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Abstract

Vertices u0, u , , . . . , u* -1 of a graph X are mutually pseudo-similar ii X — u0 = X — ux = ••• = X —
uk-i, but no two of the vertices are related by an automorphism of X. We describe a method for
constructing graphs with a set of k s= 2 mutually pseudo-similar vertices, using a group with a special
subgroup. We show that in all graphs with pseudo-similar vertices, the vertices are pseudo-similar due
to the action of a group on the cosets of some subgroup.

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 25, 05 C 99.

1. Introduction

In Godsil and Kocay [4], a method was given for constructing graphs with a pair
of pseudo-similar vertices. It was also shown that all graphs with a pair of
pseudo-similar vertices could be constructed in this way. In Godsil and Kocay [5],
this method was generalized somewhat, and a method was given for constructing
graphs with three mutually pseudo-similar vertices. The method relied on finding
a group and a subgroup with special properties.

In this paper we give a general method for constructing graphs with a set of
k > 2 mutually pseudo-similar vertices, using an extension of the ideas of [5],
based on a group with a certain subgroup. We also show that all graphs with k
mutually pseudo-similar vertices can be constructed in this way. In a certain sense
then, we can say that graphs with pseudo-similar vertices exist because of the
existence of groups with subgroups with certain properties. This more or less
answers the question of why do pseudo-similar vertices exist, a question which
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182 W. L. Kocay [2]

was raised in Harary and Palmer [6], when investigations of the reconstruction
conjecture resulted in pseudo-similar vertices being discovered. It leaves open the
question of when do such groups with special subgroups exist, and how does one
find them.

The main construction is based on Schreier coset diagrams, defined in Section 2
following. We refer the reader to Chapter 8 of Bollobas [1] for a concise statement
of their properties.

We shall use the graph-theoretic terminology of Bondy and Murty [2].

2. Schreier coset diagrams and partial permutations

L e t G b e a g r o u p g e n e r a t e d b y e l e m e n t s p x , p 2 , . • . , p k £ G. Le t p —
{/?,, p2,... ,pk), and let ^ « s G be a subgroup of G. Let A = {Kax, Ka2,... ,Kan}
be a complete set of right cosets of K in G, where we assume that a, — e, the
identity in G. The Schreier coset diagram Gmod K is an edge-coloured directed
graph with vertex set A. The edge colours are the symbols px, p2,...,pk. Vertex
Kat is joined to KatPj by a directed edge of colour pj, for all / = 1,2,...,«, and
a U / = 1,2,...,it.

It is well known that walks in G mod K correspond to words in the generators
P of G. Moreover, if T is any spanning tree of G mod K, then the unique path in
T joining K — Kax to any vertex Kat defines a representative for the coset Kat.
The edges of (/mod if which are not in the spanning tree T define a set of
generators for K, as follows. If an edge (Ka,, Ka^pj) not in T is added to T, this
creates a unique closed walk of base K in Gmod K using the edge (Kat, Katpj)
and edges from T. If Kat and Katpj have representatives r, and ry, respectively,
then the word corresponding to this closed walk is r,^^"1. As the closed walks so
defined by a spanning tree T generate all the closed walks of base K of the graph
and since every word representing an element in K corresponds to a closed walk
of base K in G mod K it follows that the edges of G mod K not in T define words
which generate the subgroup K. This is the essence of the Nielson-Schreier
Theorem (see Bollobas [1], Imrich [7], or Johnson [8]).

2.1. DEFINITION. Let A' be a graph. Let u, v e V(X) be two vertices such that
X — u = X — v, but no automorphism of X maps u to v. Then u and v are
pseudo-similar vertices of X. If u and v are related by an automorphism, then they
are similar.

N o w let I b e a g r a p h w i t h a set U = { u o , u u . . . , u k _ { } C V(X) of k > 2
m u t u a l l y p s e u d o - s i m i l a r ve r t i ce s . T h e n X — u 0 = X — M, == ••• st X — u k _ x , b u t
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no two of the vertices of U are related by an automorphism of X. Many examples
of such graphs for k = 2 are given in Kocay [10]. Kimble, Stockmeyer, and
Schwenk [9] given an infinite family of such graphs, one for every k s* 2.
Krishnamoorthy and Parthasarathy [14] also given an infinite family, for k a
power of two. Godsil and Kocay [5] and Kocay [12] give several other examples
for k = 3. Graphs with large sets of k mutually pseudo-similar vertices are hard
to find. We explain why this is so in Section 4.

