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Abstract. We give a sufficient condition for a unimodal map of the interval to have an
invariant measure absolutely continuous with respect to the Lebesgue measure. Apart
from some weak regularity assumptions, the condition requires positivity of the
forward and backward Liapunov exponent of the critical point.

1. Introduction and statement of results
Continuous maps of an interval to itself can be viewed as dynamical systems, whose
time evolution is given by iterating a given map. Despite their innocent looking
simplicity, iterated maps can serve as important models for testing general ideas
about dynamical systems.

One such circle of ideas concerns the existence of invariant measures which are
absolutely continuous (with respect to Lebesgue measure). If, in addition, the
measure is ergodic, then erratic behaviour can be expected for many orbits. One
would like to argue that if a system has positive characteristic (Liapunov) exponents,
then it behaves erratically. One is still far from a complete understanding of these
matters, because of the presence of stable directions, see e.g. [9]. The analogue of
this question for maps of the interval is easier to handle because, when there is an
unstable direction, then there is no space for a stable direction. The Liapunov
exponent is clearly positive if the map is everywhere expanding, and this is the
easiest case in which existence of an absolutely continuous invariant measure can
be shown [6], [12]. If the map of the interval has a critical point, it is of course
not uniformly expanding. It may nevertheless possess an absolutely continuous
invariant measure [11]. It was then discovered that this result can be generalized
to maps with the property that the critical points have orbits which eventually land
on unstable fixed points [8], [1]. One can further generalize this to maps whose
critical points have orbits staying away from the critical points [7], [10]. In the
present paper, we give different conditions for the existence of an absolutely
continuous invariant measure.
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14 P. Collet and J.-P. Eckmann

For simplicity, we shall consider maps with a single critical point, xo- Apart from
technical conditions to be given below, we require that the map / satisfies

(Cl) liminf-log
n-.oo n

j - (fn)(f(x0))ax

(C2) liminf- inf log
n "

where f" =f° • • • °f (n times) and / "(x0) denotes the set of n'th pre-images of x0-
These conditions can be fulfilled even if the orbit of x0 does not stay away

from xo, and they are thus weaker than those mentioned above. One can show
that they are met for a large set of maps among the one-parameter family 8->fs

given by

.-8~(x2/8) if|jc|<5,

for 0 < 8 < \. We have studied these maps in [2], and a slight extension of that
work shows that there is a set of positive Lebesgue measure in 8 such that/s satisfies
all conditions to be enumerated below, and hence fs has an absolutely continuous
invariant measure. In addition, this set of 8 has a Lebesgue point (i.e. full relative
measure) at 5 = 0. Similar results for one-parameter families of maps have been
obtained earlier in [5].

If we consider our conditions in the general framework of dynamical systems
then (Cl) corresponds to requiring that the Liapunov exponent is positive, while
condition (C2) says that the inverse of / (which only exists as a set function in our
case) is contracting. It is tempting to conjecture that (Cl) might imply (C2), maybe
with some additional convexity condition, but our insight into this question is
incomplete. Note also that, if the orbit of the critical point stays at a distance from
the critical point, then Misiurewicz' conditions are stronger than (Cl) and (C2),
see the Appendix.

We now state our hypotheses in detail, followed by the statement of the theorem
and some remarks.

Hypotheses
(HI) / is defined onfl = [/(I), 1] and takes values in fi. It is strictly increasing on
[/(I), 0] and strictly decreasing on [0,1]. The function / is of class "if1. In addition,

(H2) The function / ' is Lipschitz continuous, and | / T J is convex on [/(I), 0] and
on [0, 1].
(H3)

limsup|/'(x)/;t|<oo, inf \f'(x)/x\>0.
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Positive Liapunov exponents 15

(H4) There is a d > 0 and a d > 0 such that

(1) > Ci exp (n0) for all n > 0.

(2) If fm (z) = 0 for some m > 0, then

>Ciexp(m0).

Our main result is the following:

THEOREM. / / / satisfies (H1)-(H4) then f has an invariant measure which is
absolutely continuous with respect to Lebesgue measure.

The conditions (H1)-(H4) can be formulated more concisely under the assumption
that / is of class <#3. Namely, we can replace (H2), (H3) by the more readable
(H2') Sf(x)s 0 for x e fi, where

s/=/'"//'-§(/7/')2

is the Schwarzian derivative.
(H3') /"(0) < 0 and /'(/(I)) * 0 and /'(I) * 0.
Although the Schwarzian derivative is not defined in the general case, the results
of the corresponding theory do apply, see e.g. [3]. In particular, (H1)-(H3) and
(H4.1) imply that the map / has no stable periodic orbit.

We next outline the main steps of the proof of the main theorem. Define the
operator 5E by

where f'\E) = {x e Cl,f(x)eE}.
The density h of the invariant measure, if it exists, satisfies the equation

We shall consider the sequence of functions

hn=£6n\, « = 0,1,2

It is easy to see that

J My) </y = W ( l ) . (1)

We shall show:

THEOREM 1.1. Define hn{y) = {£" \){y) if y eft, hn(y) = 0 i/ygfl. Then, for all n,
one has

J[ iMy) - My + e )| dy < exp (-|log eh (2)

for all e > 0, e sufficiently small.
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16 P. Collet and J.-P. Eckmann

The conclusions of theorem 1.1 together with (1) are the main input to Kolmogorov's
compactness criterion (see e.g. [13]). It then follows from [4] (Mazur's theorem) that

1 "
lim - £ hi = h

exists, is in L\, is not zero and satisfies 5£h = h. Thus the main theorem follows
from theorem 1.1.

To discuss our method of proof, we define

Df =£(/")•
The difficulty in analysing hn (y) - hn (y + e) comes from those regions in which
l/\Df"\ varies quickly. These regions are located near the pre-images of 0, where
\/\Df"\ is infinite. In other words, since

1
(X)\

hn varies rapidly around the points of the forward orbit of the critical point, i.e. of
zero. This orbit is allowed to come close to the critical point, (it may be dense),
and we have to subdivide carefully the space into pieces where hn (y) - hn (y + e) is
regular, and their complement where \hn will be small. To be more precise, fix
e > 0 sufficiently small and define the following e dependent quantities.

Definitions. The following symbols have fixed meaning throughout the paper:

U= sup \f'{t)\.
lelf(l), 1]

L2 will be a constant which is fixed in (18) on p. 25. The constant T is defined by

6

We shall assume for simplicity that r<\. (This can always be achieved by making
6 smaller.) Our main definitions are now as follows:

, ( l -3r /2) | loge |+L2

ne =lOOO|loge|/0;

0 if m<n'e,
e1+T if n'e<m<ne, (4)

exp (-md/20) if ne < m.

