i)−1u, P1/2(hA + i)−1u
)
,(5.14)

(
Pc

[
(hA + i)−1, ϕ(P/λ)

]
u, (hA + i)−1u

)
.

The local compactness of the Riesz transform is crucial for the following result.

Proposition 5.3 As λ ↓ 0, we have ‖Rcϕ(P/λ)‖L2→L2 → 0.

Proof The operator Rcϕ(P/λ) can be written for λ small enough, (Rcϕ(P)) ϕ(P/λ)

since ϕ ≡ 1 near 0. The bracket is compact by Proposition 5.2, and ϕ(P/λ) goes

strongly to 0 as λ ↓ 0, by the Spectral Theorem, since 0 is not an eigenvalue of P.

Since Rcϕ(P) is compact, (Rcϕ(P)) ϕ(P/λ) goes to 0 in operator norm.

By Proposition 5.3 and by choosing λ > 0 small enough, we can make (5.14) small

so that, using (5.5), we get the existence of c ′ > 0 such that

(i[P, F(hA)]u, u) ≥ c ′h
∥∥P1/2(hA + i)−1u

∥∥ 2

L2 −Ch2
∥∥ |D|(hA + i)−1u

∥∥ 2

L2

− h

2

∣∣(Pc[(hA + i)−1, ϕ(P/λ)]u, (hA + i)−1u
) ∣∣

(5.15)

for all 0 < h < 1/4 and all u satisfying (5.11). It remains to deal with the last term of

(5.15). This is the purpose of the following proposition.
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Proposition 5.4 For all λ > 0, there exists Cλ > 0 such that for all v ∈ S(R
d) and

all h ∥∥ |D|[(hA + i)−1, ϕ(P/λ)]v
∥∥

L2 ≤ Cλh
∥∥P1/2(hA + i)−1v

∥∥
L2 .

Proof The proof relies on a standard combination of the resolvent identity

(5.16) |D|
[

(hA + i)−1, ϕ(P/λ)
]

= −h|D|(hA + i)−1
[

A, ϕ(P/λ)
]

(hA + i)−1,

and, for instance, the following Helffer–Sjöstrand formula (see [15])

ϕ(P/λ) =
1

π

∫

C

∂̄ϕ̃λ(z)(P − z)−1L(dz),

where L(dz) is the Lebesgue measure on C ≃ R
2, and ϕ̃λ ∈ C∞

0 (C) is an almost

analytic extension of ϕλ := ϕ( ·
λ ), i.e., which coincides with ϕλ on R and such that

∂̄ϕ̃λ = O(|Im(z)|∞). We have

(5.17)
[

A, ϕ(P/λ)
]

= − 1

π

∫

C

∂̄ϕ̃λ(z)(P − z)−1[A, P](P − z)−1L(dz),

hence, using (2.4) we can rewrite (5.16) as

h

π

(∫

C

∂̄ϕ̃λ(z)(hA + i + ih)−1|D|P−1/2

×
{

(P − z)−1P1/2[A, P]P−1/2(P − z)−1
}

L(dz)

)
P1/2(hA + i)−1

where it is not hard to check that the operator { · } is bounded on L2 with norm of

polynomial growth with respect to |Im(z)|−1 (for z in the support of ϕ̃λ).

The result follows.

Completion of the Proof of Theorem 1.4 Since Pc is of div-grad type, the last term

of (5.15) is bounded by −Cλh2‖P1/2(hA + i)u‖2
L2 from below. Thus, by choosing h

and cλ > 0 both small enough, we finally get

(
i[P, F(hA)]u, u

)
≥ cλh

∥∥P1/2(hA + i)−1u
∥∥ 2

L2

for all u satisfying (5.11). We then obtain (5.10) as in the proof of Theorem 1.1. This

completes the proof.

6 Obstacle Perturbations

In this section, we show how to extend our results to the more general context of a

long range perturbation of div-grad type outside a compact obstacle. We will show,

as is well known in the case of positive frequencies, that our relatively simple and

explicit approach on R
d can be modified to handle topological perturbations. Using
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Dirichlet boundary conditions, we will furthermore see that we have a control on the

resolvent at low frequency even in dimension 2.