Let pl-: X — w,, -> X — u0 be an isomorphism, for each / = 1,2,..., k — 1. Each
/?, maps V(X) — ut to V{X) — u0, so that each/?, is "almost" a permutation of
V(X), in the sense that only M, has no image under />,, and only w0 is not an
image. We call /?, a partial permutation of V(X). For the sake of formality, we
define this.

2.2. DEFINITION. Let V be any finite set. Let p be a one-to-one map from a
proper subset of V into V, such that Im p ^ Dom p. Then p is called a partial
permutation of V.

Partial permuations p for which | Im p |= | V\ — 1 turn out to be important in
the pseudo-similar vertex problem.

We shall extend each partial permutation/?, of V(X) above to a permutation/;*
of a larger set V(Y). The action of the group generated by the pf, i; = 1,2,...,k
— 1, will then make it clear why the orginal vertices U are pseudo-similar in X.

3. Orbits of partial permutations

Given the set P = {/?,, />2 ,...,/?*._,} of partial permutations, we define a graph
F analogously to a Schreier coset diagram. V has coloured, directed edges. The
edge colours are the symbols/?,, p2,-..,pk-\- V(T) = V(X). Vertex u G V(T) is
joined by an edge of colour /?, to («)/>,, if u has an image under /?,, for all
i = 1,2, . . . ,*- 1.

Now if the /?, were permutations, then the connected components of T would be
the orbits of (P), the group generated by P. It is easy to see that each connected
component (or orbit) of T would then be a Schreier coset diagram (P > mod K,
where K is any point-stabiliser subgroup for that orbit. In fact, this is often used
as the basis for computer algorithms which determine the order of a permutation
group defined by a set of generating permutations, in terms of a nested sequence
of stabiliser subgroups.

We accordingly call the connected components of Y the orbits of the set of
partial permutations P. An orbit A is closed if every vertex u in A has an in-edge
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and an out-edge of colour pt, for every i' = 1,2,... ,k — 1. (A loop is counted as
both an in-edge and an out-edge, in case u is a fixed point of pt.) Otherwise an
orbit is open.

3.1. THEOREM. P has exactly one open orbit.

PROOF. Considerpf. V(X) — M, — V{X) — uo.pj maps w0 to (uo)p If (uo)pt =h
ut, then we can find (uo)pf, and so on. Eventually we must have (K0)/?- = u:, for
some positive integer /, since pi is one-to-one, and only w, has no image under p
Thus there is a directed path of colour /?, from u0 to w, in F, for every
i — 1,2,..., k — 1. Thus all the w, £ U he in one connected component of T. This
is the only open orbit of P.

Let C/denote the orbit of P containing U, and let V = V(X)-U.
If, V =£ 0 , then />, | F', the restriction of pt to F', is an automorphism of the

induced graph X[V'\. The set P\ V = {pt \ V'} generates a subgroup of Aut X[V'].
Furthermore each connected component of T[V] is a Schreier coset diagram for a
point-stabilizer subgroup of the group of automorphisms generated by P | V

We can make the open orbit U into a closed orbit, thereby completing the
partial permutations, as follows.

Let G denote the free group (see Johnson [8]) generated by the symbols of
P = l^ i ' Piy • • >Pk-\}- Let T denote a spanning tree of T[U]. We shall define a
subgroup K of G as follows. Label the vertex u0 in T[U] by the coset Ke, where e
is the identity in G. For each vertex u E. U, label u with Kw(u), where w(u) is the
unique word in the pt corresponding to the unique path in T from M0 to u. For
each directed edge uv of colour pt in T[U] define the label of uv as H^W^H^U)" 1 .

Let K be the subgroup of G generated by the labels of the edges of T[U]. Using
Schreier's method (see Bollobas [1]), we have:

3.2. THEOREM. The Schreier coset diagram Gmod K contains T[U] as an induced
subgraph.

This gives the following theorem.

3.3. THEOREM. Let X be a graph with a set U = {u0, uu... ,ulc_i) of k mutually
pseudo-similar vertices. Let pt: X — ut. -» X — M0 be isomorphisms, for i =
\,2,...,k — 1. Then X can be extended to a graph Y, and each pt can be extended to
a permutation p* ofV(Y) such that:

(i) X is an induced subgraph of Y;
(ii) each p* is an automorphism of Y;
(iii) the vertices of U are all similar in Y;
(iv) the vertices of V(Y) — V(X) are all in the same orbit of Aut Y as U.
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PROOF. Let G and K be as above. Let A = {Ka,\i £ /} be a complete set of
right cosets of A_in G. Let V(Y) = V U A. Notice that V(X) C V(Y) since
V C V(X), and U C /I. We define the edge set of Y"as follows.