Sometimes we shall use conditions of the form / = 1, 2 , . . . , nE. Then we tacitly
assume nc is rounded to that integer which allows for a larger set of /; similarly
for n'e.

We next define m, e-regular points. Let / be a maximal connected component
of rm([-e, el). The set / is called m, e-regular if

(these conditions imply that fm\J is strictly monotone);
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Positive Liapunov exponents 17

(2) let{z} = /"m({O})n/. Then, if m>n'.,

for; = 0 , 1 , . . . , m -n'e.

Every point in a m, e-regular set is called an m, e-regular point. We define

h'Z(y)= I i * , , (5)
x6r

m(y) \Df (x)\
x is m,e-regular

Our first main estimate is:

THEOREM 1.2. For all sufficiently small p > 0, all small e > 0, and all n > 0,

f /C6(y)rfy<4(pT/4+p/a0), (6)
J|y|=p

for some universal constant ao > 0.

We shall then show that there are so many m, e-regular points that hn can be
bounded in terms of A™f. This will lead to:

THEOREM 1.3. For all sufficiently small e > 0,

f hn(y)dy^eT/40. (7)

This shows that hn is relatively well-behaved near y = 0. To analyse the global
situation, we need other subsets of O.

We define new cut-off functions which are similar to the crm>E. Namely, let

1 i fm<0,

Pm,e — exp(-|loge|3) if0<m<n",

exp(-m<?/20) if n"<m,

where n" = 7|log e|5. Note that p is decreasing in m and increasing as e |0.

Definition. We define, for given e > 0,

£ £
m , ,={ f€n | | f | < w i , e } ; (8)

Fe
m.y={ten\\l-t\<yPmJ; (9)

GE
m,y={teil\\f(l)-t\^ypmJ. (10)

These are small sets around the critical point of / and near the endpoints of
il = [/(I), 1]. We define \E as the characteristic function of the set E, and set

n*E(x)= f[ (l-ArE '_P lwF^p l^_p l)( /pU)), (11)
p=0

and, for some e-independent constant yo>0,
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18 P. Collet and J. -P. Eckmann

Then we have three parts of hn:

hn,Ay)= I | n f n /v | . (13)
" |i>/ U)|xe/—<y) I

h*.(y), (14)

(15)
r(x)|"

The relations between these quantities are given by the following:

THEOREM 1.4. For sufficiently small e >0 and all n > 0 one has
_ l _ _

s(y+e), (16)
and

£ £ £.(y) dy <exp (-|log eft. (17)

This theorem is based on a careful control of the sets E"m,yo, F
e
m,yo, G

e
m,yo, occurring

in the definition of fl££ and fi£e, and on theorem 1.3.
It is now straightforward to see that (1), (14), (16), (17), and the fact that

0</ i£e(y)<My),
imply theorem 1.1. Hence the main theorem will follow if we prove theorems 1.2,
1.3, 1.4. This will be done in the subsequent sections.

2. Notation and terminology, preliminary estimates
We adopt all definitions of the preceding section. To make the statements of the
theorems, propositions and lemmas more readable, we use the following ter-
minology:

'If e < E0 . • •' is the short version of 'There is an e0 > 0 such that if e 6 [0, e0) . . . ' ,
and similarly for other letters of the alphabets.

'e0 small' stands for 'choosing e o >0 sufficiently small'.
Ci, C2,... ,Li,Li,...,L, and U denote finite positive constants whose value

and meaning do not change throughout the paper. The corresponding clauses
should typically be 'There is a finite positive constant C\ such that'.

K\, K.2,..., denote finite positive constants whose value and meaning is only
unchanged in each single proof. It changes from one proof to the next.

Equations are numbered (1), (2), . . . in each proof.
[x; y] denotes the closed interval whose endpoints are x and y, where the order

of x and y is arbitrary, i.e. [x; y] = [y; x]. We extend this notation by analogy to
open and half-open intervals.

All maps under consideration are assumed to satisfy (HI) to (H4).
A maximal interval of monotonicity of /" is called a homterval. The endpoints

of homtervals are either critical points of /", or 1 or /(I). (This definition does not
agree with [7] who requires monotonicity for all n.)

The letter z always denotes a pre-image of the critical point 0.
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Positive Liapunov exponents 19

L E M M A 2 .1 . The function \Df" | ~* is convex on every homterval offn, forn = 1,2,....

Proof. If / is <£3 then the concavity of |/'| (i.e. (H2)) implies f" / '<0. This implies
that the Schwarzian derivative of /, defined as

/ '
satisfies Sf < 0. It then follows that S(f") < 0 for all n > 1 (cf. e.g. § 4 in [3]). From
the remarks on page 104 in [3] it is easy to see that the same line of reasoning
applies if 5"/<0 is replaced by the weaker convexity |/'|~* if fe <€x. •

LEMMA 2.2. There are constants L > 0 and U < <x> such that

Lt2<\f(t)-f(0)\<Ut2,

and

2L\t\<\f'(t)\<2U\t\.

Proof. This follows at once from (H3). O

LEMMA 2.3. Ifxy >0 and \x - y | <|max(|x|, |y|) then

fix) L3\x-y\
1 -

f'(y) "max(|x|, \y\)'

This is the typical kind of basic estimate needed in proofs of existence of absolutely
continuous invariant measures.

Proof. Recall that 0 is the critical point of /. For definiteness, we only consider the
case 0 <x, y. If x < y we have, since / ' is Lipschitz,

J i <r If

Now

l/'(*)-/'(y)l rr \*~y\
1/ \X)\ \X\

But since |y -x|<2|y|, we find

l*-ylj*-y|
kl " sly I '

and hence

\f\x)-f\y)\ \x-y\
\f'(x)\ 2 |y| '

COROLLARY 2.4. Assume f is monotone on (x, y), and

\f(x)-f{y)\^

D

If A = X,=o ^/ <Ls for some universal constant L$, then

exp (-L4A) < < exp (L4A).
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20 P. Collet and J.-P. Eckmann

Proof. By the chain rule of differentiation

; = 0
n-1

By lemma 2.3,

Df(y) &
with

The assertion follows from

exp(-2|x|)<l+x<exp(|x|) for|jc|<i D

LEMMA 2.5. If xy >0 then

\f(x)-f(y)\>L6(\f'(x)\ + \f'(y)\)\x-y\.

Proof. For definiteness assume 0 < x < y. Then

l/(xW(y)l=(V(t)|dt,

since /'(0 # 0 if f ̂  0, and 0&(x, y). Therefore, using lemma 2.2 twice, we find

= L(y2-*2)=L(|x|

^ x\. D

LEMMA 2.6. A55«me that f is monotone on (x, y). 77ien

Remark. The assumption of the lemma can be stated as follows. Assume x, y are
such that 0£f'((x, y)) for / = 0, 1 , . . . , n - 1 .