We denote by K the closure of a non-empty bounded open subset of R
d with

smooth boundary, and let Ω = R
d \ K be the exterior of this obstacle. We assume

that d ≥ 2. We denote by PD the self-adjoint realization of (1.1) on Ω with Dirichlet

boundary conditions, that is, with domain

Dom(PD) = {u ∈ H2(Ω) | u|∂Ω = 0},

which coincides with H2(Ω) ∩ H1
0 (Ω). Notice in particular that on this domain

(6.1) (PDu, u) = ‖(PD)1/2u‖2
L2(Ω) ≈ ‖∇u‖2

L2(Ω),

where ≈ stands for the equivalence of norms.

We will prove the following result.

Theorem 6.1 Assume that d ≥ 2. There exists a self-adjoint differential operator AΩ

that coincides with the generator of dilations outside a compact set such that, for some

h > 0 and λ0 > 0 small enough, we have

∥∥ (PD)1/2(hAΩ +i)−1(PD−z)−1(hAΩ−i)−1(PD)1/2
∥∥

L2→L2 . 1, |Re(z)| < λ0, z /∈ R.

Furthermore, for all ǫ > 0, we have

‖〈x〉−2−ǫ(PD − z)−1〈x〉−2−ǫ‖ . 1, Re(z) → 0.

In dimensions 3 and higher, estimates on gradients (or on P1/2) lead to weighted

estimates via

(6.2) ‖〈x〉−1−ǫv‖L2 . ‖∇v‖L2 ,

which is a consequence of the Sobolev embedding (1.11) and the Hölder inequal-

ity (5.4). Using the Poincaré inequality, this also holds in dimension 2 for Dirichlet

boundary conditions.

Proposition 6.2 (Poincaré inequality) Assume that d = 2. Then for all ǫ > 0, there

exists C > 0 such that ‖〈x〉−1−ǫv‖L2 ≤ C‖∇v‖L2 , for all v ∈ C∞
0 (Ω).

Proof By possibly translating the obstacle, we may assume that 0 belongs to the in-

terior of K and that a Euclidean ball B(0, r0) is contained in K. Define ψ by

ψ(r, ω) = v(x), r = |x|, ω = x/|x|.

Then if v is supported outside K, hence outside B(0, r0), we have

ψ(r1, ω) =

∫ r1

r0

∂rψ(r, ω)dr =

∫ r1

r0

r−
1
2 ∂rψ(r, ω)r

1
2 dr,
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so, by the Cauchy–Schwarz inequality, we have

|ψ(r1, ω)|2 ≤ ln(r1/r0)

(∫ r1

r0

|∂rψ(r, ω)|2rdr

)
.

Integrating with respect to ω and using that ∂rψ = |x|−1x · ∇xv yields

∫

S1

|ψ(r1, ω)|2dω ≤ C ln(r1/r0)‖∇v‖2
L2 ,

and thus

∫ ∞

r0

∫

S1

r−2−2ǫ
1 |ψ(r1, ω)|2r1dr1dω ≤ C

∫ ∞

r0

〈ln(r1)〉r−1−2ǫ
1 dr1‖∇v‖2

L2

leads to the result.

We next study the properties of a suitable conjugate operator, basically obtained

by cutting off the generator of dilation (1.5) near the obstacle. Let R > 0 be such that

K ⊂ B(0, R/2) and let ρ ∈ C∞(R, R) be such that

ρ(r) =

{
0, if r ≤ R/2,

1, if r ≥ R.

We consider the vector field, defined on R
d, V (x) = ρ(|x|)x. Since ∂ jV is bounded

for all j, the flow of V , i.e., the solution φt (x0) := xt to

ẋt = V (xt ), xt=0 = x0 ∈ R
d,

is defined for t ∈ R. In the next proposition, we record some elementary properties

of this flow.