If uv EE(X), where u, v E F', then uu e £(7) .
Let u0 be joined to vertices M of V in X Then join each coset Ka E V(Y),

where a is a word in the /?,-, to {M)a. This is possible, since /?,-|F' is an
automorphism of X[F']. Thus arbitrary words in the/?, define permutations of V.
If the coset Ka is in V(X), this agrees with edges already present in X, since each
Pi is an isomorphism from X — u, to X — u0, that is, it adds no new edges to X.
Moreover, this includes all edges from V to U in X.

We have left only edges in X[U\. Let uv be an edge of X in X[U). Suppose that
u and v correspond in V(Y) to cosets Kax and Ka2 of K. For each word a E G,
define an edge (A^a, ATa2a) in Y. Clearly this includes all edges of X[U]. It adds
no new edges to X, since each pt is an isomorphism, and since the only circuits in
the Schreier coset diagram Gmod K are contained in F[[/], by the definition of
K.

It follows that X is an induced subgraph of Y. Moreover each pt extends to a
permutation p* in the permutation representation of G in terms of the right cosets
of K. Thus each p* is an automorphism of Y. Since (M0)/?,'• = «,-, for each
i = 1,2,..., k - 1, where /, is a positive integer, it follows that all the vertices of
U are similar in Y, and clearly all the new vertices added to X to get Y lie in one
orbit, the orbit of U.

Theorem 3.3 is the A:-analog of the main theorem of Godsil and Kocay [4] for
pairs of pseudo-similar vertices. The main difference is that in [4] the group G was
made finite, so that the resultant graph Y was finite. In Theorem 3.3 above, the
graph Y is always infinite.

If we adjoin relators to G, consistent with Aut A7F'], to make G into a finite
group, then K will become finite, too. So long as the cosets of K corresponding to
the vertices of T[U] are all distinct, and Gmod K does not add any new edges to
T[U], then we can use this finite G and K to create a finite graph Y. If X[U]
contains no edges, then this will work fine. But if X[U] contains edges, then we
cannot be sure that a finite G will not add new edges to X

3.4. PROBLEM. DO there exist graphs X with k> 3 mutually pseudo-similar
vertices for which the graph Y cannot be made finite?

3.5. PROBLEM. DO there exist graphs X with k> 3 mutually pseudo-similar
vertices for which V = 0 ?
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In [4] (see also [11]), it was proved that when k — 2, we must always have
\V'\> 6. All known examples of graphs with k > 3 have V ¥= 0. It would seem
reasonable to expect that when k > 3, we can find graphs X with V = 0 .

In the same way as we defined the orbits of the set P of partial permuations, we
can define the orbits of P on the pairs of vertices of X, that is, the pair-orbits of P.
Unlike Theorem 3.1, P will in general have several open pair orbits. A solution to
Problems 3.4 and 3.5 would apparently require a study of the pair-orbits of P.

4. Constructing graphs with k mutually pseudo-similar vertices

In [5] a method was given for constructing graphs with three mutually pseudo-
similar vertices, based on a group G with a special subgroup K. Section 3 above
shows that corresponding to any graph with k mutually pseudo-similar vertices,
we can construct a group G with a subgroup K, such that the vertices are
pseudo-similar due to the action of G on the cosets of K.

In this section we show how to use these ideas to construct graphs with
pseudo-similar vertices.

4.1. EXAMPLE. Let k = 2. Let U = {M0, M,} and let p: X - M, -> X - u0. Then
T[U] is easily determined. It must be a directed path of length / > 1 from u0 to
«,. When k = 2, we must have \V'\>6 (see [4] or [11]).

Since T[U] is a tree, we must have T — T[U]. It follows that G is the free group
generated by p, G = ( p ), and K is the identity. If we make G finite it becomes a
cyclic group, and we then easily construct pseudo-similar vertices.

Only in the case of k = 2 can we completely classify all groups G giving rise to
pseudo-similar vertices, that is, all those which contain an element of period three
or more.