This lemma is crucial and we shall use it quite often.

Proof. If either x or y is zero, the assertion is trivial. So we assume x, y i* 0. Define

By lemma 2.1, M is convex on (x, y). Hence there are two constants a, /3 such that

u(t)<at+(i, whente(x,y),

u{x) = ax+fi, u(y) = ay+/8.

Therefore, assuming 0 < x < y for definiteness,

IA*)-r(y)l=

The result follows. •
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LEMMA 2.7. Assume | / n( l) |<e. Then

n>

logLi-0 '

Proof. By the definition of L\ and the chain rule of differentiation, we have

By (H4), we have

By lemma 2.2, and the assumption, we find

Hence

d exp [(n +1)0]

2Ue

so that
^log(C1e72C/) + ilogg|n > . U

lL6l

We approach now the first delicate estimate and we introduce some further notation.
We call z an n-pre-image of zero if f(z) = 0. This definition is satisfactory, since

(H4.1) and (H1)-(H3) imply [3] that / has no stable periodic orbits, in particular
0 cannot be a periodic point.

We say x is n, e-close to z if
(1) '

Observe that if x is n, e-close to z then /" is strictly monotone on (x; z). The
next result states that, if z is not too close to 0 and n is not too large, then \x - z \
is small if |/"(A:)| is small. More precisely, we have:

PROPOSITION 2.8. For a > 0 sufficiently small, the following is true. Assume z is an
n-pre-image of zero and x, x' are n, a-close to z.

If

n<na (i.e.a<exp(-n0/lOOO)) (1)

and

| / P ( z ) | s a 1 + T fo rp = 0 , 1 , . . . , « - * : , ,

then

~' (2)

where r was defined above (3) on p. 16.

Remark. The condition on f(z) can also be written as

p,a forp <n-
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22 P. Collet and J.-P. Eckmann

Proof. We shall prove the following stronger statement by recursion:

which implies (2), since x, x' are n, a-close to z and a is small.
The bound on a will be adapted during the proof. We proceed by induction on

n, proving, for every n, first the case x'= z and then, by a verbatim repetition of
all parts of the proof but one, the general case, x V : , x ^ 2 . All steps except the
one which is special for x' = z are written for x'. We write y =/"(*), y' = f"{x').

Case n = 1. By lemmas 2.2 and 2.5, we have, if |JC|<|JC'|,

L\x -x'||x|<!|/'(x)||x -x'\*L?\f{x)-f(x')\

Using now that 0 has at most two pre-images, which are away from 0, and the
continuity of / ', we obtain for small a,

\z\ L intw:/(vv)e[_a,a]|H'|

as asserted.

Induction step from n — \ to n. Assume z,x,x',n fulfil the assumptions of the

proposition. Then for every I, 1 < / < n, the quadruple

zB-, =/""'(*), xB-« =/""'(*), x'n-i=r~'(x'), n' = l

also fulfils the assumptions. Therefore the inductive hypothesis implies

I f"~[(r\ — fn~llr'\\
| / - ' ( z ) [ < 1 A * ) - A * ' ) 1 T / 2 , 1 = 1,...,n-l. (4)

On the other hand, lemma 2.6 implies

If we use (4) with x' = z in corollary 2.4, we see that

Repeating the argument with x' and z, we get from (5),

\f(x)-f(x')\^\fs(x)-fs(x')\exp(sar/3)/\Dr1(f(z))\, 1<5<«. (6)

For the next argument we first assume nothing has been shown for n, and we show
a certain bound in the case x' = z only. Then assuming the proposition has been
shown for n, x, and x' = z we show that the same bound holds for arbitrary x'.
Case x' = z. By lemma 2.5,

\x-z\^L61\f(x)~f{z)\/\r(z)\,
so that (6) implies

|x-z|<L7|/ sU)-/s(z) |exp(saT / 3)/ |D/s(z) | , s<n . (7)
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Case JCVZ. Assume the conclusion of the proposition has been shown for x' = z
and n. By this inductive assumption,

\X~Z\ ,_ ,T/2

z\
and hence by lemma 2.3, |(/'(z)//'(x))-l|<2L3aT/2. Combining this with lemma
2.5, we get

\x-xULe1\f(x)-f{x')\/\f'(z)\-\f'(z)/f'(x)\

Thus we get again, from (6),
\x-xUL7\r(x)-r(x')\exp(saT/3)/\Df(z)\, s<n. (7')

The proof proceeds once again in parallel for x' = z and x V z.
Combining (7) with (H4), we get

\x-x'\^\r(x)-fn{x')\K^xV[n{aTl3-e)l (8)

Note now that

A"! exp [n (a T/3-0)] <«""*, (9)
provided a is small.

For later use we note the analogous bounds, valid for n <na

exp(«aT/3)<2, exp(n/|loga|)<JR:2. (10)

Coming back to (8), and using (9), we get

\x-x'\s\r(x)-r(x')\a-& (11)
We shall now prove (2') for cases of increasing complexity. The easiest case is
\z\>aK Then, by (11),

j V < | y y r i

which is (2').
We now consider the case \z \ < aJ. Let p > 1 be the smallest integer for which,

with a =|loga|,

| /p(0)-f(z)|>|/p(z)|/a. (12)
Since f"(z) = 0, we have p <n. Note that lemma 2.2 and \z\ <a5 imply

\f(0)-f(z)\<uJ<\f(z)\/a,

since \z\ <a* implies \f(z)\ >i Thus p > 1. We shall now bound |/p(0)-/p(z)| from
above. Using (12), we have for / = 1, 2 , . . . , p -1,

|/ '(0)-/'(z)|<|/ '(z)|/a,

and hence by lemma 2.3, since 0<* (/'(0); /'(z)),

|/'+1(0)-/(+1(z)|< sup
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Using this inequality successively for all /, we get the desired bound

|/p(0) - / " (z)\ sK(
4
p'l)/a \Dfp-\f(z))\ |1 -f(z)\

^K5K
p

6
/a\Dfp-\f(z))\\z\2^K7\zDfp(z)\,

making use twice of lemma 2.2 and by (10). We now rewrite (7') as

. mMP(x)-fp{x')\ \fp(z)\ |/p(0)-j

(13)

•x-x'

Combining (13), (14) and (10), we get the following bounds, which are better than
using (9) only. Namely

\x —x

and (by (12)), when p <n,

Note that just substituting the induction hypothesis in (16) will not suffice to get
(2') because of the factor a. We next bound |/P(JC)-/P(A:') | in terms of |y-y' | .
Applying (11) with n' = n-p to f(x), fp(x'), fp(z) we get

\fp(x)-f(x')\<\y ~y'\a^T5<|y -y'|re. (17)

We now combine the above bounds in several ways according to subcases of \z \ < a!.