Proposition 6.3 (i) For t ∈ R and |x| ≤ R/2, we have φt (x) = x. If |x| > R/2,

then |φt (x)| > R/2 for all t ∈ R.

(ii) For |x| ≥ R and t ≥ 0, we have

(6.3) φt (x) = et x

{
if |x| ≥ R and t ≥ 0,

if |x| ≥ e−t R and t ≤ 0.

In particular, φt (x) = et x for t ∈ R and |x| ≥ e|t|R.

(iii) There exists C > 0 such that

e−C|t||x| ≤ |φt (x)| ≤ eC|t||x|, t ∈ R, x ∈ R
d.

(iv) For all multi-index α 6= 0, there exists Cα > 0 such that

|∂α
x φt (x)| ≤ CαeCα|t|, t ∈ R, x ∈ R

d.
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Proof The first part of (i) is easily verified. Then if |x| > R/2 and φt0 (x) ≤ R/2 for

some t0, we have

R/2 < |x| = |φ−t0 ◦ φt0 (x)| = |φt0 (x)| ≤ R/2,

which yields a contradiction. The statement (ii) is easy to check for t ≥ 0. If t ≤ 0,

one simply uses that y = φt ◦ φ−t (y) = φt (e−t y) for |y| ≥ R, and then applies this

identity to y = et x. The upper bound in (iii) follows from the Gronwall inequality

(one may take C = ‖ρ‖∞). The lower bound follows from the upper bound and the

identity |φ−t ◦ φt (x)| = |x|. The estimates in (iv) are obtained by induction on |α|
by applying ∂α to the equation φ̇t

= V (φt ) and using the Gronwall inequality.

In the applications below, Proposition 6.3(iii) will be used very often in connec-

tion with the following.

Proposition 6.4 For all s ≥ 0, there exists Cs ≥ 0 such that

〈et x〉−s ≤ Cs(1 + e−st )〈x〉−s, t ∈ R, x ∈ R
d.

In particular, 〈φt (x)〉−s . eCs|t|〈x〉−s.

Proof Let χ ∈ C∞
0 (R

d) be equal to 1 near 0. Write

〈et x〉−s
= 〈et x〉−sχ(x) + 〈et x〉−s(1 − χ)(x),

where the first term in the right-hand side is clearly O(〈x〉−s). To estimate the second

term, we simply observe that 〈y〉−s ≤ |y|−s, so the second term is dominated by

(1 − χ)(x)

est |x|s ≤ C〈x〉−se−st ,

and the conclusion follows. The estimate on 〈φt (x)〉−s follows from the lower bound

in Proposition 6.3(iii).

Using the flow (φt )t∈R, it is completely standard to check that one defines a

strongly continuous group of unitary operators on L2(R
d) by setting Ũ (t)v =

(detDxφ
t )1/2v ◦φt , and an easy calculation shows that its generator (i.e., Ũ (t) = eitÃ)

is

(6.4) Ã =
ρ(|x|)x · ∇ + ∇ · ρ(|x|)x

2i
.

Let us denote by eΩ : L2(Ω) → L2(R
d) the operator of extension by 0 outside Ω and

by rΩ : L2(R
d) → L2(Ω) the operator of restriction to Ω. Note in particular that, if

χΩ is the (multiplication operator by the) characteristic function of Ω, one has

(6.5) eΩrΩ = χΩ.

In the sequel, we define a family of operators on L2(Ω) by

U (t)ϕ = rΩŨ (t)eΩϕ, t ∈ R, ϕ ∈ L2(Ω).
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Proposition 6.5 (U (t))t∈R is a strongly continuous group of unitary operators on

L2(Ω).

Proof The unitarity (resp. strong continuity) of U (t) is a direct consequence of

the unitarity (resp. strong continuity) of Ũ (t). The non-obvious point is the group

property. To prove the latter, it suffices to observe that if ϕ ∈ C∞
0 (Ω), one has

(6.6) Ũ (t)ϕ(x) = ϕ(x), t ∈ R, |x| ≤ R/2,

by Proposition 6.3(i), which vanishes near K. Indeed, we then have

U (t1 + t2)ϕ = rΩŨ (t1)Ũ (t2)eΩϕ = rΩŨ (t1)χΩŨ (t2)eΩϕ = U (t1)U (t2)ϕ,

where the second equality is a consequence of (6.6), and the third one follows

from (6.5).

