The Riemann surfaces of a function and its fractional integral.

By William Fabian.

1. Introduction. For a many-valued function $f(z)$ of the complex variable z, a Riemann surface can be constructed such that, at any point z on the surface, the function has only one value; a function normally multiform, is therefore uniform on a certain Riemann surface.

The operator $D^{-\lambda}$ represents a λth integral of a function and is defined by

$$D^{-\lambda}(l_a) f(z) = \frac{1}{\Gamma(\lambda+\gamma)} \left(\frac{d}{dz} \right)^{\gamma} \int_a^z (z-t)^{\lambda+\gamma-1} f(t) \, dt,$$

where l is a simple curve in the plane of the complex variable, along which the integration is carried out. λ may be real or complex, and γ is the least integer greater than or equal to zero such that $R(\lambda) + \gamma > 0$, $R(\lambda)$ being the real part of λ.

In this note we are concerned with relations between the Riemann surfaces of a function and its fractional integral.

2. Transformation of Riemann surfaces.

Theorem 1. Let $f(z)$ be analytic within a circle with centre at a, and which contains l in its interior. Then a is a branch-point of $D^{-\lambda}(l_a)f(z)$ for non-integral values of λ.

If λ is a rational fraction $\frac{r}{s}$ expressed in its lowest terms, then a is the vertex of a cycle of s roots.

If λ is irrational or complex, then a is the vertex of an infinite number of roots.

Proof. The Taylor series for $f(z)$ at a within the given circle is

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n.$$

Then applying the operator $D^{-\lambda}$ to each term of this series, we easily find that, within the given circle,

$$D^{-\lambda}(l_a)f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{\Gamma(\lambda+n+1)} (z-a)^{\lambda+n}.$$
Theorem 2. Let \(f(z) \) be analytic in a bounded region \(E \), except for an isolated singularity within \(E \) at a point \(p \) different from \(a \), at which \(f(z) \) can be expanded in a Laurent series.

Then, for non-integral values of \(\lambda \), \(p \) is a branch-point of \(D^{-\lambda}(l_a)f(z) \), with cycles of an infinite number of roots.

Proof. In the \(t \)-plane, where \(l \) joins the points \(t = a \) and \(t = z \), let \(C \) be a closed contour through the point \(t = z \), which lies wholly in \(E \), encloses \(p \), and excludes \(l \). Denote by \(S_m \) the curve traced out by a point \(t \) which passes along \(l \) from \(a \) to \(z \) and then describes \(C \) \(m \) times. Then

\[
D^{-\lambda}(S_m)f(z) = D^\gamma D^{-\lambda-\gamma}(S_m)f(z)
= D^\gamma[D^{-\lambda-\gamma}(l_a)f(z) + mD^{-\lambda-\gamma}(C)f(z)]
= D^{-\lambda}(l_a)f(z) + mD^{-\lambda-\gamma}(C)f(z)
= D^{-\lambda}(l_a)f(z) + mD^{-\lambda-\gamma}(C)f^{(\gamma)}(z),
\]

on integrating \(D^{-\lambda-\gamma}(C)f(z) \) by parts \(\gamma \) times.

By a previous theorem \(^1\)

\[
D^{-\lambda-\gamma}(C)f^{(\gamma)}(z) = 2\pi i \sum_{\sigma = 1}^{\infty} (-1)^{\sigma-1} A_{\sigma} \frac{(z - p)^{1-\sigma}}{\Gamma(\lambda - \sigma + 1)(\sigma - 1)!},
\]

where \(\sum_{\sigma = -\infty}^{\infty} A_{\sigma} (z - p)^{-\sigma} \) is the Laurent series for \(f(z) \) at \(p \).

The conclusion now follows from (1).

Theorem 3. Let \(f(z) \) be analytic in a bounded region \(E \) on the Riemann surface associated with \(f(z) \), except for a branch-point within \(E \) at a point \(p \) different from \(a \), at which \(f(z) \) can be expanded in a Puiseux series. Let the number of roots of \(f(z) \) in the cycle \(^2\) at \(p \) be \(r \).

If the Puiseux series for \(f(z) \) at \(p \) does not contain negative integral powers of \((z - p) \), the number of roots of \(D^{-\lambda}(l_a)f(z) \), where \(\lambda \) is non-integral, in the corresponding cycle at \(p \) does not exceed \(r \). If the series contains negative integral powers of \((z - p) \), the number of roots of \(D^{-\lambda}(l_a)f(z) \), where \(\lambda \) is non-integral, in the corresponding cycle at \(p \) is infinite.

\(^1\) Fabian : Phil. Mag., 21, 277 (1936).

\(^2\) If \(f(z) \) has \(M \) cycles at \(p \), \(f(z) \) is to be regarded as having \(M \) branch-points at \(p \), and the theorem applies to each of these branch-points separately.

https://doi.org/10.1017/S0950184300003116 Published online by Cambridge University Press
Proof. On the Riemann surface associated with \(f(t) \), let \(C \) be a closed contour through the point \(t = z \), which lies wholly in \(E \), encloses \(p \) and excludes \(l \), where \(l \) joins \(a \) and \(z \). Denote by \(S_m \) the curve traced out by a point \(t \) which passes along \(l \) from \(a \) to \(z \) and then describes \(C \) \(m \) times.

As in the proof of Theorem 2, we have

\[
D^{-\lambda} (S_m) f(z) = D^{-\lambda} (l_a) f(z) + m D^{-\lambda - \gamma} (C) f^{(\nu)}(z).
\]

(1)

By a previous theorem,\(^1\) from which the value of \(D^{-\lambda - \gamma} (C) f^{(\nu)}(z) \) can be immediately deduced, it follows that \(D^{-\lambda - \gamma} (C) f^{(\nu)}(z) \), for non-integral values of \(\lambda \), is or is not zero, according as the Puiseux series for \(f(z) \) at \(p \) does not or does contain negative integral powers of \((z - p) \). The result then follows from (1).

\(^1\) Fabian: Phil. Mag., 21, 276 (1936).

14 Grosvenor Avenue,
Canterbury,
London, N.5.