Case l.p<n, \f"(z)\s=a*. By (16) and (17),

Case 2. p<n, \f"(z)\<aK \f"(0)\^2aK Then we use (15) and (17) and

\x-x

Case 3.p<n, \fp(z)\<aK |/p(0)|<2ai By lemma 2.7,

Now we use (16) and (2') and we get

- * 1 , , „ , x fn, ,x,rp- F, , ( lOg| lOga | ) 2 ]
—— < / (x)-f (x')\ AT7exp \(n-p)—f - 1 - - a
z| L log a J

a

since

aK7 < a 2 = exp (2 log a) < exp | - (log a)2].
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Case 4.p=n, \f {Q)\>K%a°T/2). Then, by (15),

—n—<Kg .,_, ,. <a- 2a \f (x)-f (

\z\ \f (0)|

Case 5. p =n, |/"(0)|</ir8a1~(3T/2). We show:

(5.1) n>n'a.

(5.2) \z\<a1+r/2.

Therefore this case will not occur and the proposition is proved.

Proof of (5.1). By lemma 2.7,

=n'
log Li -(9

We define L2 = C8 - log AT8.
Note that n'a = <7(|loga|), since we are assuming T <§.

Proof of (5.2). By (18) and lemma 2.2, we get

(18)

- 4 T - 1

by the definition of T, see page 16. We now bound z. By lemma 2.2, we see that

for some r e [/(z), 1]. Applying corollary 2.4 to f and /(z), and using (12),

for p = 0, 1 , . . . , n - 2, we see that

\z\2<Ki2\r(0)/Df"-\f(z))\
Re-applying corollary 2.4 to 1 and/(z), we see that

We have discussed all cases and have thus proved the proposition. •

COROLLARY 2.9. Under the assumptions of proposition 2.8 we have the bound

Dfn(x) 1 _. T/4

Df(z)
Proof. This is, apart from converting e±s to 1±2<5 in bounds when S is small, a
direct reformulation of the steps of the proof of proposition 2.8 leading to the
equations 2.8.4, 2.8.5 and 2.8.6. •

The next lemma treats the exceptional case of proposition 2.8. It shows that if z is
small, then so are x and x'.
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LEMMA 2.10. Assume that z is an n-pre-image of zero and x, x' are n, a-close to
z, na^n>n'a.

If
\f"(z)\>al+T

but

then

|jc|<2a1+T and |x'|<2a1+T.

Proof. We rely heavily on the proof of proposition 2.8. Note that the condition
\z\>a1+r was only used in case 5 at the end of the proof. Hence 2.8.7 holds, and
we have

|X|S|X-2| + |Z|,

by the definition of T and n'a. The proof for x' is the same. •

Our next result complements proposition 2.8 in that it again gives bounds on
\x -x'\ in terms of \f"(x)-fn(x')\, but this time for n >«„. In this case we have to
assume that the orbit of z does not come close to zero too fast. We shall see later
that this requirement is implied essentially by (H4) for a vast majority of homtervals.

PROPOSITION 2.11. Assume z is an n-pre-image of 0 and x, x' are n, a-close to z,
a small.

If
|/'(z)|>o-n_/>a forlsn-n'm (1)

then

\x-x'\<C2\f
n(x)-r(x')\exp(-ne/2) (2)

Proof. Consider first the case n <na. Then corollary 2.9 leads to the conclusion that

\Df (x)Df(x')\^exp (-naT/4)|Df (z)|. (3)

Let y =fn(x), y'=/"(*'); by lemma 2.6 and (3),

\y-y'\>\Dfn{x)Dfn(x')t\x-x'\ (4)

>exp(-naT / 4) |Df (Z)||JC-X'|. (5)

From (H4), we have \Df{z)\ >Cx exp (nd), so that (5) implies

\x -xUCT1 \y - y ' | exp [-n(6 -aT/4)]<C2|y -y'\ exp (-nd/2),

which is (2).
Assume next that we have shown the assertion for all numbers up to n -1, n > na.

We proceed inductively to n.
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If z, x, x' satisfy the assumptions of the proposition for n, then f(z), f(x), f(x')
satisfy it for n - 1 . Namely (1) becomes

\f'~\f(z))\>an-Ua lorl<n-n'a, (6)

which means

Hence (2), for n -1, implies

| /(*)-/(x ') |<C2|y-y' |exp(-(«-1)6/2).

By lemma 2.2, | / ' (W) |>2L |H ' | and since x, x' must have the same sign,

\f(x)-f(x')\>2L \ \w\dw=L\x-xf.

Combining (7) and (8) we get

\x-x'\ <K2\y - y f exp (-n0/4).

By (1), we have \z\>exp (-nd/20), so that

(7)

(8)

We proceed now with the case x' = z, and deal below with x V z . For
/ = 0 , . . . , n - na we find as above

and

\f(z)\

\f(x)-f(x')\

<K2\y-yfexp[-(n-j)e/5]

<JKT2jy-y'|4 exp [ - ( « - /

(9)

(9')

Using (9) in lemma 2.3 we see that

/'(/'U))
>exp {-K3a* exp [-(n -/)(?/5]}, / = 0 , . . . , n -na.

Hence, we have from corollary 2.9,

Df(x)
Df(z)

aexp (-naa
T/*) exp \-K3J "f" exp (-pB/S)] >i

L p-o J

provided a is small. Applying again lemma 2.6, and (10), we see that

\f(x)-f (2)| a \Df (x)Df {z)\*\x -z|

From (H4), we then find

-zl^ACT1 If (*)-/"(z)| exp (-nd).

(10)

(11)

(12)
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This completes the proof when x' = z. If i V z , we proceed to (9'). From the
inductively proved eq. (2) for n and x' = z we have

/ ' ( * ) _ , \ f ' ( x ) - f ( z ) \ ^
f'(z)

so that (9') implies
\f(z)\ < 2 ' li^n~n"'

U2^2|y-yfexpt-(n-/W5].

Thus we get as before:

s:\DT (z)\\x-x'\/16,

by (10). The desired inequality (2) now follows from (H4).

(13)

(9")

(11')

•
Our next lemma deals with the situation where an orbit comes close to /(I). We
describe the general picture (cf. figure 1). Assume /" is monotone on [/(I), x], and

t

/ H i w z /2(1)

fix)

FIGURE 1
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Note that we do not assume there is a y with f"(y) = O in [f{l),x]. Consider the
maximal connected component of /~<n~1>([—a, a]) containing/2(1), call it/. Assume
furthermore f{"~1] is monotone on / and denote the endpoints of / by w and f(x).

LEMMA 2.12. Under the above assumptions, the following holds:
(1) if the above situation applies, then n>n'a;
(2) if n <na, then \x - / ( l ) |<a2 + T I for some universal constant 17 >0.