In the rest of this section we denote by AΩ the self-adjoint generator of U (t), i.e.,

U (t) = eitAΩ . Clearly, AΩ is a self-adjoint realization of the restriction of (6.4) to Ω.

We next consider the conjugation of differential operators by U (t). If a ∈ C∞
b (Ω),

then

(6.7) U (−t)a(x)U (t) = a ◦ φ−t (x).

Note that the right-hand side is well defined (i.e., does not depend on an extension

of a to R
d) by Proposition 6.3(i). Regarding derivatives, if j = 1, . . . , d, we have

(6.8) U (−t)∂ jU (t) =
(
∂ jφ

t
)

(φ−t (x)) · ∇x +
1

2

∂y j
det(Dyφ

t )

det(Dyφt )
|y=φ−t (x).

In particular, using (6.3) we see that U (−t)∂ jU (t) = et∂ j , on the region |x| ≥ e|t|R.
More precisely, (6.8) shows that U (−t)∂ jU (t)−et∂ j is a differential operator of order

1 with coefficients supported in |x| ≤ e|t|R and with coefficients whose derivatives in

x and t grow at most exponentially in t by Proposition 6.3(iv). We shall see that such

operators fall into the class given in Definition 6.7. Before stating this definition, we

record here the following useful result.

Proposition 6.6 There exists C > 0 such that

(6.9) ‖∇U (t)u‖L2(Ω) ≤ CeC|t|‖∇u‖L2(Ω),

for all u ∈ H1(Ω) and all t ∈ R. Furthermore, for h0 small enough and all h ∈ (0, h0],

H1(Ω) is stable by (hAΩ ± i)−1 and

(6.10) ‖∇(hAΩ ± i)−1u‖L2(Ω) ≤ C‖∇u‖L2(Ω),

for all h ∈ (0, h0] and all u ∈ H1(Ω).
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Proof Since

‖∇U (t)u‖L2 = ‖U (−t)∇U (t)u‖L2 and U (−t)∂ jU (t) = et∂ j +
∑

|α|≤1

χα(t, x)∂α,

with χα(t, · ) supported in the ball (centered at 0) of radius e|t|R and whose L∞ norm

is of order CeC|t| (see the discussion following (6.8)), Proposition 6.4 implies that for

all N > 0,

‖∇U (t)u‖L2 ≤ CN eCN |t|
(
‖∇u‖L2 + ‖〈x〉−N u‖L2

)
.

Choosing N = 1 + ǫ with ǫ > 0 and using (6.2) in dimension d ≥ 3 or Proposition

6.2 in dimension 2, we obtain (6.9). To prove (6.10), one simply writes

(6.11) ∇(hAΩ ± i)−1
=

1

i

∫ ±∞

0

e−|t|∇U (ht)dt,

and then uses (6.9) with h small enough such that 1 −Ch ≥ 1/2.

Definition 6.7 For s ≥ 0 real, we denote by S−s
adm the set of smooth functions of

(t, x) ∈ R × R
d such that, for all integer k ≥ 0 and all multi-index α there exists

Ckα ≥ 0 such that,

|∂k
t ∂

α
x b(t, x)| ≤ CkαeCkα|t|〈x〉−s−|α|, t ∈ R, x ∈ R

d.

A family of differential operators (Bt )t∈R of order ≤ 2 and symmetric on Dom(PD)

will be called admissible if it can be written as

(6.12) Bt = c(t)∆ +
∑

|α|≤2

bα(t, x)∂α
x ,

for some function c( · ) such that for all k ≥ 0,

|∂k
t c(t)| ≤ CkeCk|t|, t ∈ R,

and some coefficients bα ∈ S
−s−2+|α|
adm with

(6.13) s > 0.

