The Operational Representations of $D_{n}(x)$ and

 $\left(D_{-(n+1)}^{2}(i x)-D_{-(n+1)}^{2}(-i x)\right)$> By S. C. Mitra.
(Received 13th April, 1933; and in revised form 31st July, 1933.
Read 5th May, 1933.)

1. A given function $f(x)$ is said to be represented operationally by another function $\phi(p)$, if

$$
\begin{equation*}
\phi(p)=p \int_{0}^{\infty} e^{-p x} f(x) d x, \tag{1}
\end{equation*}
$$

provided that the integral converges.
The relation (1) between $f(x)$ and $\phi(p)$ may be denoted as

$$
\begin{equation*}
\phi(p) \doteqdot f(x) .^{1} \tag{2}
\end{equation*}
$$

When $\phi(p)$ is known, the original $f(x)$ is recovered by means of the Bromwich-Wagner theorem

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\phi(p)}{p} e^{p x} d p \tag{3}
\end{equation*}
$$

which follows from the Mellin-Fourier theorem. ${ }^{2}$
If $f(x)=x$, then $\phi(p)=\frac{1}{p}$ and we have the relations

$$
\begin{equation*}
\frac{1}{p} \doteqdot x \text { or } x \doteqdot \frac{1}{p} \tag{4}
\end{equation*}
$$

2. Let n be a positive integer.

The differential equation ${ }^{3}$ satisfied by $D_{2 n+1}(x)$ is

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\left(2 n+\frac{3}{2}-\frac{1}{4} x^{2}\right) y=0 . \tag{5}
\end{equation*}
$$

[^0]If we put $x^{2}=4 u$, then (5) becomes

$$
\begin{equation*}
u \frac{d^{2} y}{d u^{2}}+\frac{1}{2} \frac{d y}{d u}+\left(2 n+\frac{3}{2}-u\right) y=0 \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
X=\int_{0}^{\infty} e^{-p u} y(u) d u \tag{7}
\end{equation*}
$$

Multiplying (6) by $e^{-p u}$ and integrating and noticing that $D_{2 n+1}(0)$ is zero, we obtain the differential equation satisfied by X, viz.

$$
\begin{equation*}
\left(p^{2}-1\right) \frac{d X}{d p}=\left\{\left(2 n+\frac{3}{2}\right)-\frac{3}{2} p\right\} X \tag{8}
\end{equation*}
$$

of which the solution is

$$
\begin{equation*}
X=C \frac{(p-1)^{n}}{(p+1)^{n+1}} \tag{9}
\end{equation*}
$$

Adjusting C properly, we find that

$$
\begin{equation*}
(-1)^{n} \sqrt{ } \pi \frac{\Gamma(2 n+2)}{\Gamma(n+1) 2^{n}} \frac{p(p-1)^{n}}{(p+1)^{n+1}} \doteqdot D_{2 n+1}(2 \sqrt{x}) \tag{10}
\end{equation*}
$$

By forming the differential equation, ${ }^{1}$ we can prove in a similar manner, that
$\frac{2 \pi}{\Gamma(n+1)} \sqrt{ } p \frac{(p-1)^{n}}{(p+1)^{n+1}} \doteqdot i\left\{D_{-(n+1)}^{2}(i \sqrt{2 x})-D_{-(n+1)}^{2}(-i \sqrt{2 x})\right\}$.
Now consider the series

$$
\sqrt{ } 2 \frac{p(p-1)^{n}}{(p+1)^{n+\frac{3}{2}}}\left\{1-\frac{\frac{1}{2}}{1!}\left(\frac{p-1}{p+1}\right)+\frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}\left(\frac{p-1}{p+1}\right)^{2}-\ldots\right\}=\sqrt{ } p \frac{(p-1)^{n}}{(p+1)^{n+1}}
$$

Term by term interpretation gives

$$
\begin{align*}
& (-1)^{n} i\left\{D_{-(n+1)}^{2}(i \sqrt{2 x})-D_{-(n+1)}^{2}(-i \sqrt{2 x})\right\} \\
& =\frac{\sqrt{2 \pi} 2^{n+1}}{\overline{\Gamma(2 n+2)}}\left\{D_{2 n+1}(2 \sqrt{x})+\frac{1}{2(2 n+3)} D_{2 n+3}(2 \sqrt{x})\right. \\
& +\frac{1.3}{2.4(2 n+3)(2 n+5)} D_{2 n+5}(2 \sqrt{x}) \\
& \left.+\frac{1.3 .5}{2.4 .6(2 n+3)(2 n+5)(2 n+7)} D_{2 n+7}(2 \sqrt{x})+\ldots \ldots\right\} \tag{12}
\end{align*}
$$

[^1]$$
\text { REPRESENTATIONS OF } D_{n}(x) \text { and }\left(D_{-(n+1)}^{2}(i x)-D_{-(n+1)}^{2}(-i x)\right) \quad 3 \tilde{o}
$$

Again consider the series

$$
\begin{gather*}
\sqrt{ } p \frac{(p-1)^{n}}{(p+1)^{n+1}}\left\{1+\frac{\frac{1}{2}}{1!}\left(\frac{p-1}{p+1}\right)+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!}\left(\frac{p-1}{p+1}\right)^{2}+\ldots\right\} \\
=\sqrt{ } 2 \frac{p(p-1)^{n}}{(p+1)^{n+\frac{1}{2}}} \tag{13}
\end{gather*}
$$

Term by term interpretation gives
$D_{2 n+1}(2 x)=\frac{\Gamma(2 n+2)}{\sqrt{2 \pi} 2^{n+1}}\left[\left(e^{(n+1) \pi i} D_{-(n+1)}^{2}(i x \sqrt{ } 2)+e^{-\left(n+\frac{1}{j}\right) \pi i} D_{-(n+1)}^{2}(-i x \sqrt{ } 2)\right)\right.$
$+\sum_{s=1}^{\infty} \frac{-1.1 \cdot 3 \cdot 5 \ldots(2 s-3)(n+1)(n+2) \ldots(n+s)}{\Gamma(s+1) 2^{s}} \times$
$\left.\left(e^{\left(n+8+\frac{1}{k}\right) \pi i} D_{-(n+8+1)}^{2}(i x \sqrt{ } 2)+e^{-\left(n+z+\frac{b}{2}\right) \pi i} D_{-(n+\varepsilon+1)}^{2}(-i x \sqrt{ } 2)\right)\right]$.

[^0]: ${ }^{1}$ B. V. d. Pol and K. F. Nissen, Phil. Mug., 8 (1929), 13 (1932).
 S. Goldstein, Proc. London Math. Soc., 2, 34 (1932).

 Carson, Electric Circuit Theory and the Operational Calculus (1926).
 ${ }^{2}$ Courant und Hilbert, "Methoden der Mathematischen Physik," I, 90.
 3 Whittaker and Watson, Modern Analysis (third edition), 347.

[^1]: ${ }^{1}$ Bull. Calcutta Math. Soc., 17, 34. The transformation is on the same lines as before.

 The relation (11) holds for all positive values of n also.