Remark. If we were only to use the quadratic nature of / near x = 0 then we would
get \x - / ( l ) | <a 2 . Thus the lemma states that | / ( l ) -x | is very short compared to
l/"(*)|2-
Proof. By lemma 2.7, and the definition of n'a,

C8 + |loge| ,
n>l^L^7>n<" (1)

if a is small.
We use (H4) and (1) to get

l n r + , m l |zy"+2(i)i „ d
2C/a

(2)
for some TJI>0.

The general assumptions of the lemma imply that there is a t > 0 such that
/2([0, r]) = [/(I),*]. By lemma 2.2,

f2<-^|l-/(f)|. (3)

We now apply lemma 2.6 to /"+1|[/(t),i> Its conditions are fulfilled since /" is
monotone on [/(I), x] (or else we apply lemma 2.10 directly). Hence

•\fn+2(O)-fn+2(t)\. (4)

Next we apply corollary 2.9, to /""1|[w,/(x)]- Its conditions are fulfilled. Note that
n < na. Hence

£>/""1(/2(l))_1

Dfn-\f(x))
Therefore

1 T/4

na

Dfn+\f{t)) Df"'\f(x))f'(f(t))f'(x)
<K4exp(naa

T/4), (5)

by the continuity of the derivative and since /(f) and x are away from 0.
Combining (3), (4), (5), we get, by (2)

2

The result follows. •
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The next proposition deals with the difference of reciprocals of derivatives, and
this will of course be crucial to the study of the continuity of hn.

PROPOSITION 2.13. Let z be an n-pre-image of 0 and assume x and x' are n, a-close
to z. If \fp(z)\>o-n-p,aforp<n-n'a, then

\Dfn(x)\ \Df{x')\ \Df(x)\

Proof. The assumptions imply that Df" (x) and Df (x') have the same sign. Therefore

1

\Df(x)\ \Df(x')\
1

\Df{x)\
1 -

Df(x)

Dfn(x')
We rewrite

Df"(x') /=o

(2)

(3)

In order to apply lemma 2.3, we bound [/'(x)—f'(x')]//'(x). We have, for n -j < na,
by proposition 2.8,

f'(z) \f(z)\
(4)

and applying (4) and proposition 2.8,

(5)

If n -j >n a , then by prop. 2.11 and the bound on f{z),

/'(*)
f'(z)

\f\x)-f{z)\
\f(z)\

>1-C2a exp [-(n -j)0/2]exp [(n -j)6/5]>(1 +ar/2)~\

Combining (6) with prop. 2.11, we get

| f (JC)-/V)| ( a,T/2)|/
W(«)-/f(x>)|

< C2{1 + J)\fn(x)-fn(x')\ exp [~(n-j)d/2] exp [(n-j)d/5]

(6)

(7)

Now applying lemma 2.3 to (3), (5) and (7), we get

with A, small, so that

y=o
exp (-

,-=o
exp(|A,|
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with

1=0

<arn4\fn(x)-fn(x')\T/3-

Since ex < 1 + 2x for small x > 0, the result follows. D

3. The invariant measure near the critical point
In this section we are going to prove theorems 1.2 and 1.3. We use extensively the
interplay between orbits getting close to 0, 1 or/(I), and those orbits never getting
close to these points. The first case will be called singular, the second case regular.
We proceed now to the detailed definitions. These definitions will only be used in
this section.

Let / be a maximal connected component of /~m([-e, e]), e >0 small. The
interval / will be called m, e-regular if

(Rl) 0£fk(J) for/fc=0, l , . . . , m - l ,

(R2)

(R3)

(R4) Let {z} = /"m(0)n/ . Then

y.. for/ = 0,1 m -n't.

Remark. Conditions (Rl), (R2), (R3) imply that/m|/ is strictly monotone and maps
onto [-e, e]. Thus (R4) makes sense (see figure 2).
If / is m, e-regular, then /( / ) is m -1, e-regular. If / is m, e-regular, we call any
subset of / m, e -regular.

Assume now / is not m, e-regular, but / ( / ) is m-1, e-regular. Then we call /
m, e-singular (and only then). Since / is a maximal connected component of
f~"([—e, e]), we must have:

Either (SI)
or (S2) / ( l ) ^ / a n d / " m ( O ) n / # 0 , a n d 2 = r m ( O ) n /

satisfies \z \ < o-m,e (and thus m > n 'c).

Note that these are the only two possibilities for singularity to occur. For if 1 £ /
then/(l)e/(/) which means that/(/) is not regular, and similarly when 0 e / . (We
have included the cases (R2) and (Rl) for k = 0, 1, for convenience of formulation
in the definition of m, e -regularity.)

We now define sets Hk,c which are similar to the sets Ee
m-y, F"m,y, G

c
m,y introduced

in section 1.

Definition. Hk,t ={x eCl\x is k, e-singular and \fk(x)\<e}.
We have now the following interesting relations between the set Hk,e and small
intervals around 0.
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0

FIGURE 2. Regular and non-regular sets: • regular; 0 , non-regular.

LEMMA 3.1. If 0<e <e0 then

(1) Hk,c = 0ifk<n'e;

(2) Hk,e^f2({y\\y\^e1+T})

(3) Hk,E c /2({y | |y | < exp (-k6/30)} u {y | |y | s exp (-£0/30)} */fc == ne.

Proo/. Assume x &HktC and assume it is k, e-singular because of (SI). The set of
all such x forms a maximal interval / of f'k([-e, e]), namely the one containing
/(I). Suppose / = [/(l), t]. If k<ne we apply lemma 2.12. Then we see that we
must have had k > n 'e and

On the other hand, [/(I), t] is an image under f2 of an interval [0, t'], which by
lemma 2.2 and the boundedness away from zero of / ' near 1 implies the assertions
(1), (2) when (SI) applies.

Still in the case when (SI) applies, but when k >«„ we apply proposition 2.11 to
/ f c~1 |[ / (i);/(o I t s hypotheses are fulfilled by the construction of Hk,E. Hence

so, by the fact that / ' is bounded away from zero near /(I),

\f(l)-t\sKieexp(-k8/2).
The set of t satisfying this inequality is contained in

/2({y||y|<exp(-fc0/3O)}.

This ends the analysis of the case when (SI) applies.

https://doi.org/10.1017/S0143385700001802 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001802


Positive Liapunov exponents 33

Case (S2) can only occur for k s n 'E. Since fk(z) = 0, and by the definition of HKs,
every point x e Hk,c has the following property: f(x) is k — 1, e- close to f(z). Thus
we can apply prop. 2.11. (Strictly speaking, we have not proved it for k = n'a - 1 ,
but the extension to this case is obvious by a slight redefinition of n'a.) Hence

|/(z) -f(x)\ < C2e exp (-kO/2), when k >nc - 1 .