Notice that i−1(U (−t)∂ jU (t) − et∂ j) is symmetric on Dom(PD) and hence ad-

missible by (6.8) and Propositions 6.3(iv) and 6.4. Note indeed that if χe|t|R denotes

the characteristic function of the region |x| ≤ e|t|R, we have for any s > 0,

χe|t|R(x) = χR(e−|t|x) ≤ Cs,R〈x〉−ses|t|.

Definition 6.7 must be understood as a robust version of Definition 2.2, which

was specific to the case of R
d and to the group of dilations. In particular, in Defini-

tion 2.2, we only considered second order operators in div-grad form. Here we need

to consider more general operators since the conjugation by U (t) doesn’t preserve

vector fields (there may be a zero order term as in (6.8)).

We will need the following result.
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Proposition 6.8 Let (Bt )t∈R be an admissible family of differential operators. Then

there exists C > 0 such that

|(Bt u, v)| ≤ CeC|t|‖∇u‖L2(Ω)‖∇v‖L2(Ω)

for all u, v ∈ Dom(PD) and all t ∈ R.

Proof Observe first that the second order terms in (6.12) may be written as

bα(t, x)∂α
= ∂α1 bα(t, x)∂α2 − (∂α1 bα(t, x))∂α2

with α1 + α2 = α, |α1| = |α2| = 1, where one should note that ∂α1 bα ∈ S−s−1
adm .

Thus, using integration by part in second order terms, we have

|(Bt u, v)| ≤ CeC|t|
(
‖∇u‖L2 + ‖〈x〉−1−su‖L2

) (
‖∇v‖L2 + ‖〈x〉−1−sv‖L2

)
,

and we conclude using (6.2) in dimension d ≥ 3 and Proposition 6.2 in dimension 2

(in both cases the condition (6.13) is crucial).

To prove Theorem 6.1, we need to compute commutators in the spirit of Section 3.

For that purpose, we need the following result.

Lemma 6.9 The space Dom(PD) is stable by U (t) and (U (t))t∈R is strongly continu-

ous on this space (equipped with the H2(Ω) norm). Furthermore, if h is small enough,

Dom(PD) is stable by (hAΩ ± i)−1.

Proof On one hand, if u ∈ H2(Ω) and |α| ≤ 2, we see that ∂αU (t)u belongs to L2

since U (−t)∂αU (t) is a second order differential operator with bounded coefficients

(for fixed t), which follows from Proposition 6.3(iv) and (6.7)–(6.8). On the other

hand, one trivially has U (t)u|∂Ω = 0 since U (t)u = u near ∂Ω by Proposition 6.3(i).

Then the strong continuity follows from the continuity with respect to t of the flow

φt and its spatial derivatives, using standard density arguments.

To see that the domain of PD is stable by (hAΩ ± i)−1 for h small enough, one uses

(6.11) and the fact that ‖∂αU (ht)u‖L2 . eCαh|t|‖u‖H2 .

Lemma 6.10 Let B be a differential operator of order ≤ 2 with coefficients in C∞
b (Ω)

that is symmetric on Dom(PD). Then for all u, v in this space and all t ∈ R,

(
U (t)u, Bv

)
−

(
Bu,U (−t)v

)
=

∫ t

0

(
U (s)u, i[B, AΩ]U (s − t)v

)
ds,

where [B, AΩ] is the (usual) commutator of B and AΩ in the sense of differential opera-

tors.

Note that this formula makes sense since [B, AΩ] is a second order differential

operator with coefficients in C∞
b (Ω), which thus acts boundedly on H2(Ω).
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Proof It suffices to compute

(6.14) (U (t)u, BU (t)ṽ) − (u, Bṽ)

with ṽ ∈ Dom(PD) and then to evaluate this expression with ṽ = U (−t)v, which

still belongs to Dom(PD) by Lemma 6.9. Assume further that u and ṽ vanish for |x|
large. Such functions are dense in Dom(PD), and it is not hard to check that they

also belong to Dom(AΩ) (basically H1
comp(Ω) ⊂ Dom(AΩ) ). Therefore, one can

differentiate (6.14) with respect to t , and we get

(iAΩU (t)u, BU (t)ṽ) − (BU (t)u, iAΩU (t)ṽ).