When k > 3, it is impossible to classify, in general, all the possible equivalence
classes for the coset diagram T[U], where we define equivalence of two coset
diagrams r,[t/-] and T2[U] as follows.

If U= {M0, «!,..., Mfc_,} and/»= {/?,, p2>. ..,pk_x), defined ptj =pipJ'\ for
1 < i <j < k — 1, where the product of isomorphisms is read from left to right.
Then/? , , : X - ut ^ X - uy Let P' = P U {ptJ \ 1 < i<j <k-\).

For eachptj e P', we add edges of colour ptj to T[U], in the same way as edges
corresponding to pif i= 1,2,...,k— 1, were introduced. This results in the
completed coset diagram T'[U].

4.2. DEFINITION. TWO coset diagrams VX[U] and T2[U] with sets of partial
permutations Pl and P2, respectively, are equivalent if there exist two bijections,
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both denoted 6, between the vertex-sets, and edge-sets of T[[U] and T^U] such
that:

(i) for each colour/? E P{, 6 maps the edges of colourp in T[[U] to the edges of
some colour/?' E P{ in T2[U];

(ii) for each colour p E P[, 6 either preserves the direction of all the edges
coloured/?, or reverses the direction of all of them.

4.3. EXAMPLE. Let k = 3. Let U = {w0, M,, U2) and let /?,: X — «, -» X — u0

and p2: X—u2-*X—u0. Then pn — P\PiU- X — ux-* X — u2, and P' =
{/?,, p2, pn). If | U\= 3, so that U = U, there are exactly two possible equiva-
lence classes for T[U], shown in Figures 4.1 and 4.2.

Figure 4.1. Type I

u i

Figure 4.2. Type II
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Both of these configurations have been used in [5] to construct graphs with
three mutually pseudo-similar vertices. If we choose the solid edges in each coset
diagram as the spanning tree T, then we get the following subgroups K.

l.K= ( P I P 2 \ 1 2

If k = 3 and | U\= 4, there are exactly 8 equivalence classes for T[U]. If k — 4
and | U\= 4, there are exactly 19 equivalence classes for T[U]. These are enu-
merated in Kocay [13].

A basic recipe for constructing a graph X with k mutually pseudo-similar
vertices can then be given as follows. We first need the definition of a Cayley
graph.

4.4. DEFINITION. Let G be a group with a generating set H such that e £ H.
The Cayley graph C(G, H) has vertex set G and edge set {(g, hg)\g e G,
h e H). Thus G acts as a group of automorphisms of C(G, H), by right
multiplication. In case C(G, H) has no other automorphisms, C(G, H) is called a
graphical regular representation, or GRR, of G (see Godsil [3]). Except for 10
exceptional graphs of order at most 32, all finite, non-abelian groups which are
not generalized dicyclic groups have GRR's (see [3]).

4.5. CONSTRUCTION.

1. Given k, let U = (H 0 , M,,. .. ,uk_x}.
2. Choose a set U of vertices so that U C U.
3. Given colourspx, p2,--.>Pk-i> draw a directed path of colour/?, from u0 to

«, in [/, for / = 1,2,...,k — 1.
4. If there are any vertices of U not on the directed path from u0 to M, of colour

pt, then add edges of colour pt so that a disjoint union of cycles is induced on
these vertices by the edges of colour/?,.

5. Choose a spanning tree T of the resultant F[C7], and label the vertices of
T[U] with the coset representatives of K, given by the unique path in T from M0 to
each vertex.

6. Read off a set of generators for K.
1. Find a finite group G generated by P = {/>,, p2,... ,pk_,} and identify K as

a subgroup.
8. Draw a Cayley graph for G, and call it X[V'].
9. Find the pair-orbits or P on U. Make some of the pair-orbits into edges in X,

if desired.

The resultant graph X satisfies X — uQs, X — uxs, • • • s j - uk_x, since G
acts on the right cosets of K in X[V] by right multiplication. If X[V] is a GRR,
then we can be sure there will be no automorphisms of X connecting any of the
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u, E U. For then the only automorphisms of X[V] are those arising from G. It
follows that the vertices «,, / = 0 ,1 , . . . ,k — l,are mutually pseudo-similar in X.

The reason graphs with k > 4 mutually pseudo-similar vertices are hard to find
is because of the difficulty with step 7, namely finding a suitable group G and
identifying the subgroup K. The author knows of no general algorithm for finding
such a G and K.
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