The case nc>k^n'F is covered by lemma 2.10.
Since x and z have the same sign, we find, using lemma 2.2,

< K2 exp i-kd/A) + exp (-£0/20).

The assertion of the lemma is proved. •

We now split f~"{y) as follows. Define

^(y)=r" (y)nr k (^ - f c E ) , k =0,. . . , n.
In fact, by lemma 3.1

Sr£l{y)=0 itn-k<n'e.

In words, Sf(k,l(y) are those x for which f(x) = y, and f~k(x) is /fe,e-singular. By
lemma 3.1, we can write

r n ( y ) = ̂ n.e(y)u( U Sf (y ) ) , (1)

with ^n,e(y) disjoint from the .S^Cy). We could also write

#.»(y) = {*!/"(*) = y, and for * = 0 , . . . , n, fk(x) is n - k, e-regular}.
Note that if x e ffln,Ay) then x is n,e-close to a unique z for which f"(z) = 0, and
this z satisfies

\fk{z)\>an-k,E iork<n-n'E.

We now define the regular part of hn, for \y \ < e by

*l.:f(y)= X W
In the sequel, a denotes a sufficiently small number.

LEMMA 3.2. IfO<\-q\<a/2 and 0<e<a, then

f K:Uy)-hT:eAy+v)\d
Jlyl<a/2

Proof. By lemma 2.13 and the definition of 5?n,e(y),

But

O^h"Uv)^hn(y) and
J|y|<a/2

The result follows. •

f
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THEOREM 3.3 (= theorem 1.2). If a is sufficiently small, ifO<e< a/4 and 0 < a <
a/4, then

J|y|<o-

Proof. Set

f hr
n
ee

e(y)dy<4(crT/4 + <r/a).
J|vl<<T

p(t) = \ hT
n:t(s)ds.

For 0 < t < a/2 we have

p(0=[ hn,t
J|y|sr/2

= 2 f Ar
n!f (y) dy + f [/ir,:?(y)-/C(y -r/2)] dy

J|y|<I/2 Jf/2<y<I

Thus, by lemma 3.2,

p(t)>2p(t/2)-2(t/2Y/4,

i.e.

or if 2~lc'1a<o-<2~ka,

,=o

< — + O-T/4 • 4, as asserted. •

THEOREM 3.4 (= theorem 1.3). For e >0 sufficiently small we have:
r

Proof. If A denotes Lebesgue measure and E is a measurable set, then it is well
known that

hn(y)dy=\ hn-1(y)dy=\ dy = k(f~"(E)).
JE JrHE) J/—(E)

Hence, by the discussion on p. 33, eq. (1)

f hn(y)dy<\ hr
n

es
c(y)dy+ I \(r("-k)(Hk,e)). (2)

J|y|se J|y|se kar,;
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We now bound J|y|<E hn(y) dy by recursion.
By lemma 3.1, since Hp,e = 0 for p <n'e, we have for p <n'e,

f hp(y)dy=\
J|vl<£ Jlv

provided e is sufficiently small, by theorem 3.3.
Hence the theorem is proved for n < n 'c. Assume now it has been shown for

some n -l>n'e-l. We proceed to n. By (2), lemma 3.1 and theorem 3.3,

hn(y)dy<eT/5+ I

We have used the fact that if E is a small interval E = {x \ \x | < 8} then

for some K\ which depends only on / (use lemma 2.2).
Hence, recursively, we get, for small e,

e})]^eT/5 + 2|log e | • (1OOO/0),-(1/40+T/40)T

+ I 2i<:J/4Oexp(-Tfc6i/800)
(ca(999/8)|loge|

< £
T / 4 ° .

This completes the proof. •

4. Absolute continuity
This section is devoted to the proof of theorem 1.4, see § 1 for the definitions. We
start with a few preliminary estimates.

LEMMA 4.1. Let z be a q-pre-image of zero and assume f is monotone on [/(I), z\
Then

| / ( l ) -z |<C4exp(-2n0/3) .

Note. We may assume q <n.

Proof. By lemma 2.6,

On the other hand, by lemmas 2.2 and 2.6 and the monotonicity of /"|[/(i),z]»

provided q < n -1. The case q = n — 1 is an easy variant of (2) and is left to the reader.

Case 1. |r+1(Dl==exp(-2n0/3). Then, by (1) and (H4)

|/(l)-z|<A"3 exp {-2nd13) exp (-<#)<C4 exp (-2n<9/3).

https://doi.org/10.1017/S0143385700001802 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001802


36 P. Collet and J.-P. Eckmann

Case 2. |/"+1(l)|>exp (-2nd/3).
Then we combine (1), (2) with (H4) and lemma 2.2 to get

<K2 exp (nd/3) exp (-qd/2) exp [-(n -q-2)6/2] exp [-(n -1)0/2]

<C4exp(-2n0/3). D

LEMMA 4.2. For sufficiently small e, iff" is monotone on [f(l),x] and n <7|log e|5

and
\f"-p(x)\ >exp (-|log e \h forp = 0, 1,..., n

and
\r\l)-f{x)\<e,

then
|/(1)-x|<exp (-\\ogeh

Proof. For all 0 < / < n, lemma 2.2 and the assumption of the lemma imply

Therefore

\Df" (x )| > exp (-2|log e \*n) a exp (- 14|log e I1)

By (H4),

so that by (HI), (H2) and the theory of the Schwarzian derivative (see e.g. [3, § 4]),

forallfe[/(l),jt]. Thus

- x | < e exp (14|loge|«)< exp Hlogel'),
fore<e0- •

COROLLARY 4.3 / / / " is monotone on [/(I), x] and

| / PU)|>p_p.e and | / " + 1 ( l ) - n * ) | < e

then

Proof. Combine lemmas 4.1, 4.2 and the definition of pm,E cf. pagel7. •

Our next lemma shows that for n >7|loge|5, either homtervals are close to the
boundary of Cl or the derivative of /" on that homterval is relatively large in its
middle part.

Let [z i; z2] be a maximal interval of monotonicity off and assume z \, z 2 £ {/(1), 1}.
Then we have

and we assume q2^qi (in fact equality cannot occur). Assume xe[zi , z2].
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L E M M A 4.4. Assume the above situation applies for x, Z\, z2, n. There is an
such that if e < eo and if

I / P ( J C ) I > P - P . . forp=0,l,...,n-l,

then the following is true:

(1) ifn>|log e|* andq2<qi + 4|log e\ye then

\Dfn-'(f'(x))\ >exp ((n - / ) 0 / 2 - |log e|*C5)

forl<qx\ _ j

(2) if n > |log e f anrf q2 ><?i + 4|log e \*/6 then
|/(1) -n+2(x)\ < C6 exp [-(« - 4 l ) ^ / 3 ] .