Since AΩ vanishes close to ∂Ω, and U (t)u,U (t)ṽ belong to H2 and are compactly

supported, by standard arguments one can integrate by part in this expression, which

can thus be written (U (t)u, i[B, AΩ]U (t)ṽ). By the symmetry of B, (6.14) vanishes

at t = 0 thus, by integration between 0 and t , we get

(
U (t)u, BU (t)ṽ

)
− (u, Bṽ) =

∫ t

0

(
U (s)u, i[B, AΩ]U (s)ṽ

)
ds.

Both sides of this formula still make sense when u and ṽ are not compactly supported,

and the result follows.

Similarly to (3.1), from now on we define

Pt := U (−t)i[PD, AΩ]U (t), t ∈ R.

We have an analogue to Proposition 2.3.

Proposition 6.11 Let (Bt )t∈R be an admissible family of differential operators on Ω

in the sense of Definition 6.7. Then if w : [0, 1] → C is continuous, the (families of)

operators

d

dt
Bt , U (±t)BtU (∓t), and

∫ 1

0

w(σ)Bσt dσ,

are admissible too. In particular, (Pt )t∈R is admissible.

Proof It is straightforward to check that dBt/dt and
∫ 1

0
w(σ)Bσt dσ are admissible

from Definition 6.7. The fact that U (±t)BtU (∓t) are admissible follows from (6.7),

(6.8), Proposition 6.3(iv) and Proposition 6.4. Finally, for Pt one observes first that

the t independent operator PD is admissible, hence so is Pt =
d
dt

U (−t)PDU (t).

Now, using Lemma 6.10 and Proposition 6.11, one obtains the following result

similarly to Proposition 3.1, where we recall that F(λ) = arctan(λ).

Proposition 6.12 For all h > 0 small enough and all u1, u2 ∈ Dom(PD), we have

(
i[PD, F(hAΩ)]u1, u2

)
=

h

2

∫

R

e−|t|

(
1

t

∫ t

0

(U (th)Pshu1, u2) ds

)
dt.
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We omit the proof because it is exactly the same as the one in Section 3, up to the

minor fact that one has now to choose h small enough rather than h < 1, since we

have no explicit value for the rate of exponential growth of coefficients of admissible

operators with respect to t (in Definition 2.2 and Section 3 this rate was explicit).

Proof of Theorem 6.1 We follow the steps of the proof of Theorem 1.4 and, when

necessary, indicate how to use the analysis of this section to allow us to adapt the

arguments.

Step 1: Expansion of the commutator. Expanding Psh to the first order by the Taylor

formula as in Section 4, we can write i[PD, F(hAΩ)] as the sum of

(6.15) h(hAΩ − i)−1P0(hAΩ + i)−1 + h
[

P0, (hAΩ − i)−1
]

(hAΩ + i)−1
=: Ih + IIh

and of a finite number of integrals of the form

III±h = h2

∫ ±∞

0

e−|t|w±(t)(hAΩ − i)−1U (ht)C±
ht (hAΩ + i)−1,

with (C±
t )t∈R admissible operators and w± polynomials. The latter are obtained by

the integration by parts trick of Proposition 4.2, which is justified by Proposition

6.11. Using Proposition 6.8 and (6.9), we obtain

|(III±h u1, u2)| . h2‖∇(hAΩ + i)−1u1‖L2‖∇(hAΩ + i)−1u1‖L2 ,

for all h small enough and u1, u2 ∈ Dom(PD). The second term of (6.15) reads

IIh = −h2(hAΩ − i)−1[P0, AΩ](h2A2
Ω + 1)−1,

where [P0, AΩ] is admissible by Proposition 6.11 (since is of the form
(
−i d

dt
Pt

)
|t=0

).