Proof. From (H2) and the theory of functions with negative Schwarzian derivative
we have

and also

and

1 + 1(z1)=r2+1(22) = l. Write

By (H4),

and similarly

Dfq2'"l(l)

and, using (H4) and f"2(z2) = 0,

(1)
Combining these six bounds, we get

\Df"{x)\ =

>K5 exp {qtf)^^ exp [{q2-qx ~ 1)6]

•txp[(n-q2-l)d]LT(q2~qj) • \f\fq'{x))f'{fq-{x))\.

Using the condition |/p(x)|>pn-p,e and lemma 2.2, we find

\Df (JC)| > |^6 exp (nd

(2)
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This proves (1) for / = 0. For / >0, the result can be read off different variants of
eq. (2). The most pessimistic estimate is

\Df-'(fl (X))\^K9exp[(n-l)e]K^(q^)
Pn-l-qi.ePn-l-q2.e

>AT9exp[(n -/MAT1,1?"1* exp[-(n -1)6/10],
from which the assertion follows.
Proof of (2) when q2>n -4|loge|V^- Let y e[f 1+1(z2), 1]. Since /" is monotone
on [zi, z2], f2'"1'1 is monotone on [fqi+1(z2), 1], since 1 = fl+\z2). The hypotheses
of lemma 2.6 are thus fulfilled for Z"2""1"1 and hence, using eq. (1) we find

<.K'nexp[-(<72-<Zi)0]<*:11exp[-(n-(?1)0/3],
since q2-q\>n — q2.
Proof of (2) when q2^n -4|loge|5/0- In this case, we note that

and the assertion follows at once from lemma 4.1. •

In the next theorem we use the definitions from § 1.

THEOREM 4.5 (= theorem 1.4(1)). For 0 < e < e0, we have for all y e R,

Proof. The main ingredient of the proof is the following analysis of distances of
pre-images. Write y' = y +e. Consider /" and let H = [zu z2] be a homterval. Let

(There is at most one x and one JC'.) There is now a large variety of possibilities:
(PI) There is no x and nojt'. Then the homterval H does not contribute to

either A*.(y) or h£.(y').
(P2) There is an x but no x' (or an x' but no x which is totally analogous). We

shall show that fl£«,(;c) = 1, so that this contribution to fc£e(y) is bounded by the
corresponding term in h Je(y).

(P3) Both x and x' are present, but n£e(x) = 1 and fl£e(;c') = O (or vice-versa,
being handled analogously). Then we show that (ln,Ax) — ̂ Ax') — 1 a nd argue as
in the case (P2).

(P4) Both x and x' are present and Cl*e(x) = n£e(;t') = 1. Then we shall argue that

This clearly proves the proposition.

Analysis of (P2). If y e Q. but y' i. n, then either |y -/(1) | < e or |y - 1 | < e so that
ftlAx) = 1 for all x e/~"(y). So the assertion is shown in this case. Consider now
the homterval// = [zu z2] and assume y, y' 6 ft and/~"(y) nH = x butf~n(y')nH =
0. Then there is a smallest M>p>0 such that f~{n~p\y)nf(H)=f{x) and
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rin'"\y') nf(H) = U * 0 . The set U has the property

f
while

The only way in which this can happen is that f(x) lies to the right of /2(1) while
U lies to the left of /2(1), if /2(1) < 0 (and conversely if /2(1) > 0).

Using the fact that f{H) is a homterval, one easily derives that a boundary point
of f~\H) lies between f~\x) and /(I). If this boundary point is /(I) then fn~p+1

is monotone on [/(l),/p l(x)] and hence corollary 4.3 implies |1 -f'1(x)\ ^pn-P,e,

Since f(H) is a homterval, we see that no point other than /(I) could be a left
boundary point of f(H). Thus all cases are covered.

Analysis of (P3). Since Cln,e(x') = 0, we have f(x')eGe
n~Pti for some /? and/or

r(x')6ES.i and /o r / "V)eEu and/or/n(x')eFS,i.
The second and third cases are handled easily, since, e.g. fn(x')eEorl means

y'eEo.u and hence |y-y ' |<e implies y &Ee
0,3, hence fi£e(y) = l. If fn(x')eFe

Q,u
then

|y'-l |<exp(-|loge|J)

and hence

i.e. y GFO,3. SO we now assume

Let p be the largest value for which f(x')e G'n-P,i and write u =f(x), u' = f(x').

Case 1. n -p <7|loge|5. By (H2), and the theory of Schwarzian derivative, since
/"*"" has no critical point in (u; u'), we have for all t e («;«')

since this condition is fulfilled for u and u' by the choice of p. By lemma 2.2, this
implies

and hence

|/y""p(0|a^2exp(-7|Ioge|*|
Thus

|«-M' | s |y-y ' | / inf |£>/"~p(r)|

s eK3 exp ((log e |s) < exp (—jlog e |5).

Since \u' — \\^pn-p<c, we find \u - l | s ( -yo + l)Pn-P,e, for a suitable -y0 and hence
ftlAx) = 1 as asserted.
Case 2. «-p>7|loge|5, and/""" has a critical point zx in (/(!),«), (see Figure 3).
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Z\

Pn-P.,

FIGURE 3

Suppose fqi(zi)=fq2(z2) = 0, where z2 is the other end of the homterval of / "
containing u and «'. We distinguish two subcases. Note that n -p >qi, q2.

Case 2a. \ql-q2\^4\loge\s/d. In this case lemma 4.4 applies and we get

\Dfn-p(t)\>exp[(n-p)d/2-C5\logeh

for all t e (M, «')» hence

|M-u' |=£|y-y' | / inf \Df-p(t)\
te(u;u')

<eK3 exp [Cj|log e|^-(n -p)0/2]<pn-p,e.
Thus we find

Case 2b. |qi-<72|>4|loge|5/^- If n -p -^i>7|loge|5, then (assuming qi<q2 for
definiteness), we have by lemma 4.4,

If n -p -qi < 7|log e |5, then from

n - p -

we find by lemma 4.4

-/">(« )|<C6 exp (-
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Thus |/(1) -fp+qi(x)\ <pn-p_quc in both cases and hence

41

as before.

Case 3. n -p >7|loge|2 and/""" has no critical point in (/(I), u). Then lemma 4.1
implies

\f(l)-fp(u)\<exp[-(n-p)6/3]<Pn-p,e,

This completes the analysis of (P3).

Analysis of (P4). It is in this case that strong cancellations occur for \Df (

Assume first n < 7|log e |2. For every fe(x;x')we have, since fl£e(
and since {x; x') contains no critical point of /",

= ft£e(jc') = 1

Hence
n-l-l

;"=o

Thus \f'(x)-/V)l =£ |y - y 1 exp (14|log e|§)<e2" and

^ p ! S e U x p < | l o g « | i ) S « » -
We can now repeat the end of the proof of proposition 2.11:

Dfn(x)

W(*'))
By lemma 2.3 and (1),

with |Ay| ^L3e
3, so that

1 1 1

\Df{x)\
1 -

\Dfn{x')\

o)e " | l o g e '"] ~ 1 ) j

(1)

\Dfn(x)\ \Df"{x')\

from which the assertion follows.
Next assume n > 7|log e |5. We must have

4
l<72-<7il=s-|

since otherwise lemma 4.4.2 implies fl^>e(x) = 0 or n£e(x') = O. But then lemma
4.4.1 implies

\Dfn-'(f'(x))\>exp[(n-l)6/2-C5\logeh for / = 0,... ,q,.

£(x')
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Thus, as before, we find

~ £

(1)

for / = 0 , . . . , ^i. We next show that n -qx < 7|log e|5. If we assume the contrary,
then lemma 4.4.1 implies

>exp [(« -qi)0/3-\loge\*K5],

since |/qi(x)| >pn-<,1>E. Therefore, by lemma 2.6

1 7 V n~\Dfn-qi-
<exp (AT6|log e|̂ ) exp [-(« -(?

Thus fi£E(jc) = 0, a contradiction. Now if I sqly we have

and

This implies by lemma 2.6,

)f'(x)-f'(x')\<\fn(x)-fn(x')\
<e exp (14|loge|5),

and hence

Combining (1), (2) and corollary 2.4, we get

1 + A

with |A| < exp (e*) — 1, from which the assertion follows.

LEMMA 4.6 (= theorem 4.4.2).

s
n,Ay)dy^\ hlAy)dy <exp{

Proof. The first inequality is an obvious consequence of

Now, as in the proof of theorem 3.4,

lAy)dy^ i f hn^PAy)dy

ho(y)dy+\ hdy)dy.

•
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The last two integrals are bounded by eK by a direct application of the definition
of hn, for n = 0, 1.

Since the set {y | | / ( l ) -y |^ ( l + yo)Pn-P,e} is contained in the second image of

we have

K-P{y)dy <\ hn-p-2(y)dy

^ „ T/80

by theorem 3.4, if n —p >2. Hence the assertion follows, since for / = 0, 1, 2

by inspection. D

Appendix
We show here that, in the case of unimodal maps, the conditions of Misiurewicz'
theorem [7] imply (H4). His conditions are (H1)-(H3) and

(M) The orbit of the critical point avoids a neighbourhood of the critical point.
To be specific, let us assume that \fn(l)\>A >0 for all n >0.

LEMMA A.I. There is an e > 0 such that for every \x\<e there is ann =n(x) for which

(i) |Df(jc)|>|-exp(n0/3);

Proof. It is obvious from Misiurewicz' work that (H1)-(H3) and (M) imply (H4.1),
(see theorem 1.3 in [7]). We shall work with a constant r\ >0 to be fixed later.
Define n=n(x) to be the smallest integer for which |/"(1)-f"(f(x))\ >TJ. Then, for
0 < / < n we have

and choosing TJ small, lemma 2.3 implies

exp (-KlVn) ^°f
Dr-i

/ff) ^e*p (KlVn). (2)

Moreover, since \fn~\l)-fn~\f(x))\<v we have

\f"(x)\>A-K2r1>A/2 (which is (ii))

and thus eq. (2) implies

K;1 exp (-KlVn) < ^ l l ^ s K 3 exp (KlVn). (3)

The argument leading to (3) can be repeated for every t e [f(x), 1] and we get

(4)
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From (4) and (H4.1), we deduce

nK{)l (5)
We next show n =n(x) is large. From | / " ( 1 ) - / " ( / ( X ) ) | > T J we deduce

| l - / (x ) | sup \Dfn(t)\>-n,
«6[/(x),l]

so that (4) implies

By lemma 2.2, we find

M >vhK6 exp (-KlVn/2)\Df"(l)\-K (6)

Again by lemma 2.2, \f'(x)\>K7\x\, so that by (H4.1), (4) and (6),

\Dfn+\x)\ = \f'(x)\ \Df"(f(x))\ > r , ^ 8 exp [n(6/2-KgV)l (7)

On the other hand, \f\ is bounded (by L\). So we get:

T, < | f (/(*))-ADI < sup \Dfn(t)\\l-f(x)\^LiKns2,
re[«x).l]

and hence
n =n(x)>A"i2log(Tj/e),

provided 17 >e >0,77 is small and e is small relative to 17. Substituting into (7), we
can show that for small e/17

T,*JT8 exp in(6/2 -K9-q)]>\ exp (nd/3)

from which (i) follows. •

LEMMA A.2. Let e be defined as- in lemma A.I. There exists an NE and an a > 1
such that

(i)if \x\>e and \fn(x)\<efor n <NE then

\Df"(x)\>A/2;

(ii) if \X\>E and \f'(x)\>e for all j <n, n >Ne then

Proof. By the aforementioned Misiurewicz' result, there is an Nc such that if

\f(x ) \ > E for every / < NE,

then \DfN'{x)\>y > 1 . Now (ii) is an easy consequence of (i). Write

n=qNc+r, 0<r<NE,

then

|/y"(jc)| > y"\Dfr(rN-(x))\ > y"A/2.
Adapting the constants, the assertion (ii) follows.

We now prove (i). Let Z\ and z2 be the pre-images of zero of order less than
n closest to x, for which z\ <x <z2- By the conditions (H1)-(H3) we have

\Df"(t)\^\Dfn(x)\ torte[zuxl

(or for t e [x, z2], being handled analogously).
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On the other hand,

A-e<\fn(z1)-f
n(x)\

< sup |Zy"(0l|zi-*|
(e[z,,x]

since x and z\ are on the same side of zero. Therefore \Df"(x)\>A/2. The proof
is complete. •

THEOREM A.3. If f satisfies (H1)-(H3) and (M), then there are constants CA, e and
p > l such that for all x for which |/"(x)|<e we have

\Dfn(x)\>CApn.
Remark. This is stronger than (H4.2).
Proof. Define two increasing sequences:

0 = mo<ni<m\<nz<m2<- • • <nt<nti = n

with|/n'U)|<e,

|/ ;(x)|>e form,</<n,+i,

and m, -«j = n(fn'(x)) denned by lemma A.I. (The discussion when we 'stop' with
n( is similar.) Now we find

\Df(x)\= ri \Drr'"(ri(x))Drrm'-i(r
and each of these factors satisfies, by our previous estimates,

A F ' ' lA/2 if nj-nij

>pmrm,-i)

where p is defined by

p = min (a, exp (0/4), exp [/^/(log |Tj/e|JVe)]) > 1.

We have used lemma A.I, from which

This completes the proof. •
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