Therefore, by Proposition 6.8 and (6.10), we obtain

|(IIhu1, u2)| . h2‖∇(hAΩ + i)−1u1‖L2‖∇(hAΩ + i)−1u1‖L2 .

Conclusion 1. There exist C and h0 such that

(6.16)
∣∣ (i[P, F(hAΩ)]u1, u2) − (Ihu1, u2)

∣∣ ≤

Ch2‖∇(hAΩ + i)−1u1‖L2‖∇(hAΩ + i)−1u1‖L2

for all h ∈ (0, h0] and u1, u2 ∈ Dom(PD).

Step 2: Reduction to a problem in a bounded set. By (6.16) we have to focus on

(Ihu1, u2). Since P0 is close to the Laplacian and of div-grad type near infinity, we

may write, P0 = P̃0 + Pc. Pc is a second order operator with compactly supported

coefficients, hence automatically admissible, and P̃0 is a uniformly elliptic operator

of div-gad type such that, for some c > 0,

(P̃0v, v) ≥ c‖∇v‖L2 , v ∈ Dom(PD).

https://doi.org/10.4153/CJM-2011-022-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-022-9


988 J.-M. Bouclet

Conclusion 2. There exists c > 0 such that for all h small enough and all u ∈
Dom(PD),

(6.17) (Ihu, u) ≥ ch‖∇(hAΩ + i)−1u‖2
L2 + h

(
Pc(hAΩ + i)−1u, (hAΩ + i)−1u

)
.

We are thus left with the study of the last term of (6.17), which involves an operator

with coefficients supported in a bounded subset of Ω.

Step 3: Spectral localization. We will eventually consider (i[PD, F(hAΩ)]u, u) with u

such that (PD − z)u = f , i.e., u = (PD − z)−1 f , and z close to zero. By considering

ϕ ∈ C∞
0 (R) that is equal to 1 near 0, we may therefore assume that

(6.18) u = ϕ(PD/λ)u

after a suitable similar localization on f . Then (Pc(hAΩ + i)−1u, (hAΩ + i)−1u), i.e.,

the last term of (6.17), reads

(6.19)
(

Pcϕ(PD/λ)(hAΩ + i)−1u, (hAΩ + i)−1u
)

+
(

Pc[(hAΩ + i)−1, ϕ(PD/λ)]u, (hAΩ + i)−1u
)
.

We now claim that the commutator [ϕ(PD/λ), (hAΩ + i)−1] satisfies the same esti-

mate as in Proposition 5.4. More precisely, since Pc is admissible and using Proposi-

tion 6.8, the second term of (6.19) is bounded in modulus by

C‖∇[(hAΩ + i)−1, ϕ(PD/λ)]u‖L2‖∇(hAΩ + i)−1u‖,

where the first factor can be treated as in Proposition 5.4 as follows. We use (5.17)

with A replaced by AΩ. We observe on one hand that

‖∇(hAΩ + i)−1(PD − z)−1(PD + 1)1/2‖L2→L2

. ‖∇(PD − z)−1(PD + 1)1/2‖L2→L2

. ‖(PD)1/2(PD + 1)1/2(PD − z)−1‖L2→L2

. 1 + |Im(z)|−1,

(6.20)

for Re(z) in any bounded set and Im(z) 6= 0, which follows from the Spectral Theo-

rem, (6.10), and (6.1). On the other hand we also have

(6.21) ‖(PD + 1)−1/2[AΩ, PD](PD − z)−1v‖L2 . (1 + |Im(z)|−1)‖∇v‖L2

by the Spectral Theorem, since

|(u1, (PD + 1)−1/2[AΩ, PD](PD − z)−1u2)|

. ‖∇(PD + 1)−1/2u1‖L2‖∇(PD − z)−1u2‖L2

. ‖(PD)1/2(PD + 1)−1/2u1‖L2‖(PD)1/2(PD − z)−1u2‖L2 ,
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which follows from (6.1) and (6.10) (recall that i[AΩ, PD] is admissible). Using (6.20)

and (6.21), one can easily prove the analogue of Proposition 5.4 in this context .

Conclusion 3. For all λ > 0, there exists Cλ such that, for all u satisfying (6.18) and

all h small enough, we have

(6.22) (Ihu, u) ≥

(ch −Cλh2)‖∇(hAΩ + i)−1u‖2
L2 + h((hAΩ + i)−1u, Pcϕ(PD/λ)(hAΩ + i)−1u).

Step 4: Compactness argument. By Proposition 6.8 and the compact support of the

coefficients of Pc, the last term of (6.22) is bounded in modulus by

(6.23) Ch‖∇χ(x)ϕ(PD/λ)(hAΩ + i)−1u‖L2‖∇χ(x)(hAΩ + i)−1u‖L2

for some χ ∈ C∞
0 (Ω) such that Pc = χPcχ. We then observe that if ζ ∈ C∞

0 (Ω),

|α| ≤ 1 and φ ∈ C∞
0 (R), the operator ζ(x)∂αφ(PD)〈x〉N is compact for all N > 0 by

standard estimates. We also observe that, for all N > 1, the operator 〈x〉−N (PD)−1/2

is well defined and bounded on L2, basically by the same argument as the one prior

to Proposition 5.2, using the key estimate

‖〈x〉−N v‖L2 . ‖(PD)1/2v‖L2 ,

which follows from (6.1) and (6.2) in dimension ≥ 3 or Proposition 6.2 in dimen-

sion 2. Thus, by choosing φ such that φ(PD)ϕ(PD/λ) = ϕ(PD/λ) for all λ small

enough, we have

ζ(x)∂αϕ(PD/λ) =
(
ζ(x)∂αφ(PD)〈x〉N

)(
〈x〉−N (PD)−1/2

)
ϕ(PD/λ)(PD)1/2

= Bϕ(PD/λ)(PD)1/2,

where B is compact. Thus Bϕ(PD/λ) → 0 in operator norm as λ → 0. Using this

property to make the first norm in (6.23) as small as we want, and using the previous

steps we obtain the following.

Conclusion 4. There exists λ > 0 and c ′ > 0 such that for all u ∈ Dom(PD) satisfying

(6.18) and all h > 0,

(6.24)
(

i[PD, F(hAΩ)]u, u
)
≥ c ′h‖∇(hAΩ + i)−1u‖2

L2 .

Final step. To complete the proof, we recall that if (PD − z)u = f , we have

(6.25) 2Im
((

F(hAΩ) ± π
2

)
(hAΩ + i)−1u, (hAΩ − i) f

)
≥

(
i[PD, F(hAΩ)]u, u

)
,

where the sign ± is chosen so that ±Im(z) < 0 (see the proof of Theorem 1.1). To

be in position to use (6.24), we have to estimate the left-hand side of (6.25) in term
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of ‖(PD)1/2(hAΩ + i)−1u‖L2 or equivalently ‖∇(hAΩ + i)−1u‖L2 . This is the analogue

of Proposition 5.1. We need to check that

(6.26) ‖∇F(hAΩ)(hAΩ + i)−1v‖L2 . ‖∇(hAΩ + i)−1v‖L2 .

This is obtained using a formula analogous to (5.2), namely

(
i[i∂ j , F(hAΩ)]u1, u2

)
=

h

2

∫

R

e−|t|

(
1

t

∫ t

0

esh
(

U (h(t − s))[∂ j , AΩ]U (hs)u1, u2

)
ds

)
dt,

whose right-hand side is bounded for h small enough by Ch‖∇u1‖L2‖u2‖L2 , using

(6.9) and the fact that [∂ j , AΩ] is the sum of a vector field with bounded coefficients

and a compactly supported function (for which we can use (6.2) in dimension ≥ 3

or Proposition 6.2). Then this easily implies (6.26), and the proof of Theorem 6.1 is

then completed as in Section 5.
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doi:10.1007/s00023-002-8631-8
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